The Role of IL-6 in Cancer Cell Invasiveness and Metastasis-Overview and Therapeutic Opportunities

. 2022 Nov 21 ; 11 (22) : . [epub] 20221121

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36429126

Interleukin 6 (IL-6) belongs to a broad class of cytokines involved in the regulation of various homeostatic and pathological processes. These activities range from regulating embryonic development, wound healing and ageing, inflammation, and immunity, including COVID-19. In this review, we summarise the role of IL-6 signalling pathways in cancer biology, with particular emphasis on cancer cell invasiveness and metastasis formation. Targeting principal components of IL-6 signalling (e.g., IL-6Rs, gp130, STAT3, NF-κB) is an intensively studied approach in preclinical cancer research. It is of significant translational potential; numerous studies strongly imply the remarkable potential of IL-6 signalling inhibitors, especially in metastasis suppression.

Zobrazit více v PubMed

Gál P., Brábek J., Holub M., Jakubek M., Šedo A., Lacina L., Strnadová K., Dubový P., Hornychová H., Ryška A., et al. Autoimmunity, cancer and COVID-19 abnormally activate wound healing pathways: Critical role of inflammation. Histochem. Cell Biol. 2022;158:415–434. doi: 10.1007/s00418-022-02140-x. PubMed DOI PMC

Rose-John S. IL-6 trans-signaling via the soluble IL-6 receptor: Importance for the pro-inflammatory activities of IL-6. Int. J. Biol. Sci. 2012;8:1237–1247. doi: 10.7150/ijbs.4989. PubMed DOI PMC

Brábek J., Jakubek M., Vellieux F., Novotný J., Kolář M., Lacina L., Szabo P., Strnadová K., Rösel D., Dvořánková B., et al. Interleukin-6: Molecule in the Intersection of Cancer, Ageing and COVID-19. Int. J. Mol. Sci. 2020;21:7937. doi: 10.3390/ijms21217937. PubMed DOI PMC

Rose-John S., Scheller J., Elson G., Jones S.A. Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: Role in inflammation and cancer. J. Leukoc. Biol. 2006;80:227–236. doi: 10.1189/jlb.1105674. PubMed DOI

Hirano T., Yasukawa K., Harada H., Taga T., Watanabe Y., Matsuda T., Kashiwamura S., Nakajima K., Koyama K., Iwamatsu A., et al. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature. 1986;324:73–76. doi: 10.1038/324073a0. PubMed DOI

Talmadge J.E., Fidler I.J. AACR centennial series: The biology of cancer metastasis: Historical perspective. Cancer Res. 2010;70:5649–5669. doi: 10.1158/0008-5472.CAN-10-1040. PubMed DOI PMC

Novák Š., Kolář M., Szabó A., Vernerová Z., Lacina L., Strnad H., Šáchová J., Hradilová M., Havránek J., Španko M., et al. Desmoplastic Crosstalk in Pancreatic Ductal Adenocarcinoma Is Reflected by Different Responses of Panc-1, MIAPaCa-2, PaTu-8902, and CAPAN-2 Cell Lines to Cancer-associated/Normal Fibroblasts. Cancer Genom. Proteom. 2021;18:221–243. doi: 10.21873/cgp.20254. PubMed DOI PMC

Španko M., Strnadová K., Pavlíček A.J., Szabo P., Kodet O., Valach J., Dvořánková B., Smetana K., Lacina L. IL-6 in the Ecosystem of Head and Neck Cancer: Possible Therapeutic Perspectives. Int. J. Mol. Sci. 2021;22:11027. doi: 10.3390/ijms222011027. PubMed DOI PMC

Magidey-Klein K., Cooper T.J., Kveler K., Normand R., Zhang T., Timaner M., Raviv Z., James B.P., Gazit R., Ronai Z.A., et al. IL-6 contributes to metastatic switch via the differentiation of monocytic-dendritic progenitors into prometastatic immune cells. J. Immunother. Cancer. 2021;9:e002856. doi: 10.1136/jitc-2021-002856. PubMed DOI PMC

Johnson D.E., O’Keefe R.A., Grandis J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 2018;15:234–248. doi: 10.1038/nrclinonc.2018.8. PubMed DOI PMC

Scheller J., Chalaris A., Schmidt-Arras D., Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta. 2011;1813:878–888. doi: 10.1016/j.bbamcr.2011.01.034. PubMed DOI

Lacina L., Brábek J., Král V., Kodet O., Smetana K., Jr. Interleukin-6: A molecule with complex biological impact in cancer. Histol. Histopathol. 2019;34:125–136. doi: 10.14670/hh-18-033. PubMed DOI

Novick D., Engelmann H., Wallach D., Rubinstein M. Soluble cytokine receptors are present in normal human urine. J. Exp. Med. 1989;170:1409–1414. doi: 10.1084/jem.170.4.1409. PubMed DOI PMC

Manore S.G., Doheny D.L., Wong G.L., Lo H.W. IL-6/JAK/STAT3 Signaling in Breast Cancer Metastasis: Biology and Treatment. Front. Oncol. 2022;12:866014. doi: 10.3389/fonc.2022.866014. PubMed DOI PMC

Böttcher J.P., Schanz O., Garbers C., Zaremba A., Hegenbarth S., Kurts C., Beyer M., Schultze J.L., Kastenmüller W., Rose-John S., et al. IL-6 trans-signaling-dependent rapid development of cytotoxic CD8+ T cell function. Cell Rep. 2014;8:1318–1327. doi: 10.1016/j.celrep.2014.07.008. PubMed DOI

Chalaris A., Garbers C., Rabe B., Rose-John S., Scheller J. The soluble Interleukin 6 receptor: Generation and role in inflammation and cancer. Eur. J. Cell Biol. 2011;90:484–494. doi: 10.1016/j.ejcb.2010.10.007. PubMed DOI

Mantovani A., Allavena P., Sica A., Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–444. doi: 10.1038/nature07205. PubMed DOI

McLoughlin R.M., Jenkins B.J., Grail D., Williams A.S., Fielding C.A., Parker C.R., Ernst M., Topley N., Jones S.A. IL-6 trans-signaling via STAT3 directs T cell infiltration in acute inflammation. Proc. Natl. Acad. Sci. USA. 2005;102:9589–9594. doi: 10.1073/pnas.0501794102. PubMed DOI PMC

Szulc-Kielbik I., Kielbik M., Nowak M., Klink M. The implication of IL-6 in the invasiveness and chemoresistance of ovarian cancer cells. Systematic review of its potential role as a biomarker in ovarian cancer patients. Biochim. Biophys. Acta Rev. Cancer. 2021;1876:188639. doi: 10.1016/j.bbcan.2021.188639. PubMed DOI

Cressman D.E., Greenbaum L.E., DeAngelis R.A., Ciliberto G., Furth E.E., Poli V., Taub R. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science. 1996;274:1379–1383. doi: 10.1126/science.274.5291.1379. PubMed DOI

Yu H., Pardoll D., Jove R. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat. Rev. Cancer. 2009;9:798–809. doi: 10.1038/nrc2734. PubMed DOI PMC

Kamran M.Z., Patil P., Gude R.P. Role of STAT3 in cancer metastasis and translational advances. BioMed Res. Int. 2013;2013:421821. doi: 10.1155/2013/421821. PubMed DOI PMC

Yu H., Kortylewski M., Pardoll D. Crosstalk between cancer and immune cells: Role of STAT3 in the tumour microenvironment. Nat. Rev. Immunol. 2007;7:41–51. doi: 10.1038/nri1995. PubMed DOI

Stanam A., Love-Homan L., Joseph T.S., Espinosa-Cotton M., Simons A.L. Upregulated interleukin-6 expression contributes to erlotinib resistance in head and neck squamous cell carcinoma. Mol. Oncol. 2015;9:1371–1383. doi: 10.1016/j.molonc.2015.03.008. PubMed DOI PMC

Krishnamurthy S., Warner K.A., Dong Z., Imai A., Nör C., Ward B.B., Helman J.I., Taichman R.S., Bellile E.L., McCauley L.K., et al. Endothelial interleukin-6 defines the tumorigenic potential of primary human cancer stem cells. Stem Cells. 2014;32:2845–2857. doi: 10.1002/stem.1793. PubMed DOI PMC

Kim S., Gwak H., Kim H.S., Kim B., Dhanasekaran D.N., Song Y.S. Malignant ascites enhances migratory and invasive properties of ovarian cancer cells with membrane bound IL-6R in vitro. Oncotarget. 2016;7:83148–83159. doi: 10.18632/oncotarget.13074. PubMed DOI PMC

Gasche J.A., Hoffmann J., Boland C.R., Goel A. Interleukin-6 promotes tumorigenesis by altering DNA methylation in oral cancer cells. Int. J. Cancer. 2011;129:1053–1063. doi: 10.1002/ijc.25764. PubMed DOI PMC

Mace T.A., Ameen Z., Collins A., Wojcik S., Mair M., Young G.S., Fuchs J.R., Eubank T.D., Frankel W.L., Bekaii-Saab T., et al. Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res. 2013;73:3007–3018. doi: 10.1158/0008-5472.CAN-12-4601. PubMed DOI PMC

Lesina M., Kurkowski M.U., Ludes K., Rose-John S., Treiber M., Klöppel G., Yoshimura A., Reindl W., Sipos B., Akira S., et al. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell. 2011;19:456–469. doi: 10.1016/j.ccr.2011.03.009. PubMed DOI

Abulaiti A., Shintani Y., Funaki S., Nakagiri T., Inoue M., Sawabata N., Minami M., Okumura M. Interaction between non-small-cell lung cancer cells and fibroblasts via enhancement of TGF-β signaling by IL-6. Lung Cancer. 2013;82:204–213. doi: 10.1016/j.lungcan.2013.08.008. PubMed DOI

Chang Q., Bournazou E., Sansone P., Berishaj M., Gao S.P., Daly L., Wels J., Theilen T., Granitto S., Zhang X., et al. The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis. Neoplasia. 2013;15:848–862. doi: 10.1593/neo.13706. PubMed DOI PMC

Browning L., Patel M.R., Horvath E.B., Tawara K., Jorcyk C.L. IL-6 and ovarian cancer: Inflammatory cytokines in promotion of metastasis. Cancer Manag. Res. 2018;10:6685–6693. doi: 10.2147/CMAR.S179189. PubMed DOI PMC

Li L., Dragulev B., Zigrino P., Mauch C., Fox J.W. The invasive potential of human melanoma cell lines correlates with their ability to alter fibroblast gene expression in vitro and the stromal microenvironment in vivo. Int. J. Cancer. 2009;125:1796–1804. doi: 10.1002/ijc.24463. PubMed DOI

Jobe N.P., Rösel D., Dvořánková B., Kodet O., Lacina L., Mateu R., Smetana K., Brábek J. Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. Histochem. Cell Biol. 2016;146:205–217. doi: 10.1007/s00418-016-1433-8. PubMed DOI

Gandalovičová A., Rosel D., Fernandes M., Veselý P., Heneberg P., Čermák V., Petruželka L., Kumar S., Sanz-Moreno V., Brábek J. Migrastatics-Anti-metastatic and Anti-invasion Drugs: Promises and Challenges. Trends Cancer. 2017;3:391–406. doi: 10.1016/j.trecan.2017.04.008. PubMed DOI PMC

Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI

Meirson T., Gil-Henn H., Samson A.O. Invasion and metastasis: The elusive hallmark of cancer. Oncogene. 2020;39:2024–2026. doi: 10.1038/s41388-019-1110-1. PubMed DOI

van Zijl F., Krupitza G., Mikulits W. Initial steps of metastasis: Cell invasion and endothelial transmigration. Mutat. Res. 2011;728:23–34. doi: 10.1016/j.mrrev.2011.05.002. PubMed DOI PMC

Paget S. THE DISTRIBUTION OF SECONDARY GROWTHS IN CANCER OF THE BREAST. Lancet. 1889;133:571–573. doi: 10.1016/S0140-6736(00)49915-0. PubMed DOI

Wang Y., Ding Y., Guo N., Wang S. MDSCs: Key Criminals of Tumor Pre-metastatic Niche Formation. Front. Immunol. 2019;10:172. doi: 10.3389/fimmu.2019.00172. PubMed DOI PMC

Kaplan R.N., Riba R.D., Zacharoulis S., Bramley A.H., Vincent L., Costa C., MacDonald D.D., Jin D.K., Shido K., Kerns S.A., et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438:820–827. doi: 10.1038/nature04186. PubMed DOI PMC

Peinado H., Zhang H., Matei I.R., Costa-Silva B., Hoshino A., Rodrigues G., Psaila B., Kaplan R.N., Bromberg J.F., Kang Y., et al. Pre-metastatic niches: Organ-specific homes for metastases. Nat. Rev. Cancer. 2017;17:302–317. doi: 10.1038/nrc.2017.6. PubMed DOI

Giles A.J., Reid C.M., Evans J.D., Murgai M., Vicioso Y., Highfill S.L., Kasai M., Vahdat L., Mackall C.L., Lyden D., et al. Activation of Hematopoietic Stem/Progenitor Cells Promotes Immunosuppression Within the Pre-metastatic Niche. Cancer Res. 2016;76:1335–1347. doi: 10.1158/0008-5472.CAN-15-0204. PubMed DOI PMC

Goldman M.J., Craft B., Hastie M., Repečka K., McDade F., Kamath A., Banerjee A., Luo Y., Rogers D., Brooks A.N., et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 2020;38:675–678. doi: 10.1038/s41587-020-0546-8. PubMed DOI PMC

Han Z.J., Li Y.B., Yang L.X., Cheng H.J., Liu X., Chen H. Roles of the CXCL8-CXCR1/2 Axis in the Tumor Microenvironment and Immunotherapy. Molecules. 2021;27:137. doi: 10.3390/molecules27010137. PubMed DOI PMC

Matsushima K., Yang D., Oppenheim J.J. Interleukin-8: An evolving chemokine. Cytokine. 2022;153:155828. doi: 10.1016/j.cyto.2022.155828. PubMed DOI

Biggioggero M., Crotti C., Becciolini A., Favalli E.G. Tocilizumab in the treatment of rheumatoid arthritis: An evidence-based review and patient selection. Drug Des. Devel. 2019;13:57–70. doi: 10.2147/DDDT.S150580. PubMed DOI PMC

Ando K., Takahashi F., Motojima S., Nakashima K., Kaneko N., Hoshi K., Takahashi K. Possible Role for Tocilizumab, an Anti–Interleukin-6 Receptor Antibody, in Treating Cancer Cachexia. J. Clin. Oncol. 2013;31:e69–e72. doi: 10.1200/JCO.2012.44.2020. PubMed DOI

KEVZARA (Sarilumab) [Prescribing Information] 2017. [(accessed on 20 October 2022)]. Available online: https://www.ema.europa.eu/en/documents/product-information/kevzara-epar-product-information_en.pdf.

Ferreros P., Trapero I. Interleukin Inhibitors in Cytokine Release Syndrome and Neurotoxicity Secondary to CAR-T Therapy. Diseases. 2022;10:41. doi: 10.3390/diseases10030041. PubMed DOI PMC

Zafar E., Maqbool M.F., Iqbal A., Maryam A., Shakir H.A., Irfan M., Khan M., Li Y., Ma T. A comprehensive review on anticancer mechanism of bazedoxifene. Biotechnol. Appl. Biochem. 2022;69:767–782. doi: 10.1002/bab.2150. PubMed DOI

Kim L., Park S.A., Park H., Kim H., Heo T.H. Bazedoxifene, a GP130 Inhibitor, Modulates EMT Signaling and Exhibits Antitumor Effects in HPV-Positive Cervical Cancer. Int. J. Mol. Sci. 2021;22:8693. doi: 10.3390/ijms22168693. PubMed DOI PMC

Song W., Lv Y., Tang Z., Nie F., Huang P., Pei Q., Guo R. Bazedoxifene Plays a Protective Role against Inflammatory Injury of Endothelial Cells by Targeting CD40. Cardiovasc. Ther. 2020;2020:1795853. doi: 10.1155/2020/1795853. PubMed DOI PMC

Taneja V., El-Dallal M., Haq Z., Tripathi K., Systrom H.K., Wang L.F., Said H., Bain P.A., Zhou Y., Feuerstein J.D. Effectiveness and Safety of Tofacitinib for Ulcerative Colitis: Systematic Review and Meta-analysis. J. Clin. Gastroenterol. 2022;56:e323–e333. doi: 10.1097/MCG.0000000000001608. PubMed DOI

Curtis J.R., Lee E.B., Kaplan I.V., Kwok K., Geier J., Benda B., Soma K., Wang L., Riese R. Tofacitinib, an oral Janus kinase inhibitor: Analysis of malignancies across the rheumatoid arthritis clinical development programme. Ann. Rheum. Dis. 2016;75:831–841. doi: 10.1136/annrheumdis-2014-205847. PubMed DOI PMC

Fan S., Huo W.X., Yang Y., Shen M.Z., Mo X.D. Efficacy and safety of ruxolitinib in steroid-refractory graft-versus-host disease: A meta-analysis. Front. Immunol. 2022;13:954268. doi: 10.3389/fimmu.2022.954268. PubMed DOI PMC

Passamonti F., Palandri F., Saydam G., Callum J., Devos T., Guglielmelli P., Vannucchi A.M., Zor E., Zuurman M., Gilotti G., et al. Ruxolitinib versus best available therapy in inadequately controlled polycythaemia vera without splenomegaly (RESPONSE-2): 5-year follow up of a randomised, phase 3b study. Lancet Haematol. 2022;9:e480–e492. doi: 10.1016/S2352-3026(22)00102-8. PubMed DOI

Mesa R., Harrison C., Oh S.T., Gerds A.T., Gupta V., Catalano J., Cervantes F., Devos T., Hus M., Kiladjian J.J., et al. Overall survival in the SIMPLIFY-1 and SIMPLIFY-2 phase 3 trials of momelotinib in patients with myelofibrosis. Leukemia. 2022;36:2261–2268. doi: 10.1038/s41375-022-01637-7. PubMed DOI PMC

Hayashi M., Kim Y.P., Takamatsu S., Enomoto A., Shinose M., Takahashi Y., Tanaka H., Komiyama K., Omura S. Madindoline, a novel inhibitor of IL-6 activity from Streptomyces sp. K93-0711. I. Taxonomy, fermentation, isolation and biological activities. J. Antibiot. 1996;49:1091–1095. doi: 10.7164/antibiotics.49.1091. PubMed DOI

Hayashi M., Rho M.C., Enomoto A., Fukami A., Kim Y.P., Kikuchi Y., Sunazuka T., Hirose T., Komiyama K., Omura S. Suppression of bone resorption by madindoline A, a novel nonpeptide antagonist to gp130. Proc. Natl. Acad. Sci. USA. 2002;99:14728–14733. doi: 10.1073/pnas.232562799. PubMed DOI PMC

Kino T., Boos T.L., Sulima A., Siegel E.M., Gold P.W., Rice K.C., Chrousos G.P. 3-O-Formyl-20R,21-epoxyresibufogenin suppresses IL-6-type cytokine actions by targeting the glycoprotein 130 subunit: Potential clinical implications. J. Allergy Clin. Immunol. 2007;120:437–444. doi: 10.1016/j.jaci.2007.03.018. PubMed DOI

Hayashi M., Rho M.C., Fukami A., Enomoto A., Nonaka S., Sekiguchi Y., Yanagisawa T., Yamashita A., Nogawa T., Kamano Y., et al. Biological activity of a novel nonpeptide antagonist to the interleukin-6 receptor 20S,21-epoxy-resibufogenin-3-formate. J. Pharm. Exp. 2002;303:104–109. doi: 10.1124/jpet.102.036137. PubMed DOI

Enomoto A., Rho M.C., Komiyama K., Hayashi M. Inhibitory effects of bufadienolides on interleukin-6 in MH-60 cells. J. Nat. Prod. 2004;67:2070–2072. doi: 10.1021/np049950e. PubMed DOI

Adachi M., Cui C., Dodge C.T., Bhayani M.K., Lai S.Y. Targeting STAT3 inhibits growth and enhances radiosensitivity in head and neck squamous cell carcinoma. Oral Oncol. 2012;48:1220–1226. doi: 10.1016/j.oraloncology.2012.06.006. PubMed DOI PMC

Bendell J.C., Hong D.S., Burris H.A., 3rd, Naing A., Jones S.F., Falchook G., Bricmont P., Elekes A., Rock E.P., Kurzrock R. Phase 1, open-label, dose-escalation, and pharmacokinetic study of STAT3 inhibitor OPB-31121 in subjects with advanced solid tumors. Cancer Chemother. Pharm. 2014;74:125–130. doi: 10.1007/s00280-014-2480-2. PubMed DOI

Oh D.Y., Lee S.H., Han S.W., Kim M.J., Kim T.M., Kim T.Y., Heo D.S., Yuasa M., Yanagihara Y., Bang Y.J. Phase I Study of OPB-31121, an Oral STAT3 Inhibitor, in Patients with Advanced Solid Tumors. Cancer Res. Treat. 2015;47:607–615. doi: 10.4143/crt.2014.249. PubMed DOI PMC

Handle F., Puhr M., Schaefer G., Lorito N., Hoefer J., Gruber M., Guggenberger F., Santer F.R., Marques R.B., van Weerden W.M., et al. The STAT3 Inhibitor Galiellalactone Reduces IL6-Mediated AR Activity in Benign and Malignant Prostate Models. Mol. Cancer Ther. 2018;17:2722–2731. doi: 10.1158/1535-7163.MCT-18-0508. PubMed DOI

Escobar Z., Bjartell A., Canesin G., Evans-Axelsson S., Sterner O., Hellsten R., Johansson M.H. Preclinical Characterization of 3β-(N-Acetyl l-cysteine methyl ester)-2aβ,3-dihydrogaliellalactone (GPA512), a Prodrug of a Direct STAT3 Inhibitor for the Treatment of Prostate Cancer. J. Med. Chem. 2016;59:4551–4562. doi: 10.1021/acs.jmedchem.5b01814. PubMed DOI

Witt K., Evans-Axelsson S., Lundqvist A., Johansson M., Bjartell A., Hellsten R. Inhibition of STAT3 augments antitumor efficacy of anti-CTLA-4 treatment against prostate cancer. Cancer Immunol. Immunother. 2021;70:3155–3166. doi: 10.1007/s00262-021-02915-6. PubMed DOI PMC

Ogura M., Uchida T., Terui Y., Hayakawa F., Kobayashi Y., Taniwaki M., Takamatsu Y., Naoe T., Tobinai K., Munakata W., et al. Phase I study of OPB-51602, an oral inhibitor of signal transducer and activator of transcription 3, in patients with relapsed/refractory hematological malignancies. Cancer Sci. 2015;106:896–901. doi: 10.1111/cas.12683. PubMed DOI PMC

Boonstra P.S., Polk A., Brown N., Hristov A.C., Bailey N.G., Kaminski M.S., Phillips T., Devata S., Mayer T., Wilcox R.A. A single center phase II study of ixazomib in patients with relapsed or refractory cutaneous or peripheral T-cell lymphomas. Am. J. Hematol. 2017;92:1287–1294. doi: 10.1002/ajh.24895. PubMed DOI PMC

Shuai T., Zhang C., Zhang M., Wang Y., Xiong H., Huang Q., Liu J. Low-dose theophylline in addition to ICS therapy in COPD patients: A systematic review and meta-analysis. PLoS ONE. 2021;16:e0251348. doi: 10.1371/journal.pone.0251348. PubMed DOI PMC

Montaño L.M., Sommer B., Gomez-Verjan J.C., Morales-Paoli G.S., Ramírez-Salinas G.L., Solís-Chagoyán H., Sanchez-Florentino Z.A., Calixto E., Pérez-Figueroa G.E., Carter R., et al. Theophylline: Old Drug in a New Light, Application in COVID-19 through Computational Studies. Int. J. Mol. Sci. 2022;23:4167. doi: 10.3390/ijms23084167. PubMed DOI PMC

Ichiyama T., Hasegawa S., Matsubara T., Hayashi T., Furukawa S. Theophylline inhibits NF-κB activation and IκBα degradation in human pulmonary epithelial cells. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2001;364:558–561. doi: 10.1007/s00210-001-0494-x. PubMed DOI

Viana S.D., Reis F., Alves R. Therapeutic Use of mTOR Inhibitors in Renal Diseases: Advances, Drawbacks, and Challenges. Oxid. Med. Cell. Longev. 2018;2018:3693625. doi: 10.1155/2018/3693625. PubMed DOI PMC

Liesveld J.L., Baran A., Azadniv M., Misch H., Nedrow K., Becker M., Loh K.P., O’Dwyer K.M., Mendler J.H. A phase II study of sequential decitabine and rapamycin in acute myelogenous leukemia. Leuk. Res. 2022;112:106749. doi: 10.1016/j.leukres.2021.106749. PubMed DOI

Zhang X., Jiang N., Li J., Zhang D., Lv X. Rapamycin alleviates proinflammatory cytokines and nociceptive behavior induced by chemotherapeutic paclitaxel. Neurol. Res. 2019;41:52–59. doi: 10.1080/01616412.2018.1531199. PubMed DOI

Wu C.-F., Wu C.-Y., Chiou R.Y.Y., Yang W.-C., Lin C.-F., Wang C.-M., Hou P.-H., Lin T.-C., Kuo C.-Y., Chang G.-R. The Anti-Cancer Effects of a Zotarolimus and 5-Fluorouracil Combination Treatment on A549 Cell-Derived Tumors in BALB/c Nude Mice. Int. J. Mol. Sci. 2021;22:4562. doi: 10.3390/ijms22094562. PubMed DOI PMC

Chen J.S., Alfajaro M.M., Chow R.D., Wei J., Filler R.B., Eisenbarth S.C., Wilen C.B. Non-steroidal anti-inflammatory drugs dampen the cytokine and antibody response to SARS-CoV-2 infection. J. Virol. 2021;95:e00014-21. doi: 10.1128/JVI.00014-21. PubMed DOI PMC

Mao J.T., Roth M.D., Fishbein M.C., Aberle D.R., Zhang Z.F., Rao J.Y., Tashkin D.P., Goodglick L., Holmes E.C., Cameron R.B., et al. Lung cancer chemoprevention with celecoxib in former smokers. Cancer Prev. Res. 2011;4:984–993. doi: 10.1158/1940-6207.CAPR-11-0078. PubMed DOI PMC

Panahi Y., Saadat A., Beiraghdar F., Sahebkar A. Adjuvant Therapy with Bioavailability-Boosted Curcuminoids Suppresses Systemic Inflammation and Improves Quality of Life in Patients with Solid Tumors: A Randomized Double-Blind Placebo-Controlled Trial. Phytother. Res. 2014;28:1461–1467. doi: 10.1002/ptr.5149. PubMed DOI

Liao F., Liu L., Luo E., Hu J. Curcumin enhances anti-tumor immune response in tongue squamous cell carcinoma. Arch. Oral Biol. 2018;92:32–37. doi: 10.1016/j.archoralbio.2018.04.015. PubMed DOI

Dhillon N., Aggarwal B.B., Newman R.A., Wolff R.A., Kunnumakkara A.B., Abbruzzese J.L., Ng C.S., Badmaev V., Kurzrock R. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin. Cancer Res. 2008;14:4491–4499. doi: 10.1158/1078-0432.CCR-08-0024. PubMed DOI

Du Y., Long Q., Zhang L., Shi Y., Liu X., Li X., Guan B., Tian Y., Wang X., Li L., et al. Curcumin inhibits cancer-associated fibroblast-driven prostate cancer invasion through MAOA/mTOR/HIF-1α signaling. Int. J. Oncol. 2015;47:2064–2072. doi: 10.3892/ijo.2015.3202. PubMed DOI PMC

Choi H., Chun Y.-S., Kim S.-W., Kim M.-S., Park J.-W. Curcumin Inhibits Hypoxia-Inducible Factor-1 by Degrading Aryl Hydrocarbon Receptor Nuclear Translocator: A Mechanism of Tumor Growth Inhibition. Mol. Pharmacol. 2006;70:1664–1671. doi: 10.1124/mol.106.025817. PubMed DOI

Hu Y., McIntosh G.H., Le Leu R.K., Somashekar R., Meng X.Q., Gopalsamy G., Bambaca L., McKinnon R.A., Young G.P. Supplementation with Brazil nuts and green tea extract regulates targeted biomarkers related to colorectal cancer risk in humans. Br. J. Nutr. 2016;116:1901–1911. doi: 10.1017/S0007114516003937. PubMed DOI

Wang Y., Ren X., Deng C., Yang L., Yan E., Guo T., Li Y., Xu M.X. Mechanism of the inhibition of the STAT3 signaling pathway by EGCG. Oncol. Rep. 2013;30:2691–2696. doi: 10.3892/or.2013.2743. PubMed DOI

Dijkgraaf E.M., Santegoets S.J., Reyners A.K., Goedemans R., Wouters M.C., Kenter G.G., van Erkel A.R., van Poelgeest M.I., Nijman H.W., van der Hoeven J.J., et al. A phase I trial combining carboplatin/doxorubicin with tocilizumab, an anti-IL-6R monoclonal antibody, and interferon-α2b in patients with recurrent epithelial ovarian cancer. Ann. Oncol. 2015;26:2141–2149. doi: 10.1093/annonc/mdv309. PubMed DOI

Dijkgraaf E.M., Heusinkveld M., Tummers B., Vogelpoel L.T., Goedemans R., Jha V., Nortier J.W., Welters M.J., Kroep J.R., van der Burg S.H. Chemotherapy alters monocyte differentiation to favor generation of cancer-supporting M2 macrophages in the tumor microenvironment. Cancer Res. 2013;73:2480–2492. doi: 10.1158/0008-5472.CAN-12-3542. PubMed DOI

Preston C.C., Maurer M.J., Oberg A.L., Visscher D.W., Kalli K.R., Hartmann L.C., Goode E.L., Knutson K.L. The ratios of CD8+ T cells to CD4+CD25+ FOXP3+ and FOXP3- T cells correlate with poor clinical outcome in human serous ovarian cancer. PLoS ONE. 2013;8:e80063. doi: 10.1371/journal.pone.0080063. PubMed DOI PMC

Kennedy G.A., Tey S.K., Buizen L., Varelias A., Gartlan K.H., Curley C., Olver S.D., Chang K., Butler J.P., Misra A., et al. A phase 3 double-blind study of the addition of tocilizumab vs placebo to cyclosporin/methotrexate GVHD prophylaxis. Blood. 2021;137:1970–1979. doi: 10.1182/blood.2020009050. PubMed DOI

Nguyen M.L.T., Bui K.C., Scholta T., Xing J., Bhuria V., Sipos B., Wilkens L., Nguyen Linh T., Velavan T.P., Bozko P., et al. Targeting interleukin 6 signaling by monoclonal antibody siltuximab on cholangiocarcinoma. J. Gastroenterol. Hepatol. 2021;36:1334–1345. doi: 10.1111/jgh.15307. PubMed DOI

Saleh A.Z., Greenman K.L., Billings S., Van Vranken D.L., Krolewski J.J. Binding of madindoline A to the extracellular domain of gp130. Biochemistry. 2005;44:10822–10827. doi: 10.1021/bi050439+. PubMed DOI

Aigner P., Just V., Stoiber D. STAT3 isoforms: Alternative fates in cancer? Cytokine. 2019;118:27–34. doi: 10.1016/j.cyto.2018.07.014. PubMed DOI

Zhang H.X., Yang P.L., Li E.M., Xu L.Y. STAT3beta, a distinct isoform from STAT3. Int. J. Biochem. Cell Biol. 2019;110:130–139. doi: 10.1016/j.biocel.2019.02.006. PubMed DOI

Lavecchia A., Di Giovanni C., Cerchia C. Novel inhibitors of signal transducer and activator of transcription 3 signaling pathway: An update on the recent patent literature. Expert Opin. Ther. Pat. 2014;25:1305–1317. doi: 10.1517/13543776.2014.877443. PubMed DOI

Rah B., Rather R.A., Bhat G.R., Baba A.B., Mushtaq I., Farooq M., Yousuf T., Dar S.B., Parveen S., Hassan R., et al. JAK/STAT Signaling: Molecular Targets, Therapeutic Opportunities, and Limitations of Targeted Inhibitions in Solid Malignancies. Front. Pharmacol. 2022;13:821344. doi: 10.3389/fphar.2022.821344. PubMed DOI PMC

Kim M.-J., Nam H.-J., Kim H.-P., Han S.-W., Im S.-A., Kim T.-Y., Oh D.-Y., Bang Y.-J. OPB-31121, a novel small molecular inhibitor, disrupts the JAK2/STAT3 pathway and exhibits an antitumor activity in gastric cancer cells. Cancer Lett. 2013;335:145–152. doi: 10.1016/j.canlet.2013.02.010. PubMed DOI

Hellsten R., Johansson M., Dahlman A., Dizeyi N., Sterner O., Bjartell A. Galiellalactone is a novel therapeutic candidate against hormone-refractory prostate cancer expressing activated Stat3. Prostate. 2008;68:269–280. doi: 10.1002/pros.20699. PubMed DOI

Gao L., Han B., Dong X. The Androgen Receptor and Its Crosstalk With the Src Kinase During Castrate-Resistant Prostate Cancer Progression. Front. Oncol. 2022;12:905398. doi: 10.3389/fonc.2022.905398. PubMed DOI PMC

Fialova J.L., Raudenska M., Jakubek M., Kejik Z., Martasek P., Babula P., Matkowski A., Filipensky P., Masarik M. Novel Mitochondria-targeted Drugs for Cancer Therapy. Mini Rev. Med. Chem. 2021;21:816–832. doi: 10.2174/1389557520666201118153242. PubMed DOI

Wegrzyn J., Potla R., Chwae Y.J., Sepuri N.B., Zhang Q., Koeck T., Derecka M., Szczepanek K., Szelag M., Gornicka A., et al. Function of mitochondrial Stat3 in cellular respiration. Science. 2009;323:793–797. doi: 10.1126/science.1164551. PubMed DOI PMC

Mantel C., Messina-Graham S., Moh A., Cooper S., Hangoc G., Fu X.Y., Broxmeyer H.E. Mouse hematopoietic cell-targeted STAT3 deletion: Stem/progenitor cell defects, mitochondrial dysfunction, ROS overproduction, and a rapid aging-like phenotype. Blood. 2012;120:2589–2599. doi: 10.1182/blood-2012-01-404004. PubMed DOI PMC

Gough D.J., Corlett A., Schlessinger K., Wegrzyn J., Larner A.C., Levy D.E. Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science. 2009;324:1713–1716. doi: 10.1126/science.1171721. PubMed DOI PMC

Zhang Q., Raje V., Yakovlev V.A., Yacoub A., Szczepanek K., Meier J., Derecka M., Chen Q., Hu Y., Sisler J., et al. Mitochondrial localized Stat3 promotes breast cancer growth via phosphorylation of serine 727. J. Biol. Chem. 2013;288:31280–31288. doi: 10.1074/jbc.M113.505057. PubMed DOI PMC

Denisenko T.V., Gorbunova A.S., Zhivotovsky B. Mitochondrial Involvement in Migration, Invasion and Metastasis. Front. Cell Dev. Biol. 2019;7:355. doi: 10.3389/fcell.2019.00355. PubMed DOI PMC

Passaniti A., Kim M.S., Polster B.M., Shapiro P. Targeting mitochondrial metabolism for metastatic cancer therapy. Mol. Carcinog. 2022;61:827–838. doi: 10.1002/mc.23436. PubMed DOI PMC

Caino M.C., Altieri D.C. Molecular Pathways: Mitochondrial Reprogramming in Tumor Progression and Therapy. Clin. Cancer Res. 2016;22:540–545. doi: 10.1158/1078-0432.CCR-15-0460. PubMed DOI PMC

Viale A., Corti D., Draetta G.F. Tumors and Mitochondrial Respiration: A Neglected Connection. Cancer Res. 2015;75:3687–3691. doi: 10.1158/0008-5472.CAN-15-0491. PubMed DOI

Jia D., Park J.H., Jung K.H., Levine H., Kaipparettu B.A. Elucidating the Metabolic Plasticity of Cancer: Mitochondrial Reprogramming and Hybrid Metabolic States. Cells. 2018;7:21. doi: 10.3390/cells7030021. PubMed DOI PMC

Patra S., Elahi N., Armorer A., Arunachalam S., Omala J., Hamid I., Ashton A.W., Joyce D., Jiao X., Pestell R.G. Mechanisms Governing Metabolic Heterogeneity in Breast Cancer and Other Tumors. Front. Oncol. 2021;11:700629. doi: 10.3389/fonc.2021.700629. PubMed DOI PMC

Genini D., Brambilla L., Laurini E., Merulla J., Civenni G., Pandit S., D’Antuono R., Perez L., Levy D.E., Pricl S., et al. Mitochondrial dysfunction induced by a SH2 domain-targeting STAT3 inhibitor leads to metabolic synthetic lethality in cancer cells. Proc. Natl. Acad. Sci. USA. 2017;114:E4924–E4933. doi: 10.1073/pnas.1615730114. PubMed DOI PMC

Mackenzie G.G., Huang L., Alston N., Ouyang N., Vrankova K., Mattheolabakis G., Constantinides P.P., Rigas B. Targeting mitochondrial STAT3 with the novel phospho-valproic acid (MDC-1112) inhibits pancreatic cancer growth in mice. PLoS ONE. 2013;8:e61532. doi: 10.1371/journal.pone.0061532. PubMed DOI PMC

Jia D., Li L., Andrew S., Allan D., Li X., Lee J., Ji G., Yao Z., Gadde S., Figeys D., et al. An autocrine inflammatory forward-feedback loop after chemotherapy withdrawal facilitates the repopulation of drug-resistant breast cancer cells. Cell Death Dis. 2017;8:e2932. doi: 10.1038/cddis.2017.319. PubMed DOI PMC

Filimon A., Preda I.A., Boloca A.F., Negroiu G. Interleukin-8 in Melanoma Pathogenesis, Prognosis and Therapy-An Integrated View into Other Neoplasms and Chemokine Networks. Cells. 2021;11:120. doi: 10.3390/cells11010120. PubMed DOI PMC

Xia T., Li J., Ren X., Liu C., Sun C. Research progress of phenolic compounds regulating IL-6 to exert antitumor effects. Phytother. Res. 2021;35:6720–6734. doi: 10.1002/ptr.7258. PubMed DOI

Jiang J., Wang G.Z., Wang Y., Huang H.Z., Li W.T., Qu X.D. Hypoxia-induced HMGB1 expression of HCC promotes tumor invasiveness and metastasis via regulating macrophage-derived IL-6. Exp. Cell Res. 2018;367:81–88. doi: 10.1016/j.yexcr.2018.03.025. PubMed DOI

Harris A.J., Thompson A.R., Whyte M.K., Walmsley S.R. HIF-mediated innate immune responses: Cell signaling and therapeutic implications. Hypoxia. 2014;2:47–58. doi: 10.2147/hp.S50269. PubMed DOI PMC

Korbecki J., Simińska D., Gąssowska-Dobrowolska M., Listos J., Gutowska I., Chlubek D., Baranowska-Bosiacka I. Chronic and Cycling Hypoxia: Drivers of Cancer Chronic Inflammation through HIF-1 and NF-κB Activation: A Review of the Molecular Mechanisms. Int. J. Mol. Sci. 2021;22:10701. doi: 10.3390/ijms221910701. PubMed DOI PMC

Malkov M.I., Lee C.T., Taylor C.T. Regulation of the Hypoxia-Inducible Factor (HIF) by Pro-Inflammatory Cytokines. Cells. 2021;10:2340. doi: 10.3390/cells10092340. PubMed DOI PMC

Jayatilaka H., Tyle P., Chen J.J., Kwak M., Ju J., Kim H.J., Lee J.S.H., Wu P.H., Gilkes D.M., Fan R., et al. Synergistic IL-6 and IL-8 paracrine signalling pathway infers a strategy to inhibit tumour cell migration. Nat. Commun. 2017;8:15584. doi: 10.1038/ncomms15584. PubMed DOI PMC

Jayatilaka H., Umanzor F.G., Shah V., Meirson T., Russo G., Starich B., Tyle P., Lee J.S.H., Khatau S., Gil-Henn H., et al. Tumor cell density regulates matrix metalloproteinases for enhanced migration. Oncotarget. 2018;9:32556–32569. doi: 10.18632/oncotarget.25863. PubMed DOI PMC

Zhang R., Roque D.M., Reader J., Lin J. Combined inhibition of IL-6 and IL-8 pathways suppresses ovarian cancer cell viability and migration and tumor growth. Int. J. Oncol. 2022;60:5340. doi: 10.3892/ijo.2022.5340. PubMed DOI PMC

Kejík Z., Kaplánek R., Dytrych P., Masařík M., Veselá K., Abramenko N., Hoskovec D., Vašáková M., Králová J., Martásek P., et al. Circulating Tumour Cells (CTCs) in NSCLC: From Prognosis to Therapy Design. Pharmaceutics. 2021;13:1879. doi: 10.3390/pharmaceutics13111879. PubMed DOI PMC

Rashid M., Zadeh L.R., Baradaran B., Molavi O., Ghesmati Z., Sabzichi M., Ramezani F. Up-down regulation of HIF-1α in cancer progression. Gene. 2021;798:145796. doi: 10.1016/j.gene.2021.145796. PubMed DOI

Li M., Lin L., Guo T., Wu Y., Lin J., Liu Y., Yang K., Hu C. Curcumin Administered in Combination with Glu-GNPs Induces Radiosensitivity in Transplanted Tumor MDA-MB-231-luc Cells in Nude Mice. BioMed Res. Int. 2021;2021:9262453. doi: 10.1155/2021/9262453. PubMed DOI PMC

Kubatka P., Mazurakova A., Samec M., Koklesova L., Zhai K., Al-Ishaq R., Kajo K., Biringer K., Vybohova D., Brockmueller A., et al. Flavonoids against non-physiologic inflammation attributed to cancer initiation, development, and progression-3PM pathways. EPMA J. 2021;12:559–587. doi: 10.1007/s13167-021-00257-y. PubMed DOI PMC

Talianová V., Kejík Z., Kaplánek R., Veselá K., Abramenko N., Lacina L., Strnadová K., Dvořánková B., Martásek P., Masařík M., et al. New-Generation Heterocyclic Bis-Pentamethinium Salts as Potential Cytostatic Drugs with Dual IL-6R and Mitochondria-Targeting Activity. Pharmaceutics. 2022;14:1712. doi: 10.3390/pharmaceutics14081712. PubMed DOI PMC

Fialova J.L., Hönigova K., Raudenska M., Miksatkova L., Zobalova R., Navratil J., Šmigová J., Moturu T.R., Vicar T., Balvan J., et al. Pentamethinium salts suppress key metastatic processes by regulating mitochondrial function and inhibiting dihydroorotate dehydrogenase respiration. Biomed. Pharmacother. 2022;154:113582. doi: 10.1016/j.biopha.2022.113582. PubMed DOI

Evans D.R., Guy H.I. Mammalian Pyrimidine Biosynthesis: Fresh Insights into an Ancient Pathway. J. Biol. Chem. 2004;279:33035–33038. doi: 10.1074/jbc.R400007200. PubMed DOI

Boukalova S., Hubackova S., Milosevic M., Ezrova Z., Neuzil J., Rohlena J. Dihydroorotate dehydrogenase in oxidative phosphorylation and cancer. Biochim. Biophys. Acta Mol. Basis Dis. 2020;1866:165759. doi: 10.1016/j.bbadis.2020.165759. PubMed DOI

Mochizuki D., Adams A., Warner K.A., Zhang Z., Pearson A.T., Misawa K., McLean S.A., Wolf G.T., Nör J.E. Anti-tumor effect of inhibition of IL-6 signaling in mucoepidermoid carcinoma. Oncotarget. 2015;6:22822–22835. doi: 10.18632/oncotarget.4477. PubMed DOI PMC

Matsuoka Y., Nakayama H., Yoshida R., Hirosue A., Nagata M., Tanaka T., Kawahara K., Sakata J., Arita H., Nakashima H., et al. IL-6 controls resistance to radiation by suppressing oxidative stress via the Nrf2-antioxidant pathway in oral squamous cell carcinoma. Br. J. Cancer. 2016;115:1234–1244. doi: 10.1038/bjc.2016.327. PubMed DOI PMC

Méndez-Clemente A., Bravo-Cuellar A., González-Ochoa S., Santiago-Mercado M., Palafox-Mariscal L., Jave-Suárez L., Solorzano-Ibarra F., Villaseñor-García M., Ortiz-Lazareno P., Hernández-Flores G. Dual STAT-3 and IL-6R inhibition with stattic and tocilizumab decreases migration, invasion and proliferation of prostate cancer cells by targeting the IL-6/IL-6R/STAT-3 axis. Oncol. Rep. 2022;48:8349. doi: 10.3892/or.2022.8349. PubMed DOI PMC

Johnson D.E., Burtness B., Leemans C.R., Lui V.W.Y., Bauman J.E., Grandis J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Prim. 2020;6:92. doi: 10.1038/s41572-020-00224-3. PubMed DOI PMC

Peitzsch C., Nathansen J., Schniewind S.I., Schwarz F., Dubrovska A. Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma: Identification, Characterization and Clinical Implications. Cancers. 2019;11:616. doi: 10.3390/cancers11050616. PubMed DOI PMC

Kalavrezos N., Bhandari R. Current trends and future perspectives in the surgical management of oral cancer. Oral Oncol. 2010;46:429–432. doi: 10.1016/j.oraloncology.2010.03.007. PubMed DOI

Kim H.S., Chen Y.C., Nör F., Warner K.A., Andrews A., Wagner V.P., Zhang Z., Zhang Z., Martins M.D., Pearson A.T., et al. Endothelial-derived interleukin-6 induces cancer stem cell motility by generating a chemotactic gradient towards blood vessels. Oncotarget. 2017;8:100339–100352. doi: 10.18632/oncotarget.22225. PubMed DOI PMC

Chinn S.B., Darr O.A., Owen J.H., Bellile E., McHugh J.B., Spector M.E., Papagerakis S.M., Chepeha D.B., Bradford C.R., Carey T.E., et al. Cancer stem cells: Mediators of tumorigenesis and metastasis in head and neck squamous cell carcinoma. Head Neck. 2015;37:317–326. doi: 10.1002/hed.23600. PubMed DOI PMC

Wang Y.F., Chang S.Y., Tai S.K., Li W.Y., Wang L.S. Clinical significance of interleukin-6 and interleukin-6 receptor expressions in oral squamous cell carcinoma. Head Neck. 2002;24:850–858. doi: 10.1002/hed.10145. PubMed DOI

Novotný J., Bandúrová V., Strnad H., Chovanec M., Hradilová M., Šáchová J., Šteffl M., Grušanović J., Kodet R., Pačes V., et al. Analysis of HPV-Positive and HPV-Negative Head and Neck Squamous Cell Carcinomas and Paired Normal Mucosae Reveals Cyclin D1 Deregulation and Compensatory Effect of Cyclin D2. Cancers. 2020;12:792. doi: 10.3390/cancers12040792. PubMed DOI PMC

Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Macciò A., Madeddu C. Inflammation and ovarian cancer. Cytokine. 2012;58:133–147. doi: 10.1016/j.cyto.2012.01.015. PubMed DOI

Saini U., Naidu S., ElNaggar A.C., Bid H.K., Wallbillich J.J., Bixel K., Bolyard C., Suarez A.A., Kaur B., Kuppusamy P., et al. Elevated STAT3 expression in ovarian cancer ascites promotes invasion and metastasis: A potential therapeutic target. Oncogene. 2017;36:168–181. doi: 10.1038/onc.2016.197. PubMed DOI PMC

Chaluvally-Raghavan P., Jeong K.J., Pradeep S., Silva A.M., Yu S., Liu W., Moss T., Rodriguez-Aguayo C., Zhang D., Ram P., et al. Direct Upregulation of STAT3 by MicroRNA-551b-3p Deregulates Growth and Metastasis of Ovarian Cancer. Cell Rep. 2016;15:1493–1504. doi: 10.1016/j.celrep.2016.04.034. PubMed DOI PMC

Wang Y., Li L., Guo X., Jin X., Sun W., Zhang X., Xu R.C. Interleukin-6 signaling regulates anchorage-independent growth, proliferation, adhesion and invasion in human ovarian cancer cells. Cytokine. 2012;59:228–236. doi: 10.1016/j.cyto.2012.04.020. PubMed DOI

Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021;71:7–33. doi: 10.3322/caac.21654. PubMed DOI

Jiang X.P., Yang D.C., Elliott R.L., Head J.F. Reduction in serum IL-6 after vacination of breast cancer patients with tumour-associated antigens is related to estrogen receptor status. Cytokine. 2000;12:458–465. doi: 10.1006/cyto.1999.0591. PubMed DOI

Tamm I., Cardinale I., Krueger J., Murphy J.S., May L.T., Sehgal P.B. Interleukin 6 decreases cell-cell association and increases motility of ductal breast carcinoma cells. J. Exp. Med. 1989;170:1649–1669. doi: 10.1084/jem.170.5.1649. PubMed DOI PMC

Sullivan N.J., Sasser A.K., Axel A.E., Vesuna F., Raman V., Ramirez N., Oberyszyn T.M., Hall B.M. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene. 2009;28:2940–2947. doi: 10.1038/onc.2009.180. PubMed DOI PMC

Oh K., Lee O.Y., Park Y., Seo M.W., Lee D.S. IL-1β induces IL-6 production and increases invasiveness and estrogen-independent growth in a TG2-dependent manner in human breast cancer cells. BMC Cancer. 2016;16:724. doi: 10.1186/s12885-016-2746-7. PubMed DOI PMC

Sanguinetti A., Santini D., Bonafè M., Taffurelli M., Avenia N. Interleukin-6 and pro inflammatory status in the breast tumor microenvironment. World J. Surg. Oncol. 2015;13:129. doi: 10.1186/s12957-015-0529-2. PubMed DOI PMC

Markovic S.N., Erickson L.A., Rao R.D., Weenig R.H., Pockaj B.A., Bardia A., Vachon C.M., Schild S.E., McWilliams R.R., Hand J.L., et al. Malignant melanoma in the 21st century, part 1: Epidemiology, risk factors, screening, prevention, and diagnosis. Mayo Clin. Proc. 2007;82:364–380. doi: 10.1016/S0025-6196(11)61033-1. PubMed DOI

Davis L.E., Shalin S.C., Tackett A.J. Current state of melanoma diagnosis and treatment. Cancer Biol. 2019;20:1366–1379. doi: 10.1080/15384047.2019.1640032. PubMed DOI PMC

Weber R., Groth C., Lasser S., Arkhypov I., Petrova V., Altevogt P., Utikal J., Umansky V. IL-6 as a major regulator of MDSC activity and possible target for cancer immunotherapy. Cell Immunol. 2021;359:104254. doi: 10.1016/j.cellimm.2020.104254. PubMed DOI

Weber R., Riester Z., Hüser L., Sticht C., Siebenmorgen A., Groth C., Hu X., Altevogt P., Utikal J.S., Umansky V. IL-6 regulates CCR5 expression and immunosuppressive capacity of MDSC in murine melanoma. J. Immunother. Cancer. 2020;8:e000949. doi: 10.1136/jitc-2020-000949. PubMed DOI PMC

Hailemichael Y., Johnson D.H., Abdel-Wahab N., Foo W.C., Bentebibel S.E., Daher M., Haymaker C., Wani K., Saberian C., Ogata D., et al. Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity. Cancer Cell. 2022;40:509–523. doi: 10.1016/j.ccell.2022.04.004. PubMed DOI PMC

Depner S., Lederle W., Gutschalk C., Linde N., Zajonz A., Mueller M.M. Cell type specific interleukin-6 induced responses in tumor keratinocytes and stromal fibroblasts are essential for invasive growth. Int. J. Cancer. 2014;135:551–562. doi: 10.1002/ijc.27951. PubMed DOI

Vokurka M., Lacina L., Brábek J., Kolář M., Ng Y.Z., Smetana K. Cancer-Associated Fibroblasts Influence the Biological Properties of Malignant Tumours via Paracrine Secretion and Exosome Production. Int. J. Mol. Sci. 2022;23:964. doi: 10.3390/ijms23020964. PubMed DOI PMC

Strnadová K., Pfeiferová L., Přikryl P., Dvořánková B., Vlčák E., Frýdlová J., Vokurka M., Novotný J., Šáchová J., Hradilová M., et al. Exosomes produced by melanoma cells significantly influence the biological properties of normal and cancer-associated fibroblasts. Histochem. Cell Biol. 2022;157:153–172. doi: 10.1007/s00418-021-02052-2. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...