Characterization of regeneration initiating cells during Xenopus laevis tail regeneration
Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
39350302
PubMed Central
PMC11443866
DOI
10.1186/s13059-024-03396-3
PII: 10.1186/s13059-024-03396-3
Knihovny.cz E-resources
- Keywords
- Xenopus laevis, RICs, ROCs, Regeneration,
- MeSH
- Single-Cell Analysis MeSH
- Extracellular Matrix metabolism MeSH
- Wound Healing MeSH
- Tail * MeSH
- Regeneration * MeSH
- Transcriptome MeSH
- Xenopus laevis * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Embryos are regeneration and wound healing masters. They rapidly close wounds and scarlessly remodel and regenerate injured tissue. Regeneration has been extensively studied in many animal models using new tools such as single-cell analysis. However, until now, they have been based primarily on experiments assessing from 1 day post injury. RESULTS: In this paper, we reveal that critical steps initiating regeneration occur within hours after injury. We discovered the regeneration initiating cells (RICs) using single-cell and spatial transcriptomics of the regenerating Xenopus laevis tail. RICs are formed transiently from the basal epidermal cells, and their expression signature suggests they are important for modifying the surrounding extracellular matrix thus regulating development. The absence or deregulation of RICs leads to excessive extracellular matrix deposition and defective regeneration. CONCLUSION: RICs represent a newly discovered transient cell state involved in the initiation of the regeneration process.
1st Faculty of Medicine Charles University Prague 2 Czech Republic
1st Faculty of Medicine Institute of Anatomy Charles University Prague 2 128 00 Czech Republic
Faculty of Science Charles University Prague 2 Czech Republic
School of Pharmacy and Medical Science Griffith University Southport QLD Australia
See more in PubMed
Krafts KP. Tissue repair: the hidden drama. Organogenesis. 2010;6:225–33. PubMed PMC
Murawala P, Tanaka EM, Currie JD. Regeneration: the ultimate example of wound healing. Semin Cell Dev Biol. 2012;23:954–62. PubMed
Dall’Agnese A, Puri PL. Could we also be regenerative superheroes, like salamanders? Bioessays. 2016;38:917–26. PubMed
Coleman CM. Chicken embryo as a model for regenerative medicine. Birth Defects Res C Embryo Today. 2008;84:245–56. PubMed
Jacyniak K, McDonald RP, Vickaryous MK. Tail regeneration and other phenomena of wound healing and tissue restoration in lizards. J Exp Biol. 2017;220:2858–69. PubMed
Vonk AC, Zhao X, Pan Z, Hudnall ML, Oakes CG, Lopez GA, Hasel-Kolossa SC, Kuncz AWC, Sengelmann SB, Gamble DJ, Lozito TP. Single-cell analysis of lizard blastema fibroblasts reveals phagocyte-dependent activation of Hedgehog-responsive chondrogenesis. Nat Commun. 2023;14:4489. PubMed PMC
So J, Kim A, Lee SH, Shin D. Liver progenitor cell-driven liver regeneration. Exp Mol Med. 2020;52:1230–8. PubMed PMC
Seifert AW, Kiama SG, Seifert MG, Goheen JR, Palmer TM, Maden M. Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature. 2012;489:561–5. PubMed PMC
Li C, Zhao H, Liu Z, McMahon C. Deer antler–a novel model for studying organ regeneration in mammals. Int J Biochem Cell Biol. 2014;56:111–22. PubMed
Smetana K Jr, Dvorankova B, Lacina L. Phylogeny, regeneration, ageing and cancer: role of microenvironment and possibility of its therapeutic manipulation. Folia Biol (Praha). 2013;59:207–16. PubMed
Galliot B, Tanaka E, Simon A. Regeneration and tissue repair: themes and variations. Cell Mol Life Sci. 2008;65:3–7. PubMed PMC
Beck CW, Izpisua Belmonte JC, Christen B. Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms. Dev Dyn. 2009;238:1226–48. PubMed
Christensen RN, Tassava RA. Apical epithelial cap morphology and fibronectin gene expression in regenerating axolotl limbs. Dev Dyn. 2000;217:216–24. PubMed
Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, Tanaka EM. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature. 2009;460:60–5. PubMed
Tanaka EM, Reddien PW. The cellular basis for animal regeneration. Dev Cell. 2011;21:172–85. PubMed PMC
Love NR, Chen Y, Ishibashi S, Kritsiligkou P, Lea R, Koh Y, Gallop JL, Dorey K, Amaya E. Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat Cell Biol. 2013;15:222–8. PubMed PMC
Helston O, Amaya E. Reactive oxygen species during heart regeneration in zebrafish: lessons for future clinical therapies. Wound Repair Regen. 2021;29:211–24. PubMed PMC
Carbonell MB, Zapata Cardona J, Delgado JP. Post-amputation reactive oxygen species production is necessary for axolotls limb regeneration. Front Cell Dev Biol. 2022;10:921520. PubMed PMC
Abaffy P, Tomankova S, Naraine R, Kubista M, Sindelka R. The role of nitric oxide during embryonic wound healing. BMC Genomics. 2019;20:815. PubMed PMC
Aztekin C, Hiscock TW, Butler R, De Andino FJ, Robert J, Gurdon JB, Jullien J. The myeloid lineage is required for the emergence of a regeneration-permissive environment following Xenopus tail amputation. Development. 2020;147:dev185496. PubMed PMC
Aztekin C, Storer MA. To regenerate or not to regenerate: vertebrate model organisms of regeneration-competency and -incompetency. Wound Repair Regen. 2022;30:623–35. PubMed PMC
Godwin JW, Brockes JP. Regeneration, tissue injury and the immune response. J Anat. 2006;209:423–32. PubMed PMC
Godwin JW, Rosenthal N. Scar-free wound healing and regeneration in amphibians: immunological influences on regenerative success. Differentiation. 2014;87:66–75. PubMed
Zivicova V, Lacina L, Mateu R, Smetana K Jr, Kavkova R, Drobna Krejci E, Grim M, Kvasilova A, Borsky J, Strnad H, et al. Analysis of dermal fibroblasts isolated from neonatal and child cleft lip and adult skin: evelopmental implications on reconstructive surgery. Int J Mol Med. 2017;40:1323–34. PubMed PMC
Santosh N, Windsor LJ, Mahmoudi BS, Li B, Zhang W, Chernoff EA, Rao N, Stocum DL, Song F. Matrix metalloproteinase expression during blastema formation in regeneration-competent versus regeneration-deficient amphibian limbs. Dev Dyn. 2011;240:1127–41. PubMed
Vinarsky V, Atkinson DL, Stevenson TJ, Keating MT, Odelberg SJ. Normal newt limb regeneration requires matrix metalloproteinase function. Dev Biol. 2005;279:86–98. PubMed
Arenas Gomez CM, Sabin KZ, Echeverri K. Wound healing across the animal kingdom: crosstalk between the immune system and the extracellular matrix. Dev Dyn. 2020;249:834–46. PubMed PMC
Godwin J, Kuraitis D, Rosenthal N. Extracellular matrix considerations for scar-free repair and regeneration: insights from regenerative diversity among vertebrates. Int J Biochem Cell Biol. 2014;56:47–55. PubMed
Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 2011;3:a005058. PubMed PMC
2013 MotY: Method of the year 2013. Nat Methods 2014;11:1. https://www.nature.com/articles/nmeth.2801. PubMed
Johnson GL, Masias EJ, Lehoczky JA. Cellular heterogeneity and lineage restriction during mouse digit tip regeneration at single-cell resolution. Dev Cell. 2020;52(525–540): e525. PubMed PMC
Aztekin C, Hiscock TW, Marioni JC, Gurdon JB, Simons BD, Jullien J. Identification of a regeneration-organizing cell in the Xenopus tail. Science. 2019;364:653–8. PubMed PMC
Slack JM, Beck CW, Gargioli C, Christen B. Cellular and molecular mechanisms of regeneration in Xenopus. Philos Trans R Soc Lond B Biol Sci. 2004;359:745–51. PubMed PMC
Phipps LS, Marshall L, Dorey K, Amaya E. Model systems for regeneration: Xenopus. Development. 2020;147:dev180844. PubMed
Beck CW, Christen B, Slack JM. Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate. Dev Cell. 2003;5:429–39. PubMed
MotY: Method of the year spatially resolved transcriptomics. Nat Methods. 2020;2021(18):1. https://www.nature.com/articles/s41592-020-01042-x. PubMed
Foster DS, Januszyk M, Yost KE, Chinta MS, Gulati GS, Nguyen AT, Burcham AR, Salhotra A, Ransom RC, Henn D, et al. Integrated spatial multiomics reveals fibroblast fate during tissue repair. Proc Natl Acad Sci U S A. 2021;118:e2110025118. PubMed PMC
Tower RJ, Busse E, Jaramillo J, Lacey M, Hoffseth K, Guntur AR, Simkin J, Sammarco MC. Spatial transcriptomics reveals metabolic changes underly age-dependent declines in digit regeneration. Elife. 2022;11:e71542. PubMed PMC
Gerber T, Murawala P, Knapp D, Masselink W, Schuez M, Hermann S, Gac-Santel M, Nowoshilow S, Kageyama J, Khattak S, et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science. 2018;362:eaaq0681. PubMed PMC
Lin TY, Gerber T, Taniguchi-Sugiura Y, Murawala P, Hermann S, Grosser L, Shibata E, Treutlein B, Tanaka EM. Fibroblast dedifferentiation as a determinant of successful regeneration. Dev Cell. 2021;56(1541–1551): e1546. PubMed PMC
Gal P, Brabek J, Holub M, Jakubek M, Sedo A, Lacina L, Strnadova K, Dubovy P, Hornychova H, Ryska A, Smetana K Jr. Autoimmunity, cancer and COVID-19 abnormally activate wound healing pathways: critical role of inflammation. Histochem Cell Biol. 2022;158:415–34. PubMed PMC
Sinha S, Sparks HD, Labit E, Robbins HN, Gowing K, Jaffer A, Kutluberk E, Arora R, Raredon MSB, Cao L, et al. Fibroblast inflammatory priming determines regenerative versus fibrotic skin repair in reindeer. Cell. 2022;185(4717–4736): e4725. PubMed PMC
Benbow U, Brinckerhoff CE. The AP-1 site and MMP gene regulation: what is all the fuss about? Matrix Biol. 1997;15:519–26. PubMed
Vincenti MP, Brinckerhoff CE. Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res. 2002;4:157–64. PubMed PMC
Dvorankova B, Holikova Z, Vacik J, Konigova R, Kapounkova Z, Michalek J, Pradn M, Smetana K Jr. Reconstruction of epidermis by grafting of keratinocytes cultured on polymer support–clinical study. Int J Dermatol. 2003;42:219–23. PubMed
Costa RM, Soto X, Chen Y, Zorn AM, Amaya E. spib is required for primitive myeloid development in Xenopus. Blood. 2008;112:2287–96. PubMed PMC
Nakamura M, Yoshida H, Takahashi E, Wlizla M, Takebayashi-Suzuki K, Horb ME, Suzuki A. The AP-1 transcription factor JunB functions in Xenopus tail regeneration by positively regulating cell proliferation. Biochem Biophys Res Commun. 2020;522:990–5. PubMed PMC
Fournier PG, Juarez P, Jiang G, Clines GA, Niewolna M, Kim HS, Walton HW, Peng XH, Liu Y, Mohammad KS, et al. The TGF-beta signaling regulator PMEPA1 suppresses prostate cancer metastases to bone. Cancer Cell. 2015;27:809–21. PubMed PMC
Corona A, Blobe GC. The role of the extracellular matrix protein TGFBI in cancer. Cell Signal. 2021;84: 110028. PubMed
He Z, Liang J, Wang B. Inhibin, beta A regulates the transforming growth factor-beta pathway to promote malignant biological behaviour in colorectal cancer. Cell Biochem Funct. 2021;39:258–66. PubMed
Nie Z, Wang C, Zhou Z, Chen C, Liu R, Wang D. Transforming growth factor-beta increases breast cancer stem cell population partially through upregulating PMEPA1 expression. Acta Biochim Biophys Sin (Shanghai). 2016;48:194–201. PubMed
Weavers H, Wood W, Martin P. Injury activates a dynamic cytoprotective network to confer stress resilience and drive repair. Curr Biol. 2019;29(3851–3862): e3854. PubMed PMC
Columbano A, Ledda-Columbano GM, Pibiri M, Cossu C, Menegazzi M, Moore DD, Huang W, Tian J, Locker J. Gadd45beta is induced through a CAR-dependent, TNF-independent pathway in murine liver hyperplasia. Hepatology. 2005;42:1118–26. PubMed
Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007;8:221–33. PubMed PMC
Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15:786–801. PubMed PMC
Bassiouni W, Ali MAM, Schulz R. Multifunctional intracellular matrix metalloproteinases: implications in disease. FEBS J. 2021;288:7162–82. PubMed
Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69:562–73. PubMed
Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141:52–67. PubMed PMC
Kessenbrock K, Wang CY, Werb Z. Matrix metalloproteinases in stem cell regulation and cancer. Matrix Biol. 2015;44–46:184–90. PubMed PMC
Martins VL, Caley M, O’Toole EA. Matrix metalloproteinases and epidermal wound repair. Cell Tissue Res. 2013;351:255–68. PubMed
Horejs CM, Serio A, Purvis A, Gormley AJ, Bertazzo S, Poliniewicz A, Wang AJ, DiMaggio P, Hohenester E, Stevens MM. Biologically-active laminin-111 fragment that modulates the epithelial-to-mesenchymal transition in embryonic stem cells. Proc Natl Acad Sci U S A. 2014;111:5908–13. PubMed PMC
Sadowski T, Dietrich S, Koschinsky F, Ludwig A, Proksch E, Titz B, Sedlacek R. Matrix metalloproteinase 19 processes the laminin 5 gamma 2 chain and induces epithelial cell migration. Cell Mol Life Sci. 2005;62:870–80. PubMed PMC
McGuire JK, Li Q, Parks WC. Matrilysin (matrix metalloproteinase-7) mediates E-cadherin ectodomain shedding in injured lung epithelium. Am J Pathol. 2003;162:1831–43. PubMed PMC
LeBert DC, Squirrell JM, Rindy J, Broadbridge E, Lui Y, Zakrzewska A, Eliceiri KW, Meijer AH, Huttenlocher A. Matrix metalloproteinase 9 modulates collagen matrices and wound repair. Development. 2015;142:2136–46. PubMed PMC
Bai S, Thummel R, Godwin AR, Nagase H, Itoh Y, Li L, Evans R, McDermott J, Seiki M, Sarras MP Jr. Matrix metalloproteinase expression and function during fin regeneration in zebrafish: analysis of MT1-MMP, MMP2 and TIMP2. Matrix Biol. 2005;24:247–60. PubMed
Yang EV, Gardiner DM, Carlson MR, Nugas CA, Bryant SV. Expression of Mmp-9 and related matrix metalloproteinase genes during axolotl limb regeneration. Dev Dyn. 1999;216:2–9. PubMed
Sherrill JD, Finlay D, Binder RL, Robinson MK, Wei X, Tiesman JP, Flagler MJ, Zhao W, Miller C, Loftus JM, et al. Transcriptomic analysis of human skin wound healing and rejuvenation following ablative fractional laser treatment. PLoS ONE. 2021;16: e0260095. PubMed PMC
Duarte S, Baber J, Fujii T, Coito AJ. Matrix metalloproteinases in liver injury, repair and fibrosis. Matrix Biol. 2015;44–46:147–56. PubMed PMC
Darnet S, Dragalzew AC, Amaral DB, Sousa JF, Thompson AW, Cass AN, Lorena J, Pires ES, Costa CM, Sousa MP, et al. Deep evolutionary origin of limb and fin regeneration. Proc Natl Acad Sci U S A. 2019;116:15106–15. PubMed PMC
Gutierrez-Fernandez A, Inada M, Balbin M, Fueyo A, Pitiot AS, Astudillo A, Hirose K, Hirata M, Shapiro SD, Noel A, et al. Increased inflammation delays wound healing in mice deficient in collagenase-2 (MMP-8). FASEB J. 2007;21:2580–91. PubMed PMC
Islam S, Kitagawa T, Baron B, Abiko Y, Chiba I, Kuramitsu Y. ITGA2, LAMB3, and LAMC2 may be the potential therapeutic targets in pancreatic ductal adenocarcinoma: an integrated bioinformatics analysis. Sci Rep. 2021;11:10563. PubMed PMC
Novak S, Kolar M, Szabo A, Vernerova Z, Lacina L, Strnad H, Sachova J, Hradilova M, Havranek J, Spanko M, et al. Desmoplastic crosstalk in pancreatic ductal adenocarcinoma is reflected by different responses of Panc-1, MIAPaCa-2, PaTu-8902, and CAPAN-2 cell lines to cancer-associated/normal fibroblasts. Cancer Genomics Proteomics. 2021;18:221–43. PubMed PMC
Murugan NJ, Vigran HJ, Miller KA, Golding A, Pham QL, Sperry MM, Rasmussen-Ivey C, Kane AW, Kaplan DL, Levin M. Acute multidrug delivery via a wearable bioreactor facilitates long-term limb regeneration and functional recovery in adult Xenopus laevis. Sci Adv. 2022;8:eabj2164. PubMed PMC
Benham-Pyle BW, Mann FG, Brewster CE, Dewars ER, Nowotarski SH, Guerrero-Hernández C, Malloy S, Hall KE, Maddera LE, Chen S, et al. Stem cells partner with matrix remodeling cells during regeneration. bioRxiv. 2022.03.20.485025.
Plzak J, Boucek J, Bandurova V, Kolar M, Hradilova M, Szabo P, Lacina L, Chovanec M, Smetana K Jr. The head and neck squamous cell carcinoma microenvironment as a potential target for cancer therapy. Cancers (Basel). 2019;11:440. PubMed PMC
Mustafa S, Koran S, AlOmair L. Insights into the role of matrix metalloproteinases in cancer and its various therapeutic aspects: a review. Front Mol Biosci. 2022;9: 896099. PubMed PMC
Perrin L, Gligorijevic B. Proteolytic and mechanical remodeling of the extracellular matrix by invadopodia in cancer. Phys Biol. 2022;20:015001. PubMed PMC
Nieuwkoop PD, Faber J. Normal table of Xenopus laevis (Daudin): a systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis. New York: Garland Pub; 1994.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. PubMed PMC
Kopylova E, Noe L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7. PubMed
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. PubMed PMC
Fortriede JD, Pells TJ, Chu S, Chaturvedi P, Wang D, Fisher ME, James-Zorn C, Wang Y, Nenni MJ, Burns KA, et al. Xenbase: deep integration of GEO & SRA RNA-seq and ChIP-seq data in a model organism database. Nucleic Acids Res. 2020;48:D776–82. PubMed PMC
Anders S, Pyl PT, Huber W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9. PubMed PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550–550. PubMed PMC
Team RC. R: a language and environment for statistical computing. Vienna: Austria; 2021.
Pantano L. DEGreport: report of DEG analysis. 2021.
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7. PubMed PMC
Carlson M. org.Hs.eg.db: Genome wide annotation for Human. 2021.
Griffiths JA, Richard AC, Bach K, Lun ATL, Marioni JC. Detection and removal of barcode swapping in single-cell RNA-seq data. Nat Commun. 2018;9:2667. PubMed PMC
Lun ATL, Riesenfeld S, Andrews T, Dao TP, Gomes T. participants in the 1st Human cell atlas J, Marioni JC: emptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biol. 2019;20:63. PubMed PMC
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20. PubMed PMC
Miao Z, Moreno P, Huang N, Papatheodorou I, Brazma A, Teichmann SA. Putative cell type discovery from single-cell gene expression data. Nat Methods. 2020;17:621–8. PubMed
Bergen V, Lange M, Peidli S, Wolf FA, Theis FJ. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat Biotechnol. 2020;38:1408–14. PubMed
Lange M, Bergen V, Klein M, Setty M, Reuter B, Bakhti M, Lickert H, Ansari M, Schniering J, Schiller HB, et al. Cell Rank for directed single-cell fate mapping. Nat Methods. 2022;19:159–70. PubMed PMC
Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, Myung P, Plikus MV, Nie Q. Inference and analysis of cell-cell communication using cell chat. Nat Commun. 2021;12:1088. PubMed PMC
Van de Sande B, Flerin C, Davie K, De Waegeneer M, Hulselmans G, Aibar S, Seurinck R, Saelens W, Cannoodt R, Rouchon Q, et al. A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat Protoc. 2020;15:2247–76. PubMed
Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(3573–3587):e3529. PubMed PMC
Cable DM, Murray E, Zou LS, Goeva A, Macosko EZ, Chen F, Irizarry RA. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat Biotechnol. 2022;40:517–26. PubMed PMC
Miller BF, Huang F, Atta L, Sahoo A, Fan J. Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data. Nat Commun. 2022;13:2339. PubMed PMC
Baran Y, Dogan B. scMAGS: Marker gene selection from scRNA-seq data for spatial transcriptomics studies. Comput Biol Med. 2023;155: 106634. PubMed
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12(1):59–60. PubMed
Lechner M, Findeiß S, Steiner L, Marz M, Stadler PF, Prohaska SJ. Proteinortho: detection of (Co-)orthologs in large-scale analysis. BMC Bioinformatics. 2011;12:1–9. PubMed PMC
Sive HL, Grainger RM, Harland RM. Early development of Xenopus laevis: a laboratory manual. New York: Cold Spring Harbor Laboratory Press; 2000.
Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–10. PubMed PMC
Sindelka R, Naraine R, Abaffy P, Zucha D, Kraus D, Netusil J, Smetana KJ, Lacina L, Endaya BB, Neuzil J, et al. Characterization of regeneration initiating cells during Xenopus laevis tail regeneration. Datasets; Gene Expression Omnibus 2023. https://identifiers.org/geo:GSE245320. PubMed PMC
Characterization of regeneration initiating cells during Xenopus laevis tail regeneration