Desmoplastic Crosstalk in Pancreatic Ductal Adenocarcinoma Is Reflected by Different Responses of Panc-1, MIAPaCa-2, PaTu-8902, and CAPAN-2 Cell Lines to Cancer-associated/Normal Fibroblasts

. 2021 May-Jun ; 18 (3) : 221-243.

Jazyk angličtina Země Řecko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33893076

BACKGROUND/AIM: Pancreatic ductal adenocarcinoma (PDAC) still represents one of the most aggressive cancers. Understanding of the epithelial-mesenchymal crosstalk as a crucial part of the tumor microenvironment should pave the way for therapies to improve patient survival rates. Well-established cell lines present a useful and reproducible model to study PDAC biology. However, the tumor-stromal interactions between cancer cells and cancer-associated fibroblasts (CAFs) are still poorly understood. MATERIALS AND METHODS: We studied interactions between four PDAC cell lines (Panc-1, CAPAN-2, MIAPaCa-2, and PaTu-8902) and conditioned media derived from primary cultures of normal fibroblasts/PDAC-derived CAFs (PANFs). RESULTS: When the tested PDAC cell lines were stimulated by PANF-derived conditioned media, the most aggressive behavior was acquired by the Panc-1 cell line (increased number and size of colonies, remaining expression of vimentin and keratin 8 as well as increase of epithelial-to-mesenchymal polarization markers), whereas PaTu-8902 cells were rather inhibited. Of note, administration of the conditioned media to MIAPaCa-2 cells resulted in an inverse effect on the size and number of colonies, whereas CAPAN-2 cells were rather stimulated. To explain the heterogeneous pattern of the observed PDAC crosstalk at the in vitro level, we further compared the phenotype of primary cultures of cells derived from ascitic fluid with that of the tested PDAC cell lines, analyzed tumor samples of PDAC patients, and performed gene expression profiling of PANFs. Immuno-cyto/histo-chemical analysis found specific phenotype differences within the group of examined patients and tested PDAC cell lines, whereas the genomic approach in PANFs found the key molecules (IL6, IL8, MFGE8 and periostin) that may contribute to the cancer aggressive behavior. CONCLUSION: The desmoplastic patient-specific regulation of cancer cells by CAFs (also demonstrated by the heterogeneous response of PDAC cell lines to fibroblasts) precludes simple targeting and development of an effective treatment strategy and rather requires establishment of an individualized tumor-specific treatment protocol.

BIOCEV 1st Faculty of Medicine Charles University Vestec Czech Republic

Department of Biomedical Research East Slovak Institute of Cardiovascular Diseases Košice Slovak Republic

Department of Biomedical Research East Slovak Institute of Cardiovascular Diseases Košice Slovak Republic;

Department of Dermatology and Venereology 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

Department of Informatics and Chemistry Faculty of Chemical Technology University of Chemistry and Technology Prague Czech Republic

Department of Oncology 1st Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic

Department of Otorhinolaryngology Head and Neck Surgery 1st Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic

Department of Pathology 3rd Faculty of Medicine Charles University and University Hospital Královske Vinohrady Prague Czech Republic

Department of Pharmacology Pavol Jozef Šafárik University Košice Slovak Republic

Department of Stomatology 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

Department of Surgery 3rd Faculty of Medicine Charles University and University Hospital Královske Vinohrady Prague Czech Republic

Institute of Anatomy 1st Faculty of Medicine Charles University Prague Czech Republic

Institute of Anatomy 1st Faculty of Medicine Charles University Prague Czech Republic;

Laboratory of Cell Interactions Center of Clinical and Preclinical Research MediPark Pavol Jozef Šafárik University Košice Slovak Republic

Laboratory of Genomics and Bioinformatics Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic

Prague Burn Centre 3rd Faculty of Medicine Charles University and University Hospital Královske Vinohrady Prague Czech Republic

Zobrazit více v PubMed

Adamska A, Domenichini A, Falasca M. Pancreatic ductal adenocarcinoma: Current and evolving therapies. Int J Mol Sci. 2017;18(7):1338. doi: 10.3390/ijms18071338. PubMed DOI PMC

Weidle UH, Birzele F, Nopora A. Pancreatic ductal adenocarcinoma: MicroRNAs affecting tumor growth and metastasis in preclinical in vivo models. Cancer Genomics Proteomics. 2019;16(6):451–464. doi: 10.21873/cgp.20149. PubMed DOI PMC

Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 2011;378(9791):607–620. doi: 10.1016/S0140-6736(10)62307-0. PubMed DOI PMC

Foucher ED, Ghigo C, Chouaib S, Galon J, Iovanna J, Olive D. Pancreatic ductal adenocarcinoma: A strong imbalance of good and bad immunological cops in the tumor microenvironment. Front Immunol. 2018;9:1044. doi: 10.3389/fimmu.2018.01044. PubMed DOI PMC

Li H, Mao Y, Xiong Y, Zhao HH, Shen F, Gao X, Yang P, Liu X, Fu D. A comprehensive proteome analysis of Peripheral Blood Mononuclear Cells (PBMCs) to identify candidate biomarkers of pancreatic cancer. Cancer Genomics Proteomics. 2019;16(1):81–89. doi: 10.21873/cgp.20114. PubMed DOI PMC

Zhang A, Qian Y, Ye Z, Chen H, Xie H, Zhou L, Shen Y, Zheng S. Cancer-associated fibroblasts promote M2 polarization of macrophages in pancreatic ductal adenocarcinoma. Cancer Med. 2017;6(2):463–470. doi: 10.1002/cam4.993. PubMed DOI PMC

Hruban RH, Gaida MM, Thompson E, Hong SM, Noë M, Brosens LA, Jongepier M, Offerhaus GJA, Wood LD. Why is pancreatic cancer so deadly? The pathologist’s view. J Pathol. 2019;248(2):131–141. doi: 10.1002/path.5260. PubMed DOI

Burris HA 3rd, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, Nelson R, Dorr FA, Stephens CD, Von Hoff DD. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: A randomized trial. J Clin Oncol. 1997;15(6):2403–2413. doi: 10.1200/JCO.1997.15.6.2403. PubMed DOI

Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de la Fouchardière C, Bennouna J, Bachet JB, Khemissa-Akouz F, Péré-Vergé D, Delbaldo C, Assenat E, Chauffert B, Michel P, Montoto-Grillot C, Ducreux M, Groupe Tumeurs Digestives of Unicancer , PRODIGE Intergroup FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364(19):1817–1825. doi: 10.1056/NEJMoa1011923. PubMed DOI

Krempley BD, Yu KH. Preclinical models of pancreatic ductal adenocarcinoma. Chin Clin Oncol. 2017;6(3):25. doi: 10.21037/cco.2017.06.15. PubMed DOI

Begg SKS, Birnbaum DJ, Clark JW, Mino-Kenudson M, Wellner UF, Schilling O, Lillemoe KD, Warshaw AL, Castillo CF, Liss AS. FOLFIRINOX versus gemcitabine-based therapy for pancreatic ductal adenocarcinoma: Lessons from patient-derived cell lines. Anticancer Res. 2020;40(7):3659–3667. doi: 10.21873/anticanres.14355. PubMed DOI

Foucher ED, Ghigo C, Chouaib S, Galon J, Iovanna J, Olive D. Pancreatic ductal adenocarcinoma: A strong imbalance of good and bad immunological cops in the tumor microenvironment. Front Immunol. 2018;9:1044. doi: 10.3389/fimmu.2018.01044. PubMed DOI PMC

Martinez-Bosch N, Vinaixa J, Navarro P. Immune evasion in pancreatic cancer: From mechanisms to therapy. Cancers (Basel) 2018;10(1):6. doi: 10.3390/cancers10010006. PubMed DOI PMC

Tang D, Wang D, Yuan Z, Xue X, Zhang Y, An Y, Chen J, Tu M, Lu Z, Wei J, Jiang K, Miao Y. Persistent activation of pancreatic stellate cells creates a microenvironment favorable for the malignant behavior of pancreatic ductal adenocarcinoma. Int J Cancer. 2013;132(5):993–1003. doi: 10.1002/ijc.27715. PubMed DOI

Neutzner M, Lopez T, Feng X, Bergmann-Leitner ES, Leitner WW, Udey MC. MFG-E8/lactadherin promotes tumor growth in an angiogenesis-dependent transgenic mouse model of multistage carcinogenesis. Cancer Res. 2007;67(14):6777–6785. doi: 10.1158/0008-5472.CAN-07-0165. PubMed DOI

Hussain F, Wang J, Ahmed R, Guest SK, Lam EW, Stamp G, El-Bahrawy M. The expression of IL-8 and IL-8 receptors in pancreatic adenocarcinomas and pancreatic neuroendocrine tumours. Cytokine. 2010;49(2):134–140. doi: 10.1016/j.cyto.2009.11.010. PubMed DOI

Zhao X, Liu Y, Li Z, Zheng S, Wang Z, Li W, Bi Z, Li L, Jiang Y, Luo Y, Lin Q, Fu Z, Rufu C. Linc00511 acts as a competing endogenous RNA to regulate VEGFA expression through sponging hsa-miR-29b-3p in pancreatic ductal adenocarcinoma. J Cell Mol Med. 2018;22(1):655–667. doi: 10.1111/jcmm.13351. PubMed DOI PMC

Lacina L, Brábek J, Král V, Kodet O, Smetana K Jr. Interleukin-6: a molecule with complex biological impact in cancer. Histol Histopathol. 2019;34(2):125–136. doi: 10.14670/HH-18-033. PubMed DOI

Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;21(3):418–429. doi: 10.1016/j.ccr.2012.01.007. PubMed DOI PMC

Hiraoka N, Onozato K, Kosuge T, Hirohashi S. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res. 2006;12(18):5423–5434. doi: 10.1158/1078-0432.CCR-06-0369. PubMed DOI

von Bernstorff W, Voss M, Freichel S, Schmid A, Vogel I, Jöhnk C, Henne-Bruns D, Kremer B, Kalthoff H. Systemic and local immunosuppression in pancreatic cancer patients. Clin Cancer Res. 2001;7(3 Suppl):925s–932s. PubMed

Martinez-Bosch N, Vinaixa J, Navarro P. Immune evasion in pancreatic cancer: From mechanisms to therapy. Cancers (Basel) 2018;10(1):6. doi: 10.3390/cancers10010006. PubMed DOI PMC

Orozco CA, Martinez-Bosch N, Guerrero PE, Vinaixa J, Dalotto-Moreno T, Iglesias M, Moreno M, Djurec M, Poirier F, Gabius HJ, Fernandez-Zapico ME, Hwang RF, Guerra C, Rabinovich GA, Navarro P. Targeting galectin-1 inhibits pancreatic cancer progression by modulating tumor-stroma crosstalk. Proc Natl Acad Sci USA. 2018;115(16):E3769–E3778. doi: 10.1073/pnas.1722434115. PubMed DOI PMC

Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, Frese KK, Denicola G, Feig C, Combs C, Winter SP, Ireland-Zecchini H, Reichelt S, Howat WJ, Chang A, Dhara M, Wang L, Rückert F, Grützmann R, Pilarsky C, Izeradjene K, Hingorani SR, Huang P, Davies SE, Plunkett W, Egorin M, Hruban RH, Whitebread N, McGovern K, Adams J, Iacobuzio-Donahue C, Griffiths J, Tuveson DA. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009;324(5933):1457–1461. doi: 10.1126/science.1171362. PubMed DOI PMC

Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, Dekleva EN, Saunders T, Becerra CP, Tattersall IW, Westphalen CB, Kitajewski J, Fernandez-Barrena MG, Fernandez-Zapico ME, Iacobuzio-Donahue C, Olive KP, Stanger BZ. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014;25(6):735–747. doi: 10.1016/j.ccr.2014.04.021. PubMed DOI PMC

Lee J, Perera R, Wang H, Wu D, Liu X, Han S, Fitamant J, Jones P, Ghanta K, Kawano S, Nagle J, Deshpande V, Boucher Y, Kato T, Chen J, Willmann J, Bardeesy N, Beachy P. Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proceedings of the National Academy of Sciences. 2017;111(30):E3091–E3100. doi: 10.1073/pnas.1411679111. PubMed DOI PMC

Bijlsma MF, van Laarhoven HW. The conflicting roles of tumor stroma in pancreatic cancer and their contribution to the failure of clinical trials: A systematic review and critical appraisal. Cancer Metastasis Rev. 2015;34(1):97–114. doi: 10.1007/s10555-014-9541-1. PubMed DOI

Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol. 1988;106(3):761–771. doi: 10.1083/jcb.106.3.761. PubMed DOI PMC

Shrestha B, Dunn L. The Declaration of Helsinki on medical research involving human subjects: A review of seventh revision. J Nepal Health Res Counc. 2020;17(4):548–552. doi: 10.33314/jnhrc.v17i4.1042. PubMed DOI

Dvořánková B, Lacina L, Smetana K Jr. Isolation of normal fibroblasts and their Cancer-Associated Counterparts (CAFs) for biomedical research. Methods Mol Biol. 2019;1879:393–406. doi: 10.1007/7651_2018_137. PubMed DOI

Szabó P, Kolář M, Dvořánková B, Lacina L, Štork J, Vlček Č, Strnad H, Tvrdek M, Smetana K Jr. Mouse 3T3 fibroblasts under the influence of fibroblasts isolated from stroma of human basal cell carcinoma acquire properties of multipotent stem cells. Biol Cell. 2011;103(5):233–248. doi: 10.1042/BC20100113. PubMed DOI

Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1(5):2315–2319. doi: 10.1038/nprot.2006.339. PubMed DOI

Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray preprocessing. Bioinformatics. 2010;26(19):2363–2367. doi: 10.1093/bioinformatics/btq431. PubMed DOI PMC

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi: 10.1093/nar/gkv007. PubMed DOI PMC

Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, Gottardo R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love MI, MacDonald J, Obenchain V, Oleś AK, Pagès H, Reyes A, Shannon P, Smyth GK, Tenenbaum D, Waldron L, Morgan M. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015;12(2):115–121. doi: 10.1038/nmeth.3252. PubMed DOI PMC

Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci USA. 2003;100(16):9440–9445. doi: 10.1073/pnas.1530509100. PubMed DOI PMC

Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353–D361. doi: 10.1093/nar/gkw1092. PubMed DOI PMC

Hammer O, Harper DAT, Ryan PD. Past: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica. 2001;4(1):9.

Monkman JH, Thompson EW, Nagaraj SH. Targeting epithelial mesenchymal plasticity in pancreatic cancer: A compendium of preclinical discovery in a heterogeneous disease. Cancers (Basel) 2019;11(11):1745. doi: 10.3390/cancers11111745. PubMed DOI PMC

Principe DR, Diaz AM, Torres C, Mangan RJ, DeCant B, McKinney R, Tsao MS, Lowy A, Munshi HG, Jung B, Grippo PJ. TGFβ engages MEK/ERK to differentially regulate benign and malignant pancreas cell function. Oncogene. 2017;36(30):4336–4348. doi: 10.1038/onc.2016.500. PubMed DOI PMC

Neuzillet C, de Gramont A, Tijeras-Raballand A, de Mestier L, Cros J, Faivre S, Raymond E. Perspectives of TGF-β inhibition in pancreatic and hepatocellular carcinomas. Oncotarget. 2014;5(1):78–94. doi: 10.18632/oncotarget.1569. PubMed DOI PMC

Ligorio M, Sil S, Malagon-Lopez J, Nieman LT, Misale S, Di Pilato M, Ebright RY, Karabacak MN, Kulkarni AS, Liu A, Vincent Jordan N, Franses JW, Philipp J, Kreuzer J, Desai N, Arora KS, Rajurkar M, Horwitz E, Neyaz A, Tai E, Magnus NKC, Vo KD, Yashaswini CN, Marangoni F, Boukhali M, Fatherree JP, Damon LJ, Xega K, Desai R, Choz M, Bersani F, Langenbucher A, Thapar V, Morris R, Wellner UF, Schilling O, Lawrence MS, Liss AS, Rivera MN, Deshpande V, Benes CH, Maheswaran S, Haber DA, Fernandez-Del-Castillo C, Ferrone CR, Haas W, Aryee MJ, Ting DT. Stromal microenvironment shapes the intratumoral architecture of pancreatic cancer. Cell. 2019;178(1):160–175.e27. doi: 10.1016/j.cell.2019.05.012. PubMed DOI PMC

Wang Y, Jin G, Li Q, Wang Z, Hu W, Li P, Li S, Wu H, Kong X, Gao J, Li Z. Hedgehog signaling non-canonical activated by pro-inflammatory cytokines in pancreatic ductal adenocarcinoma. J Cancer. 2016;7(14):2067–2076. doi: 10.7150/jca.15786. PubMed DOI PMC

Bever KM, Sugar EA, Bigelow E, Sharma R, Laheru D, Wolfgang CL, Jaffee EM, Anders RA, De Jesus-Acosta A, Zheng L. The prognostic value of stroma in pancreatic cancer in patients receiving adjuvant therapy. HPB (Oxford) 2015;17(4):292–298. doi: 10.1111/hpb.12334. PubMed DOI PMC

Mathew E, Brannon AL, Del Vecchio A, Garcia PE, Penny MK, Kane KT, Vinta A, Buckanovich RJ, di Magliano MP. mesenchymal stem cells promote pancreatic tumor growth by inducing alternative polarization of macrophages. Neoplasia. 2016;18(3):142–151. doi: 10.1016/j.neo.2016.01.005. PubMed DOI PMC

Erdogan B, Ao M, White LM, Means AL, Brewer BM, Yang L, Washington MK, Shi C, Franco OE, Weaver AM, Hayward SW, Li D, Webb DJ. Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. J Cell Biol. 2017;216(11):3799–3816. doi: 10.1083/jcb.201704053. PubMed DOI PMC

Ding SM, Lu AL, Zhang W, Zhou L, Xie HY, Zheng SS, Li QY. The role of cancer-associated fibroblast MRC-5 in pancreatic cancer. J Cancer. 2018;9(3):614–628. doi: 10.7150/jca.19614. PubMed DOI PMC

Özdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR, Laklai H, Sugimoto H, Kahlert C, Novitskiy SV, De Jesus-Acosta A, Sharma P, Heidari P, Mahmood U, Chin L, Moses HL, Weaver VM, Maitra A, Allison JP, LeBleu VS, Kalluri R. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 2014;25(6):719–734. doi: 10.1016/j.ccr.2014.04.005. PubMed DOI PMC

Omary MB, Lugea A, Lowe AW, Pandol SJ. The pancreatic stellate cell: A star on the rise in pancreatic diseases. J Clin Invest. 2007;117(1):50–59. doi: 10.1172/JCI30082. PubMed DOI PMC

Holmer R, Goumas FA, Waetzig GH, Rose-John S, Kalthoff H. Interleukin-6: a villain in the drama of pancreatic cancer development and progression. Hepatobiliary Pancreat Dis Int. 2014;13(4):371–380. doi: 10.1016/s1499-3872(14)60259-9. PubMed DOI

Kim HW, Lee JC, Paik KH, Kang J, Kim J, Hwang JH. Serum interleukin-6 is associated with pancreatic ductal adenocarcinoma progression pattern. Medicine (Baltimore) 2017;96(5):e5926. doi: 10.1097/MD.0000000000005926. PubMed DOI PMC

Long KB, Tooker G, Tooker E, Luque SL, Lee JW, Pan X, Beatty GL. IL6 receptor blockade enhances chemotherapy efficacy in pancreatic ductal adenocarcinoma. Mol Cancer Ther. 2017;16(9):1898–1908. doi: 10.1158/1535-7163.MCT-16-0899. PubMed DOI PMC

Xing HB, Tong MT, Wang J, Hu H, Zhai CY, Huang CX, Li D. Suppression of IL-6 Gene by shRNA augments gemcitabine chemosensitization in pancreatic adenocarcinoma cells. Biomed Res Int. 2018;2018:3195025. doi: 10.1155/2018/3195025. PubMed DOI PMC

Guan J, Zhang H, Wen Z, Gu Y, Cheng Y, Sun Y, Zhang T, Jia C, Lu Z, Chen J. Retinoic acid inhibits pancreatic cancer cell migration and EMT through the downregulation of IL-6 in cancer associated fibroblast cells. Cancer Lett. 2014;345(1):132–139. doi: 10.1016/j.canlet.2013.12.006. PubMed DOI

Jobe NP, Rösel D, Dvořánková B, Kodet O, Lacina L, Mateu R, Smetana K, Brábek J. Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. Histochem Cell Biol. 2016;146(2):205–217. doi: 10.1007/s00418-016-1433-8. PubMed DOI

Jayatilaka H, Tyle P, Chen JJ, Kwak M, Ju J, Kim HJ, Lee JSH, Wu PH, Gilkes DM, Fan R, Wirtz D. Synergistic IL-6 and IL-8 paracrine signalling pathway infers a strategy to inhibit tumour cell migration. Nat Commun. 2017;8:15584. doi: 10.1038/ncomms15584. PubMed DOI PMC

Matsuo Y, Ochi N, Sawai H, Yasuda A, Takahashi H, Funahashi H, Takeyama H, Tong Z, Guha S. CXCL8/IL-8 and CXCL12/SDF-1alpha co-operatively promote invasiveness and angiogenesis in pancreatic cancer. Int J Cancer. 2009;124(4):853–861. doi: 10.1002/ijc.24040. PubMed DOI PMC

Wang T, Notta F, Navab R, Joseph J, Ibrahimov E, Xu J, Zhu CQ, Borgida A, Gallinger S, Tsao MS. Senescent carcinoma-associated fibroblasts upregulate IL8 to enhance prometastatic phenotypes. Mol Cancer Res. 2017;15(1):3–14. doi: 10.1158/1541-7786.MCR-16-0192. PubMed DOI

Chen Y, Shi M, Yu GZ, Qin XR, Jin G, Chen P, Zhu MH. Interleukin-8, a promising predictor for prognosis of pancreatic cancer. World J Gastroenterol. 2012;18(10):1123–1129. doi: 10.3748/wjg.v18.i10.1123. PubMed DOI PMC

Tibaldi L, Leyman S, Nicolas A, Notebaert S, Dewulf M, Ngo TH, Zuany-Amorim C, Amzallag N, Bernard-Pierrot I, Sastre-Garau X, Théry C. New blocking antibodies impede adhesion, migration and survival of ovarian cancer cells, highlighting MFGE8 as a potential therapeutic target of human ovarian carcinoma. PLoS One. 2013;8(8):e72708. doi: 10.1371/journal.pone.0072708. PubMed DOI PMC

Plzák J, Bouček J, Bandúrová V, Kolář M, Hradilová M, Szabo P, Lacina L, Chovanec M, Smetana K Jr. The head and neck squamous cell carcinoma microenvironment as a potential target for cancer therapy. Cancers (Basel) 2019;11(4):440. doi: 10.3390/cancers11040440. PubMed DOI PMC

Newburg DS, Peterson JA, Ruiz-Palacios GM, Matson DO, Morrow AL, Shults J, Guerrero ML, Chaturvedi P, Newburg SO, Scallan CD, Taylor MR, Ceriani RL, Pickering LK. Role of human-milk lactadherin in protection against symptomatic rotavirus infection. Lancet. 1998;351(9110):1160–1164. doi: 10.1016/s0140-6736(97)10322-1. PubMed DOI

D’Haese JG, Demir IE, Kehl T, Winckler J, Giese NA, Bergmann F, Giese T, Büchler MW, Friess H, Hartel M, Ceyhan GO. The impact of MFG-E8 in chronic pancreatitis: Potential for future immunotherapy. BMC Gastroenterol. 2013;13:14. doi: 10.1186/1471-230X-13-14. PubMed DOI PMC

Liu Y, Li F, Gao F, Xing L, Qin P, Liang X, Zhang J, Qiao X, Lin L, Zhao Q, Du L. Periostin promotes tumor angiogenesis in pancreatic cancer via Erk/VEGF signaling. Oncotarget. 2016;7(26):40148–40159. doi: 10.18632/oncotarget.9512. PubMed DOI PMC

Kanno A, Satoh K, Masamune A, Hirota M, Kimura K, Umino J, Hamada S, Satoh A, Egawa S, Motoi F, Unno M, Shimosegawa T. Periostin, secreted from stromal cells, has biphasic effect on cell migration and correlates with the epithelial to mesenchymal transition of human pancreatic cancer cells. Int J Cancer. 2008;122(12):2707–2718. doi: 10.1002/ijc.23332. PubMed DOI

Fukushima N, Kikuchi Y, Nishiyama T, Kudo A, Fukayama M. Periostin deposition in the stroma of invasive and intraductal neoplasms of the pancreas. Mod Pathol. 2008;21(8):1044–1053. doi: 10.1038/modpathol.2008.77. PubMed DOI

Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer. 2013;13(12):871–882. doi: 10.1038/nrc3627. PubMed DOI PMC

Dvořánková B, Smetana K Jr, Říhová B, Kučera J, Mateu R, Szabo P. Cancer-associated fibroblasts are not formed from cancer cells by epithelial-to-mesenchymal transition in nu/nu mice. Histochem Cell Biol. 2015;143(5):463–469. doi: 10.1007/s00418-014-1293-z. PubMed DOI

Pampinella F, Roelofs M, Castellucci E, Chiavegato A, Guidolin D, Passerini-Glazel G, Pagano F, Sartore S. Proliferation of submesothelial mesenchymal cells during early phase of serosal thickening in the rabbit bladder is accompanied by transient keratin 18 expression. Exp Cell Res. 1996;223(2):327–339. doi: 10.1006/excr.1996.0088. PubMed DOI

Chang TH, Huang HD, Ong WK, Fu YJ, Lee OK, Chien S, Ho JH. The effects of actin cytoskeleton perturbation on keratin intermediate filament formation in mesenchymal stem/stromal cells. Biomaterials. 2014;35(13):3934–3944. doi: 10.1016/j.biomaterials.2014.01.028. PubMed DOI

Yang J, Xiong L, Wang R, Yuan Q, Xia Y, Sun J, Horch RE. In vitro expression of cytokeratin 18, 19 and tube formation of adipose-derived stem cells induced by the breast epithelial cell line HBL-100. J Cell Mol Med. 2015;19(12):2827–2831. doi: 10.1111/jcmm.12673. PubMed DOI PMC

Chen S, Wang M, Chen X, Chen S, Liu L, Zhu J, Wang J, Yang X, Cai X. In vitro expression of cytokeratin 19 in adipose-derived stem cells is induced by epidermal growth factor. Med Sci Monit. 2018;24:4254–4261. doi: 10.12659/MSM.908647. PubMed DOI PMC

Tong J, Mou S, Xiong L, Wang Z, Wang R, Weigand A, Yuan Q, Horch RE, Sun J, Yang J. Adipose-derived mesenchymal stem cells formed acinar-like structure when stimulated with breast epithelial cells in three-dimensional culture. PLoS One. 2018;13(10):e0204077. doi: 10.1371/journal.pone.0204077. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Wound healing: insights into autoimmunity, ageing, and cancer ecosystems through inflammation and IL-6 modulation

. 2024 ; 15 () : 1403570. [epub] 20241129

Characterization of regeneration initiating cells during Xenopus laevis tail regeneration

. 2024 Oct 01 ; 25 (1) : 251. [epub] 20241001

Unravelling heterogeneous effects of cancer‑associated fibroblasts on poor prognosis markers in breast cancer EM‑G3 cell line: In vitro‑targeted treatment (anti‑IL-6, anti‑VEGF-A, anti‑MFGE8) based on transcriptomic profiling

. 2024 Jan ; 51 (1) : . [epub] 20231117

Expression of Selected miRNAs in Normal and Cancer-Associated Fibroblasts and in BxPc3 and MIA PaCa-2 Cell Lines of Pancreatic Ductal Adenocarcinoma

. 2023 Feb 10 ; 24 (4) : . [epub] 20230210

The Role of IL-6 in Cancer Cell Invasiveness and Metastasis-Overview and Therapeutic Opportunities

. 2022 Nov 21 ; 11 (22) : . [epub] 20221121

Cancer-Associated Fibroblasts Influence the Biological Properties of Malignant Tumours via Paracrine Secretion and Exosome Production

. 2022 Jan 16 ; 23 (2) : . [epub] 20220116

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...