The Head and Neck Squamous Cell Carcinoma Microenvironment as a Potential Target for Cancer Therapy

. 2019 Mar 28 ; 11 (4) : . [epub] 20190328

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30925774

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000785 "Center for Tumor Ecology - Research of the Cancer Microenvironment Supporting Cancer Growth and Spread"
reg. no. LQ1604 Project BIOCEV-FAR
CZ.1.05/1.1.00/02.0109 BIOCEV
19-05048S 0 Grant Agency of the Czech Republic

Similarly to other types of malignant tumours, the incidence of head and neck cancer is increasing globally. It is frequently associated with smoking and alcohol abuse, and in a broader sense also with prolonged exposure to these factors during ageing. A higher incidence of tumours observed in younger populations without a history of alcohol and tobacco abuse may be due to HPV infection. Malignant tumours form an intricate ecosystem of cancer cells, fibroblasts, blood/lymphatic capillaries and infiltrating immune cells. This dynamic system, the tumour microenvironment, has a significant impact on the biological properties of cancer cells. The microenvironment participates in the control of local aggressiveness of cancer cells, their growth, and their consequent migration to lymph nodes and distant organs during metastatic spread. In cancers originating from squamous epithelium, a similarity was demonstrated between the cancer microenvironment and healing wounds. In this review, we focus on the specificity of the microenvironment of head and neck cancer with emphasis on the mechanism of intercellular crosstalk manipulation for potential therapeutic application.

Zobrazit více v PubMed

Fitzmaurice C., Dicker D., Pain A., Hamavid H., Moradi-Lakeh M., Maclntyre M.F., Allen C., Hansen G., Woodbrook R., Wolfe C., et al. The global burden of cancer 2013 global burden of disease cancer collaboration. JAMA Oncol. 2015;1:505–527. PubMed PMC

Smetana K., Jr., Lacina L., Szabo P., Dvorankova B., Broz P., Sedo A. Ageing as an important risk factor for cancer. Anticancer Res. 2016;36:5009–5017. doi: 10.21873/anticanres.11069. PubMed DOI

Leemans C.R., Braakhuis B.J., Brakenhoff R.H. The molecular biology of head and neck cancer. Nat. Rev. Cancer. 2011;11:9–22. doi: 10.1038/nrc2982. PubMed DOI

Siegel R.L., Miller K.D., Jemal A. Cancer statistics 2016. CA Cancer J. Clin. 2016;66:7–30. doi: 10.3322/caac.21332. PubMed DOI

Jou A., Hess J. Epidemiology and molecular biology of head and neck cancer. Oncol. Res. Treat. 2018;40:328–332. doi: 10.1159/000477127. PubMed DOI

Mukdad L., Heineman T.E., Alonso J., Badran K.W., Kuan E.C., St John M.A. Oral tongue squamous cell carcinoma survival as stratified by age and sex: A surveillance, epidemiology, and end results analysis. Laryngoscope. 2018 doi: 10.1002/lary.27720. PubMed DOI

Kareva I. What can ecology teach us about cancer? Transl. Oncol. 2011;4:266–270. doi: 10.1593/tlo.11154. PubMed DOI PMC

Egeblad M., Nakasone E.S., Werb Z. Tumors as organs: Complex tissues that interface with the entire organism. Dev. Cell. 2010;18:884–901. doi: 10.1016/j.devcel.2010.05.012. PubMed DOI PMC

Dvorak H.J. Tumors: Wounds that do not heal: Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 1987;315:1650–1659. PubMed

Gál P., Varinská L., Fáber L., Novák Š., Szabo P., Mitrengová P., Mirossay A., Mučaji P., Smetana K., Jr. How signaling molecules regulate tumor microenvironment: Parallels to wound repair. Molecules. 2017;22:1818. doi: 10.3390/molecules22111818. PubMed DOI PMC

Busek P., Mateu R., Zubal M., Kotackova L., Sedo A. Targeting fibroblast activation protein in cancer—Prospects and caveats. Front. Biosci. 2018;23:1933–1968. PubMed

Lacina L., Kodet O., Dvořánková B., Szabo P., Smetana K., Jr. Ecology of melanoma cell. Histol. Histopathol. 2018;33:247–254. PubMed

Spaeth E.L., Dembinski J.L., Sasser A.K., Watson K., Klopp A., Hall B., Andreeff M., Marini F. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS ONE. 2009;4:e4992. doi: 10.1371/journal.pone.0004992. PubMed DOI PMC

Dvořánková B., Smetana K., Jr., Říhová B., Kučera J., Mateu R., Szabo P. Cancer-associated fibroblasts are not formed from cancer cells by epithelial-to-mesenchymal transition in nu/nu mice. Histochem. Cell Biol. 2015;143:463–469. doi: 10.1007/s00418-014-1293-z. PubMed DOI

De Wever O., Demetter P., Mareel M., Bracke M. Stromal myofibroblasts are drivers of invasive cancer growth. Int. J. Cancer. 2008;23:2229–2238. doi: 10.1002/ijc.23925. PubMed DOI

Du H., Che G. Genetic alterations and epigenetic alterations of cancer-associated fibroblasts. Oncol. Lett. 2017;13:3–12. doi: 10.3892/ol.2016.5451. PubMed DOI PMC

Smetana K., Jr., Dvoránková B., Lacina L., Cada Z., Vonka V. Human hair follicle and interfollicular keratinocyte reactivity to mouse HPV16-transformed cells: An in vitro study. Oncol. Rep. 2008;20:75–80. doi: 10.3892/or.20.1.75. PubMed DOI

Desmoulière A., Geinoz A., Gabbiani F., Gabbiani G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J. Cell Biol. 1993;122:103–111. doi: 10.1083/jcb.122.1.103. PubMed DOI PMC

Denys H., Derycke L., Hendrix A., Westbroek W., Gheldof A., Narine K., Pauwels P., Gespach C., Bracke M., De Wever O. Differential impact of TGF-beta and EGF on fibroblast differentiation and invasion reciprocally promotes colon cancer cell invasion. Cancer Lett. 2008;266:263–274. doi: 10.1016/j.canlet.2008.02.068. PubMed DOI

Dvořánková B., Szabo P., Lacina L., Gal P., Uhrova J., Zima T., Kaltner H., André S., Gabius H.-J., Sykova E., et al. Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: Potential application in tissue engineering and wound repair. Cells Tissues Organs. 2011;194:469–480. doi: 10.1159/000324864. PubMed DOI

Ishii G., Ochiai A., Neri S. Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv. Drug Deliv. Rev. 2016;99:186–196. doi: 10.1016/j.addr.2015.07.007. PubMed DOI

Busch S., Andersson D., Bom E., Walsh C., Ståhlberg A., Landberg G. Cellular organization and molecular differentiation model of breast cancer-associated fibroblasts. Mol. Cancer. 2017;16:73. doi: 10.1186/s12943-017-0642-7. PubMed DOI PMC

Driskell R.R., Lichtenberger B.M., Hoste E., Kretzschmar K., Simons B.D., Charalambous M., Ferron S.R., Herault Y., Pavlovic G., Ferguson-Smith A.C., et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature. 2013;504:277–281. doi: 10.1038/nature12783. PubMed DOI PMC

Corvigno S., Wisman G.B., Mezheyeuski A., van der Zee A.G.J., Nijman H.W., Åvall-Lundqvist E., Östman A., Dahlstrand H. Markers of fibroblast-rich tumor stroma and perivascular cells in serous ovarian cancer: Inter- and intra-patient heterogeneity and impact on survival. Oncotarget. 2016;7:18573–18584. doi: 10.18632/oncotarget.7613. PubMed DOI PMC

Živicová V., Lacina L., Mateu R., Smetana K., Kavková R., Drobná Krejčí E., Grim M., Kvasilová A., Borský J., Strnad H., et al. Analysis of dermal fibroblasts isolated from neonatal and child cleft lip and adult skin: Developmental implications on reconstructive surgery. Int. J. Mol. Med. 2017;40:1323–1334. doi: 10.3892/ijmm.2017.3128. PubMed DOI PMC

Dvořánková B., Szabo P., Lacina L., Kodet O., Matoušková E., Smetana K., Jr. Fibroblasts prepared from different types of malignant tumors stimulate expression of luminal marker keratin 8 in the EM-G3 breast cancer cell line. Histochem. Cell Biol. 2012;137:679–685. doi: 10.1007/s00418-012-0918-3. PubMed DOI

Trylcova J., Busek P., Smetana K., Jr., Balaziova E., Dvorankova B., Mifkova A., Sedo A. Effect of cancer-associated fibroblasts on the migration of glioma cells in vitro. Tumour Biol. 2015;36:5873–5879. doi: 10.1007/s13277-015-3259-8. PubMed DOI

Campbell I., Polyak K., Haviv I. Clonal mutations in the cancer-associated fibroblasts: The case against genetic coevolution. Cancer Res. 2009;69:6765–6768. doi: 10.1158/0008-5472.CAN-08-4253. PubMed DOI

Corver W.E., Ter Haar N.T., Fleuren G.J., Oosting J. Cervical carcinoma-associated fibroblasts are DNA diploid and do not show evidence for somatic genetic alterations. Cell Oncol. 2011;34:553–563. doi: 10.1007/s13402-011-0061-5. PubMed DOI PMC

Kodet O., Dvořánková B., Bendlová B., Sýkorová V., Krajsová I., Štork J., Kučera J., Szabo P., Strnad H., Kolář M., et al. Microenvironment-driven resistance to B-Raf inhibition in a melanoma patient is accompanied by broad changes of gene methylation and expression in distal fibroblasts. Int. J. Mol. Med. 2018;41:2687–2703. doi: 10.3892/ijmm.2018.3448. PubMed DOI PMC

Albrengues J., Bertero T., Grasset E., Bonan S., Maiel M., Bourget I., Philippe C., Herraiz Serrano C., Benamar S., Croce O., et al. Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts. Nat. Commun. 2015;6:10204. doi: 10.1038/ncomms10204. PubMed DOI PMC

Kreso A., Dick J.E. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14:275–291. doi: 10.1016/j.stem.2014.02.006. PubMed DOI

Qian X., Ma C., Nie X., Lu J., Lenarz M., Kaufmann A.M., Albers A.E. Biology and immunology of cancer stem (-like) cells in head and neck cancer. Crit. Rev. Oncol. Hematol. 2015;95:337–345. doi: 10.1016/j.critrevonc.2015.03.009. PubMed DOI

Silva Galbiatti-Dias A.L., Fernandes G.M.M., Castanhole-Nunes M.M.U., Hidalgo L.F., Nascimento Filho C.H.V., Kawasaki-Oyama R.S., Ferreira L.A.M., Biselli-Chicote P.M., Pavarino É.C., Goloni-Bertollo E.M. Relationship between CD44high/CD133high/CD117high cancer stem cells phenotype and Cetuximab and Paclitaxel treatment response in head and neck cancer cell lines. Am. J. Cancer Res. 2018;8:1633–1641. PubMed PMC

Macha M.A., Rachagani S., Qazi A.K., Jahan R., Gupta S., Patel A., Seshacharyulu P., Lin C., Li S., Wang S., et al. Afatinib radiosensitizes head and neck squamous cell carcinoma cells by targeting cancer stem cells. Oncotarget. 2017;8:20961–20973. doi: 10.18632/oncotarget.15468. PubMed DOI PMC

Motlík J., Klíma J., Dvoránková B., Smetana K., Jr. Porcine epidermal stem cells as a biomedical model for wound healing and normal/malignant epithelial cell propagation. Theriogenology. 2007;67:105–111. doi: 10.1016/j.theriogenology.2006.09.018. PubMed DOI

Lacina L., Plzak J., Kodet O., Szabo P., Chovanec M., Dvorankova B., Smetana K., Jr. Cancer microenvironment: What can we learn from the stem cell niche. Int. J. Mol. Sci. 2015;16:24094–24110. doi: 10.3390/ijms161024094. PubMed DOI PMC

Plaks V., Kong N., Werb Z. The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015;16:225–238. doi: 10.1016/j.stem.2015.02.015. PubMed DOI PMC

Fík Z., Dvořánková B., Kodet O., Bouček J., Betka J.A., Betka J., André S., Gabius H.-J., Šnajdr P., Smetana K., Jr., et al. Towards dissecting molecular routes of intercellular communication in the tumour microenvironment: Phenotypic plasticity of stem cell-associated markers in co-culture (carcinoma cell/fibroblast) systems. Folia Biol. 2014;60:205–212. PubMed

Le P.N., Keysar S.B., Miller B., Eagles J.R., Chimed T.S., Reisinger J., Gomez K., Nieto C., Jackson B.C., Somerset H.L., et al. Wnt signaling dynamics in head and neck squamous cell cancer tumor-stroma interactions. Mol. Carcinog. 2019;58:98–410. doi: 10.1002/mc.22937. PubMed DOI PMC

Pickup M.W., Mouw J.K., Weaver V.M. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 2014;15:1243–1253. doi: 10.15252/embr.201439246. PubMed DOI PMC

Bonnans C., Chou J., Werb Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 2014;15:786–801. doi: 10.1038/nrm3904. PubMed DOI PMC

Pudełko A., Wisowski G., Olczyk K., Koźma E.M. The dual role of the glycosaminoglycan chondroitin-6-sulfate in the development, progression and metastasis of cancer. FEBS J. 2019 doi: 10.1111/febs.14748. PubMed DOI PMC

Ni W.D., Yang Z.T., Cui C.A., Cui Y., Fang L.Y., Xuan Y.H. Tenascin-C is a potential cancer-associated fibroblasts marker and predicts poor prognosis in prostate cancer. Biochem. Biophys. Res. Commun. 2017;486:607–612. doi: 10.1016/j.bbrc.2017.03.021. PubMed DOI

González-González L., Alonso J. Periostin: A matricellular protein with multiple functions in cancer development and progression. Front. Oncol. 2018;8:225. doi: 10.3389/fonc.2018.00225. PubMed DOI PMC

Zhang T., Han Z., Chandoo A., Huang X., Sun X., Ye L., Hu C., Xue X., Huang Y., Shen X., et al. Low periostin expression predicts poor survival in intestinal type gastric cancer patients. Cancer Manag. Res. 2018;11:25–36. doi: 10.2147/CMAR.S175596. PubMed DOI PMC

Zhong H., Li X., Zhang J., Wu X. Overexpression of periostin is positively associated with gastric cancer metastasis through promoting tumor metastasis and invasion. J. Cell Biochem. 2019 doi: 10.1002/jcb.28275. PubMed DOI

Smetana K., Jr., André S., Kaltner H., Kopitz J., Gabius H.-J. Context-dependent multifunctionality of galectin-1: A challenge for defining the lectin as therapeutic target. Expert Opin. Ther. Targets. 2013;17:379–392. doi: 10.1517/14728222.2013.750651. PubMed DOI

Solís D., Bovin N.V., Davis A.P., Jiménez-Barbero J., Romero A., Roy R., Smetana K., Jr., Gabius H.-J. A guide into glycosciences: How chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim. Biophys. Acta. 2015;1850:186–235. doi: 10.1016/j.bbagen.2014.03.016. PubMed DOI

Smetana K., Jr., Szabo P., Gal P., André S., Gabius H.-J., Kodet O., Dvořánková B. Emerging role of tissue lectins as microenvironmental effectors in tumors and wounds. Histol. Histopathol. 2015;30:293–309. PubMed

Nissen N.I., Karsdal M., Willumsen N. Collagens and cancer associated fibroblasts in the reactive stroma and its relation to cancer biology. J. Exp. Clin. Cancer Res. 2019;6:115. doi: 10.1186/s13046-019-1110-6. PubMed DOI PMC

Brown Y., Hua S., Tanware P.S. Extracellular matrix-mediated regulation of cancer stem cells and chemoresistance. Int. J. Biochem. Cell Biol. 2019;109:90–104. doi: 10.1016/j.biocel.2019.02.002. PubMed DOI

Lacina L., Brábek J., Král V., Kodet O., Smetana K., Jr. Interleukin-6: A molecule with complex biological impact in cancer. Histol. Histopathol. 2019;34:125–136. PubMed

Lippitz B., Harris R.A. Cytokine patterns in cancer patients: A review of the correlation between interleukin 6 and prognosis. Oncoimmunology. 2016;5:e1093722. doi: 10.1080/2162402X.2015.1093722. PubMed DOI PMC

Unver N., McAllister F. IL-6 family cytokines: Key inflammatory mediators as biomarkers and potential therapeutic targets. Cytokine Growth Factor Rev. 2018;41:10–17. doi: 10.1016/j.cytogfr.2018.04.004. PubMed DOI PMC

Narsale A.A., Carson J.A. Role of interleukin-6 in cachexia: Therapeutic implications. Curr. Opin. Support Palliat. Care. 2014;8:321–327. doi: 10.1097/SPC.0000000000000091. PubMed DOI PMC

Pettersen K., Andersen S., Degen S., Tadini V., Grosjean J., Hatakeyama S., Tesfahun A.N., Moestue S., Kim J., Nonstad U., et al. Cancer cachexia associates with a systemic autophagy-inducing activity mimicked by cancer cell-derived IL-6 trans-signaling. Sci. Rep. 2017;7:2046. doi: 10.1038/s41598-017-02088-2. PubMed DOI PMC

Han J., Meng Q., Shen L., Wu G. Interleukin-6 induces fat loss in cancer cachexia by promoting white adipose tissue lipolysis and browning. Lipids Health Dis. 2018;17:14. doi: 10.1186/s12944-018-0657-0. PubMed DOI PMC

Bob P., Raboch J., Maes M., Susta M., Pavlat J., Jasova D., Vevera J., Uhrova J., Benakova H., Zima T. Depression, traumatic stress and interleukin-6. J. Affect. Disord. 2010;120:231–234. doi: 10.1016/j.jad.2009.03.017. PubMed DOI

Ostrowska Z., Ziora K., Oświęcimska J., Marek B., Świętochowska E., Kajdaniuk D., Strzelczyk J., Cieślicka A., Wołkowska-Pokrywa K., Kos-Kudła B. Selected pro-inflammatory cytokines, bone metabolism, osteoprotegerin, and receptor activator of nuclear factor-kB ligand in girls with anorexia nervosa. Endokrynol. Pol. 2015;66:313–321. doi: 10.5603/EP.2015.0040. PubMed DOI

Shimura Y., Kurosawa H., Tsuchiya M., Sawa M., Kaneko H., Liu L., Makino Y., Nojiri H., Iwase Y., Kaneko K., et al. Serum interleukin 6 levels are associated with depressive state of the patients with knee osteoarthritis irrespective of disease severity. Clin. Rheumatol. 2017;36:2781–2787. doi: 10.1007/s10067-017-3826-z. PubMed DOI

Jobe N.P., Rösel D., Dvořánková B., Kodet O., Lacina L., Mateu R., Smetana K., Jr., Brábek J. Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. Histochem. Cell Biol. 2016;146:205–217. doi: 10.1007/s00418-016-1433-8. PubMed DOI

Jobe N.P., Živicová V., Mifková A., Rösel D., Dvořánková B., Kodet O., Strnad H., Kolář M., Šedo A., Smetana K., Jr., et al. Fibroblasts potentiate melanoma cells in vitro invasiveness induced by UV-irradiated keratinocytes. Histochem. Cell Biol. 2018;149:503–516. doi: 10.1007/s00418-018-1650-4. PubMed DOI

Jayatilaka H., Tyle P., Chen J.J., Kwak M., Ju J., Kim H.J., Lee J.S.H., Wu P.H., Gilkes D.M., Fan R., et al. Synergistic IL-6 and IL-8 paracrine signalling pathway infers a strategy to inhibit tumour cell migration. Nat. Commun. 2017;8:15584. doi: 10.1038/ncomms15584. PubMed DOI PMC

Garbers C., Aparicio-Siegmund S., Rose-John S. The IL-6/gp130/STAT3 signaling axis: Recent advances towards specific inhibition. Curr. Opin. Immunol. 2015;34:75–82. doi: 10.1016/j.coi.2015.02.008. PubMed DOI

Johnson D.E., O’Keefe R.A., Grandis J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 2018;15:234–248. doi: 10.1038/nrclinonc.2018.8. PubMed DOI PMC

Smetana K., Jr., Dvořánková B., Lacina L., Strnad H., Kolář M., Chovanec M., Plzák J., Čada Z., Vlček Č., et al. Combination of Antibodies of Fab Fragments Thereof for Use as a Medicament and Pharmaceutical Composition Containing the Antibodies or Their Fab Fragments. No. PV 2011-222. Czech Patent. 2012 Apr 25; Document 303 227.

Liu H., Shen J., Lu K. IL-6 and PD-L1 blockade combination inhibits hepatocellular carcinoma cancer development in mouse model. Biochem. Biophys. Res. Commun. 2017;486:239–244. doi: 10.1016/j.bbrc.2017.02.128. PubMed DOI

Strnad H., Kolář M., Smetana K., Jr., Dvořánková B., Szabo P., Lacina L., Novák Š., Gál P. Combination of Inhibitors, Pharmaceutical Preparation and Use Thereof. Application No. EP18209444. European Patent. 2018 Nov 11;

Allavena P., Sica A., Solinas G., Porta C., Mantovani A. The inflammatory micro-environment in tumor progression: The role of tumor-associated macrophages. Crit. Rev. Oncol. Hematol. 2008;66:1–9. doi: 10.1016/j.critrevonc.2007.07.004. PubMed DOI

Murdoch C., Muthana M., Coffelt S.B., Lewis C.E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat. Rev. Cancer. 2008;8:618–631. doi: 10.1038/nrc2444. PubMed DOI

Sawa-Wejksza K., Kandefer-Szerzen M. Tumor-associated macrophages as target for antitumor therapy. Arch. Immunol. Ther. Exp. 2018;66:97–111. doi: 10.1007/s00005-017-0480-8. PubMed DOI PMC

Gordon S., Martinez F.O. Alternative activation of macrophages: Mechanism and functions. Immunity. 2010;32:593–604. doi: 10.1016/j.immuni.2010.05.007. PubMed DOI

Sica A., Mantovani A. Macrophage plasticity and polarization: In vivo veritas. J. Clin. Investig. 2012;122:787–795. doi: 10.1172/JCI59643. PubMed DOI PMC

Qian B.Z., Pollard J.W. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51. doi: 10.1016/j.cell.2010.03.014. PubMed DOI PMC

Petty A.J., Yang Y. Tumor-associated macrophages: Implications in cancer immunotherapy. Immunotherapy. 2017;9:289–302. doi: 10.2217/imt-2016-0135. PubMed DOI PMC

Degroote H., Van Dierendonck A., Geerts A., Van Vlierberghe H., Devisscher L. Preclinical and clinical therapeutic strategies affecting tumor-associated macrophages in hepatocellular carcinoma. J. Immunol. Res. 2018;2018:7819520. doi: 10.1155/2018/7819520. PubMed DOI PMC

Barrow A.D., Colonna M. Exploiting NK cell surveillance pathways for cancer therapy. Cancers. 2019;11:55. doi: 10.3390/cancers11010055. PubMed DOI PMC

André P., Denis C., Soulas C., Bourbon-Caillet C., Lopez J., Arnoux T., Bléry M., Bonnafous C., Gauthier L., Morel A., et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. Cell. 2018;175:1731.e13–1743.e13. doi: 10.1016/j.cell.2018.10.014. PubMed DOI PMC

Taborska P., Bartunkova J., Smrz D. Simultaneous in vitro generation of human CD34+-derived dendritic cells and mast cells from non-mobilized peripheral blood mononuclear cells. J. Immunol. Methods. 2018;458:63–73. doi: 10.1016/j.jim.2018.04.005. PubMed DOI

Fucikova J., Podrazil M., Jarolim L., Bilkova P., Hensler M., Becht E., Gasova Z., Klouckova J., Kayserova J., Horvath R., et al. Phase I/II trial of dendritic cell-based active cellular immunotherapy with DCVAC/PCa in patients with rising PSA after primary prostatectomy or salvage radiotherapy for the treatment of prostate cancer. Cancer Immunol. Immunother. 2018;67:89–100. doi: 10.1007/s00262-017-2068-x. PubMed DOI PMC

Fu C., Jiang A. Dendritic cells and CD8 T cell immunity in tumor microenvironment. Front Immunol. 2018;9:3059. doi: 10.3389/fimmu.2018.03059. PubMed DOI PMC

Huber A., Dammeijer F., Aerts J.G.J.V., Vroman H. Current tate of endritic cell-based immunotherapy: Opportunities for in vitro antigen loading of different DC subsets? Front. Immunol. 2018;9:2804. doi: 10.3389/fimmu.2018.02804. PubMed DOI PMC

Kalia V., Sarkar S. Regulation of effector and memory CD8 T cell differentiation by IL-2-A balancing act. Front. Immunol. 2018;9:2987. doi: 10.3389/fimmu.2018.02987. PubMed DOI PMC

Mortara L., Balza E., Bruno A., Poggi A., Orecchia P., Carnemolla B. Anti-cancer therapies employing IL-2 cytokine tumor targeting: Contribution of innate, adaptive and immunosuppressive cells in the anti-tumor efficacy. Front. Immunol. 2018;9:2905. doi: 10.3389/fimmu.2018.02905. PubMed DOI PMC

Mandalà M., Rutkowski P. Rational combination of cancer immunotherapy in melanoma. Virchows Arch. 2018 doi: 10.1007/s00428-018-2506-y. PubMed DOI

Ueda S., Miyahara Y., Nagata Y., Sato E., Shiraishi T., Harada N., Ikeda H., Shiku H., Kageyama S. NY-ESO-1 antigen expression and immune response are associated with poor prognosis in MAGE-A4-vaccinated patients with esophageal or head/neck squamous cell carcinoma. Oncotarget. 2018;9:35997–36011. doi: 10.18632/oncotarget.26323. PubMed DOI PMC

Schoenfeld J.D. Immunity in head and neck cancer. Cancer Immunol. Res. 2015;3:12–17. doi: 10.1158/2326-6066.CIR-14-0205. PubMed DOI

Wolf D., Sopper S., Pircher A., Gastl G., Wolf A.M. Treg(s) in Cancer: Friends or foe? J. Cell Physiol. 2015;230:2598–2605. doi: 10.1002/jcp.25016. PubMed DOI

Nishikawa H., Sakaguchi S. Regulatory T cells in cancer immunotherapy. Curr. Opin. Immunol. 2014;27:1–7. doi: 10.1016/j.coi.2013.12.005. PubMed DOI

Malek E., de Lima M., Letterio J.J., Kim B.G., Finke J.H., Driscoll J.J., Giralt S.A. Myeloid-derived suppressor cells: The green light for myeloma immune escape. Blood Rev. 2016;30:341–348. doi: 10.1016/j.blre.2016.04.002. PubMed DOI PMC

Aarts C.E., Kuijpers T.W. Neutrophils as myeloid-derived suppressor cells. Eur. J. Clin. Investig. 2018;48(Suppl. 2):e12989. doi: 10.1111/eci.12989. PubMed DOI

Becker A., Thakur B.K., Weiss J.M., Kim H.S., Peinado H., Lyden D. Extracellular vesicles in cancer: Cell-to-cell mediators of metastasis. Cancer Cell. 2016;30:836–848. doi: 10.1016/j.ccell.2016.10.009. PubMed DOI PMC

Ruivo C.F., Adem B., Silva M., Melo S.A. The biology of cancer exosomes: Insights and new perspectives. Cancer Res. 2017;77:6480–6488. doi: 10.1158/0008-5472.CAN-17-0994. PubMed DOI

Witeside T.L. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin. Immunol. 2018;35:69–79. doi: 10.1016/j.smim.2017.12.003. PubMed DOI PMC

Richards K.E., Zeleniak A.E., Fishel M.L., Wu J., Littlepage L.E., Hill R. Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene. 2017;36:1770–1778. doi: 10.1038/onc.2016.353. PubMed DOI PMC

Li L., Zhang X., Wang J., Li M., Cao C., Tan J., Ma D., Gao Q. TGF-β1 in fibroblasts-derived exosomes promotes epithelial-mesenchymal transition of ovarian cancer cells. Oncotarget. 2017;8:96035–96047. PubMed PMC

Paggetti J., Haderk F., Seiffert M., Janji B., Distler U., Ammerlaan W., Kim Y.J., Adam J., Lichter P., Solary E., et al. Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood. 2015;126:1106–11017. doi: 10.1182/blood-2014-12-618025. PubMed DOI PMC

Ludwig S., Floros T., Theodoraki M.N., Hong C.S., Jackson E.K., Lang S., Whiteside T.L. Suppression of lymphocyte functions by plasma exosomes correlates with disease activity in patients with head and neck cancer. Clin. Cancer Res. 2017;23:4843–4854. doi: 10.1158/1078-0432.CCR-16-2819. PubMed DOI PMC

Gilligan K.E., Dwyer R.M. Engineering exosomes for cancer therapy. Int. J. Mol. Sci. 2017;18:1122. doi: 10.3390/ijms18061122. PubMed DOI PMC

Califano J., van der Riet P., Westra W., Nawroz H., Clayman G., Piantadosi S., Corio R., Lee D., Greenberg B., Koch W., et al. Genetic progression model for head and neck cancer: Implications for field cancerization. Cancer Res. 1996;56:2488–2492. doi: 10.1016/S0194-5998(96)80631-0. PubMed DOI

Ha P.K., Califano J.A. The molecular biology of mucosal field cancerization of the head and neck. Crit. Rev. Oral. Biol. Med. 2003;14:363–369. doi: 10.1177/154411130301400506. PubMed DOI

Fík Z., Valach J., Chovanec M., Mazánek J., Kodet R., Kodet O., Tachezy R., Foltynová E., André S., Kaltner H., et al. Loss of adhesion/growth-regulatory galectin-9 from squamous cell epithelium in head and neck carcinomas. J. Oral. Pathol. Med. 2013;42:166–173. doi: 10.1111/j.1600-0714.2012.01185.x. PubMed DOI

Barcellos-Hoff M.H., Ravani S.A. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 2000;60:1254–1260. PubMed

Jager-Wittenaar H., Dijkstra P.U., Dijkstra G., Bijzet J., Langendijk J.A., van der Laan B.F.A.M., Roodenburg J.L.N. High prevalence of cachexia in newly diagnosed head and neck cancer patients: An exploratory study. Nutrition. 2017;35:114–118. doi: 10.1016/j.nut.2016.11.008. PubMed DOI

Balic A., Thesleff I. Tissue interactions regulating tooth development and renewal. Curr. Top. Dev. Biol. 2015;115:157–186. PubMed

Li J., Parada C., Chai Y. Cellular and molecular mechanisms of tooth root development. Development. 2017;144:374–384. doi: 10.1242/dev.137216. PubMed DOI PMC

Zivicova V., Broz P., Fik Z., Mifkova A., Plzak J., Cada Z., Kaltner H., Kucerova J.F., Gabius H.-J., Smetana K., Jr. Genome-wide expression profiling (with focus on the galectin network) in tumor, transition zone and normal tissue of head and neck cancer: Marked differences between individual patients and the site of specimen origin. Anticancer Res. 2017;37:2275–2288. doi: 10.21873/anticanres.11565. PubMed DOI

Peltanova B., Raudenska M., Masarik M. Effect of tumor microenvironment on 3 pathogenesis of the head and neck squamous cell carcinoma: A systematic review. Mol. Cancer. 2019 doi: 10.1186/s12943-019-0983-5. PubMed DOI PMC

Lacina L., Dvoránkova B., Smetana K., Jr., Chovanec M., Plzák J., Tachezy R., Kideryová L., Kucerová L., Cada Z., et al. Marker profiling of normal keratinocytes identifies the stroma from squamous cell carcinoma of the oral cavity as a modulatory microenvironment in co-culture. Int. J. Radiat. Biol. 2007;83:837–848. doi: 10.1080/09553000701694343. PubMed DOI

Strnad H., Lacina L., Kolár M., Cada Z., Vlcek C., Dvoránková B., Betka J., Plzák J., Chovanec M., et al. Head and neck squamous cancer stromal fibroblasts produce growth factors influencing phenotype of normal human keratinocytes. Histochem. Cell Biol. 2010;133:201–211. doi: 10.1007/s00418-009-0661-6. PubMed DOI

Kolář M., Szabo P., Dvořánková B., Lacina L., Gabius H.-J., Strnad H., Sáchová J., Vlček C., Plzák J., Chovanec M., et al. Upregulation of IL-6, IL-8 and CXCL-1 production in dermal fibroblasts by normal/malignant epithelial cells in vitro: Immunohistochemical and transcriptomic analyses. Biol. Cell. 2012;104:738–751. doi: 10.1111/boc.201200018. PubMed DOI

Álvarez-Teijeiro S., García-Inclán C., Villaronga M.Á., Casado P., Hermida-Prado F., Granda-Díaz R., Rodrigo J.P., Calvo F., Del-Río-Ibisate N., Gandarillas A., et al. Factors secreted by cancer-associated fibroblasts that sustain cancer stem properties in head and neck squamous carcinoma cells as potential therapeutic targets. Cancers (Basel) 2018;10:334. doi: 10.3390/cancers10090334. PubMed DOI PMC

Deák M., Hornung Á., Novák J., Demydenko D., Szabó E., Czibula Á., Fajka-Boja R., Kriston-Pál É., Monostori É., Kovács L. Novel role for galectin-1 in T-cells under physiological and pathological conditions. Immunobiology. 2015;220:483–489. doi: 10.1016/j.imbio.2014.10.023. PubMed DOI

Sanchez-Ruderisch H., Detjen K.M., Welzel M., André S., Fischer C., Gabius H.-J., Rosewicz S. Galectin-1 sensitizes carcinoma cells to anoikis via the fibronectin receptor α5β1-integrin. Cell Death Differ. 2011;18:806–816. doi: 10.1038/cdd.2010.148. PubMed DOI PMC

Valach J., Fík Z., Strnad H., Chovanec M., Plzák J., Cada Z., Szabo P., Sáchová J., Hroudová M., Urbanová M., et al. Smooth muscle actin-expressing stromal fibroblasts in head and neck squamous cell carcinoma: Increased expression of galectin-1 and induction of poor prognosis factors. Int. J. Cancer. 2012;131:2499–2508. doi: 10.1002/ijc.27550. PubMed DOI

Zivicova V., Gal P., Mifkova A., Novak S., Kaltner H., Kolar M., Strnad H., Sachova J., Hradilova M., Chovanec M., et al. Detection of distinct changes in gene-expression profiles in specimens of tumors and transition zones of tenascin-positive/-negative head and neck squamous cell carcinoma. Anticancer Res. 2018;38:1279–1290. PubMed

Sundquist E., Kauppila J.H., Veijola J., Mroueh R., Lehenkari P., Laitinen S., Risteli J., Soini Y., Kosma V.M., Sawazaki-Calone I., et al. Tenascin-C and fibronectin expression divide early stage tongue cancer into low- and high-risk groups. Br. J. Cancer. 2017;116:640–648. doi: 10.1038/bjc.2016.455. PubMed DOI PMC

Kudo Y., Iizuka S., Yoshida M., Nguyen P.T., Siriwardena S.B., Tsunematsu T., Ohbayashi M., Ando T., Hatakeyama D., Shibata T., et al. Periostin directly and indirectly promotes tumor lymphangiogenesis of head and neck cancer. PLoS ONE. 2012;7:e4448. doi: 10.1371/journal.pone.0044488. PubMed DOI PMC

Qin X., Yan M., Zhang J., Wang X., Shen Z., Lv Z., Li Z., Wei W., Chen W. TGFβ3-mediated induction of Periostin facilitates head and neck cancer growth and is associated with metastasis. Sci. Rep. 2016;6:20587. doi: 10.1038/srep20587. PubMed DOI PMC

Yu B., Wu K., Wang X., Zhang J., Wang L., Jiang Y., Zhu X., Chen W., Yan M. Periostin secreted by cancer-associated fibroblasts promotes cancer stemness in head and neck cancer by activating protein tyrosine kinase 7. Cell Death Dis. 2018;9:1082. doi: 10.1038/s41419-018-1116-6. PubMed DOI PMC

Boucek J., Mrkvan T., Chovanec M., Kuchar M., Betka J., Boucek V., Hladikova M., Betka J., Eckschlager T., Rihova B. Regulatory T cells and their prognostic value for patients with squamous cell carcinoma of the head and neck. J. Cell. Mol. Med. 2010;14:426–433. doi: 10.1111/j.1582-4934.2008.00650.x. PubMed DOI PMC

Chakraborty P., Karmakar T., Arora N., Mukherjee G. Immune and genomic signatures in oral (head and neck) cancer. Heliyon. 2018;4:e00880. doi: 10.1016/j.heliyon.2018.e00880. PubMed DOI PMC

Chen Y.-P., Wang Y.-Q., Lv J.-W., Li Y.-Q., Chua M.L.K., Le Q.-T., Lee N., Coleva A.D., Seiwert T., Hayes D.N., et al. Identification and validation of novel microenvironment-based immune molecular subgroups of head and neck squamous cell carcinoma: Implications for immunotherapy. Ann. Oncol. 2018 doi: 10.1093/annonc/mdy470. PubMed DOI

Evrard D., Szturz P., Tijeras-Raballand A., Astorgues-Xerri L., Abitbol C., Paradis V., Raymond E., Albert S., Barry B., Faivre S. Macrophages in the microenvironment of head and neck cancer: Potential targets for cancer therapy. Oral Oncol. 2019;88:29–38. doi: 10.1016/j.oraloncology.2018.10.040. PubMed DOI

Partlová S., Bouček J., Kloudová K., Lukešová E., Zábrodský M., Grega M., Fučíková J., Truxová I., Tachezy R., Špíšek R., et al. Distinct patterns of intratumoral immune cell infiltrates in patients with HPV-associated compared to non-virally induced head and neck squamous cell carcinoma. OncoImmunology. 2015;4:e965570. PubMed PMC

Lukesova E., Boucek J., Rotnaglova E., Salakova M., Koslabova E., Grega M., Eckschlager T., Rihova B., Prochazka B., Klozar J., et al. High level of Tregs is a positive prognostic marker in patients with HPV-positive oral and oropharyngeal squamous cell carcinomas. BioMed. Res. Int. 2014;2014:303929. doi: 10.1155/2014/303929. PubMed DOI PMC

Hladíková K., Partlová S., Koucký V., Bouček J., Fonteneaue J.-F., Zábrodský M., Tachezy R., Gregag M., Špíšek R., Fialová A. Dysfunction of HPV16-specific CD8+ T cells derived from oropharyngeal tumors is related to the expression of Tim-3 but not PD-1. Oral Oncol. 2018;82:75–82. doi: 10.1016/j.oraloncology.2018.05.010. PubMed DOI

Yamauchi M., Barker T.H., Gibbons D.L., Kurie J.M. The fibrotic tumor stroma. J. Clin. Investig. 2018;128:16–25. doi: 10.1172/JCI93554. PubMed DOI PMC

Raglow Z., Thomas S.M. Tumor matrix protein collagen XIα1 in cancer. Cancer Lett. 2015;357:448–453. doi: 10.1016/j.canlet.2014.12.011. PubMed DOI PMC

Charalabopoulos K., Mittari E., Karakosta A., Golias C., Batistatou A. Integrins adhesion molecules and some of their ligands in laryngeal cancer. Exp. Oncol. 2005;27:86–90. PubMed

Lyons A.J., Jones J. Cell adhesion molecules, the extracellular matrix and oral squamous carcinoma. Int. J. Oral Maxillofac. Surg. 2007;36:671–679. doi: 10.1016/j.ijom.2007.04.002. PubMed DOI

Liu L., Jung S.N., Oh C., Lee K., Won H.R., Chang J.W., Kim J.M., Koo B.S. LAMB3 is associated with disease progression and cisplatin cytotoxic sensitivity in head and neck squamous cell carcinoma. Eur. J. Surg. Oncol. 2019;45:359–365. doi: 10.1016/j.ejso.2018.10.543. PubMed DOI

Compagnone M., Gatti V., Presutti D., Ruberti G., Fierro C., Markert E.K., Vousden K.H., Zhou H., Mauriello A., et al. ΔNp63-mediated regulation of hyaluronic acid metabolism and signaling supports HNSCC tumorigenesis. Proc. Natl. Acad. Sci. USA. 2017;114:13254–13259. doi: 10.1073/pnas.1711777114. PubMed DOI PMC

Argiris A., Kotsakis A.P., Hoang T., Worden F.P., Savvides P., Gibson M.K., Gyanchandani R., Blumenschein G.R., Jr., Chen H.X., Grandis J.R., et al. Cetuximab and bevacizumab: Preclinical data and phase II trial in recurrent or metastatic squamous cell carcinoma of the head and neck. Ann. Oncol. 2013;24:220–225. doi: 10.1093/annonc/mds245. PubMed DOI PMC

Schuler P.J., Laban S., Doescher J., Bullinger L., Hoffmann T.K. Novel treatment options in head and neck cancer. Oncol. Res. Treat. 2017;40:342–346. doi: 10.1159/000477254. PubMed DOI

Pai S.I., Zandberg D.P., Strome S.E. The role of antagonists of the PD-1: PD-L1/PD-L2 axis in head and neck cancer treatment. Oral Oncol. 2016;61:152–158. doi: 10.1016/j.oraloncology.2016.08.001. PubMed DOI PMC

Guidi A., Codecà C., Ferrari D. Chemotherapy and immunotherapy for recurrent and metastatic head and neck cancer: A systematic review. Med. Oncol. 2018;35:37. doi: 10.1007/s12032-018-1096-5. PubMed DOI

Jewett A., Kos J., Fong Y., Ko M., Safaei T., Perišić Nanut M., Kaur K. NK cells shape pancreatic and oral tumor microenvironments; role in inhibition of tumor growth and metastasis. Semin. Cancer Biol. 2018;53:178–188. doi: 10.1016/j.semcancer.2018.08.001. PubMed DOI

Olatunji I. Potential application of tumor suppressor microRNAs for targeted therapy in head and neck cancer: A mini-review. Oral Oncology. 2018;87:165–169. doi: 10.1016/j.oraloncology.2018.10.038. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Characterization of regeneration initiating cells during Xenopus laevis tail regeneration

. 2024 Oct 01 ; 25 (1) : 251. [epub] 20241001

Autoimmunity, cancer and COVID-19 abnormally activate wound healing pathways: critical role of inflammation

. 2022 Nov ; 158 (5) : 415-434. [epub] 20220722

Advances in Cancer Metabolism and Tumour Microenvironment

. 2022 Apr 07 ; 23 (8) : . [epub] 20220407

Exosomes produced by melanoma cells significantly influence the biological properties of normal and cancer-associated fibroblasts

. 2022 Feb ; 157 (2) : 153-172. [epub] 20211127

Cancer-Associated Fibroblasts Influence the Biological Properties of Malignant Tumours via Paracrine Secretion and Exosome Production

. 2022 Jan 16 ; 23 (2) : . [epub] 20220116

Desmoplastic Crosstalk in Pancreatic Ductal Adenocarcinoma Is Reflected by Different Responses of Panc-1, MIAPaCa-2, PaTu-8902, and CAPAN-2 Cell Lines to Cancer-associated/Normal Fibroblasts

. 2021 May-Jun ; 18 (3) : 221-243.

Interleukin-6: Molecule in the Intersection of Cancer, Ageing and COVID-19

. 2020 Oct 26 ; 21 (21) : . [epub] 20201026

Cutaneous melanoma dissemination is dependent on the malignant cell properties and factors of intercellular crosstalk in the cancer microenvironment (Review)

. 2020 Sep ; 57 (3) : 619-630. [epub] 20200626

Role of Interleukin-6 in Lung Complications in Patients With COVID-19: Therapeutic Implications

. 2020 Jun ; 34 (3 Suppl) : 1589-1592.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...