Cancer-Associated Fibroblasts Influence the Biological Properties of Malignant Tumours via Paracrine Secretion and Exosome Production

. 2022 Jan 16 ; 23 (2) : . [epub] 20220116

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35055153

Grantová podpora
project No. 19-05048S Grant Agency of the Czech Republic,
Research of the Cancer Microenvironment Supporting Cancer Growth and Spread", No. CZ.02.1.01/0.0/0.0/16_019/0000785 Ministry of Education, Youth and Sports of the Czech Republic
PROGRES Q28 Charles University

Cancer-associated fibroblasts (CAFs) are an essential component of the tumour microenvironment. They represent a heterogeneous group of cells that are under the control of cancer cells and can reversely influence the cancer cell population. They affect the cancer cell differentiation status, and the migration and formation of metastases. This is achieved through the production of the extracellular matrix and numerous bioactive factors. IL-6 seems to play the central role in the communication of noncancerous and cancer cells in the tumour. This review outlines the role of exosomes in cancer cells and cancer-associated fibroblasts. Available data on the exosomal cargo, which can significantly intensify interactions in the tumour, are summarised. The role of exosomes as mediators of the dialogue between cancer cells and cancer-associated fibroblasts is discussed together with their therapeutic relevance. The functional unity of the paracrine- and exosome-mediated communication of cancer cells with the tumour microenvironment represented by CAFs is worthy of attention.

Zobrazit více v PubMed

Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI

Bray F., Laversanne M., Weiderpass E., Soerjomataram I. The Ever-Increasing Importance of Cancer as a Leading Cause of Premature Death Worldwide. Cancer. 2021;127:3029–3030. doi: 10.1002/cncr.33587. PubMed DOI

Egeblad M., Nakasone E.S., Werb Z. Tumors as Organs: Complex Tissues That Interface with the Entire Organism. Dev. Cell. 2010;18:884–901. doi: 10.1016/j.devcel.2010.05.012. PubMed DOI PMC

Chia S.B., Degregori J. Cancer Cells Build a Bad Neighbourhood in the Gut. Nature. 2021;594:340–341. doi: 10.1038/d41586-021-01379-z. PubMed DOI

Campisi J. Senescent Cells, Tumor Suppression, and Organismal Aging: Good Citizens, Bad Neighbors. Cell. 2005;120:513–522. doi: 10.1016/j.cell.2005.02.003. PubMed DOI

Krtolica A., Parrinello S., Lockett S., Desprez P.Y., Campisi J. Senescent Fibroblasts Promote Epithelial Cell Growth and Tumorigenesis: A Link between Cancer and Aging. Proc. Natl. Acad. Sci. USA. 2001;98:12072–12077. doi: 10.1073/pnas.211053698. PubMed DOI PMC

Fadiel A., Eichenbaum K.D., Xia Y. Cell Interactome: Good Neighbors or Bad Neighbors. Biosci. Hypotheses. 2008;1:255. doi: 10.1016/j.bihy.2008.06.008. PubMed DOI PMC

Mintz B., Illmensee K. Normal Genetically Mosaic Mice Produced from Malignant Teratocarcinoma Cells. Proc. Natl. Acad. Sci. USA. 1975;72:3585–3589. doi: 10.1073/pnas.72.9.3585. PubMed DOI PMC

Lacina L., Plzak J., Kodet O., Szabo P., Chovanec M., Dvorankova B., Smetana K., Jr. Cancer Microenvironment: What Can We Learn from the Stem Cell Niche. Int. J. Mol. Sci. 2015;16:24094–24110. doi: 10.3390/ijms161024094. PubMed DOI PMC

Kodet O., Kučera J., Strnadová K., Dvořánková B., Štork J., Lacina L., Smetana K. Cutaneous Melanoma Dissemination Is Dependent on the Malignant Cell Properties and Factors of Intercellular Crosstalk in the Cancer Microenvironment (Review) Int. J. Oncol. 2020;57:619–630. doi: 10.3892/ijo.2020.5090. PubMed DOI PMC

Kalluri R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer. 2016;16:582–598. doi: 10.1038/nrc.2016.73. PubMed DOI

Firestein S.G., Budd R.C., Gabriel S.E., McInnes I.B., O’Dell J.R. Firestein: Kelley’s Textbook of Rheumatology. 8th ed. Elsevier; Amsterdam, The Netherlands: 2021.

Mikkola M.L. Genetic Basis of Skin Appendage Development. Semin. Cell Dev. Biol. 2007;18:225–236. doi: 10.1016/j.semcdb.2007.01.007. PubMed DOI

Avagliano A., Fiume G., Ruocco M.R., Martucci N., Vecchio E., Insabato L., Russo D., Accurso A., Masone S., Montagnani S., et al. Influence of Fibroblasts on Mammary Gland Development, Breast Cancer Microenvironment Remodeling, and Cancer Cell Dissemination. Cancers. 2020;12:1697. doi: 10.3390/cancers12061697. PubMed DOI PMC

Macias H., Hinck L. Mammary Gland Development. Wiley Interdiscip. Rev. Dev. Biol. 2012;1:533–557. doi: 10.1002/wdev.35. PubMed DOI PMC

Schittny J.C. Development of the Lung. Cell Tissue Res. 2017;367:427–444. doi: 10.1007/s00441-016-2545-0. PubMed DOI PMC

Duncan S.A. Mechanisms Controlling Early Development of the Liver. Mech. Dev. 2003;120:19–33. doi: 10.1016/S0925-4773(02)00328-3. PubMed DOI

Jørgensen M.C., Ahnfelt-Rønne J., Hald J., Madsen O.D., Serup P., Hecksher-Sørensen J. An Illustrated Review of Early Pancreas Development in the Mouse. Endocr. Rev. 2007;28:685–705. doi: 10.1210/er.2007-0016. PubMed DOI

Gittes G.K. Developmental Biology of the Pancreas: A Comprehensive Review. Dev. Biol. 2009;326:4–35. doi: 10.1016/j.ydbio.2008.10.024. PubMed DOI

Driskell R.R. Distinct Fibroblast Lineages Determine Dermal Architecture in Skin Development and Repair. Nature. 2013;504:277–281. doi: 10.1038/nature12783. PubMed DOI PMC

Driskell R.R., Watt F.M. Understanding Fibroblast Heterogeneity in the Skin. Trends Cell Biol. 2015;25:92–99. doi: 10.1016/j.tcb.2014.10.001. PubMed DOI

Driskell R.R., Clavel C., Rendl M., Watt F.M. Hair Follicle Dermal Papilla Cells at a Glance. J. Cell Sci. 2011;124:1179–1182. doi: 10.1242/jcs.082446. PubMed DOI PMC

Haydont V., Neiveyans V., Perez P., Busson É., Lataillade J.J., Asselineau D., Fortunel N.O. Fibroblasts from the Human Skin Dermo-Hypodermal Junction Are Distinct from Dermal Papillary and Reticular Fibroblasts and from Mesenchymal Stem Cells and Exhibit a Specific Molecular Profile Related to Extracellular Matrix Organization and Modeling. Cells. 2020;9:368. doi: 10.3390/cells9020368. PubMed DOI PMC

Philippeos C., Telerman S.B., Oulès B., Pisco A.O., Shaw T.J., Elgueta R., Lombardi G., Driskell R.R., Soldin M., Lynch M.D., et al. Spatial and Single-Cell Transcriptional Profiling Identifies Functionally Distinct Human Dermal Fibroblast Subpopulations. J. Investig. Dermatol. 2018;138:811–825. doi: 10.1016/j.jid.2018.01.016. PubMed DOI PMC

Novotný J., Strnadová K., Dvořánková B., Kocourková Š., Jakša R., Dundr P., Pačes V., Smetana K., Kolář M., Lacina L. Single-Cell RNA Sequencing Unravels Heterogeneity of the Stromal Niche in Cutaneous Melanoma Heterogeneous Spheroids. Cancers. 2020;12:3324. doi: 10.3390/cancers12113324. PubMed DOI PMC

Kareva I. What Can Ecology Teach Us about Cancer? Transl. Oncol. 2011;4:266–270. doi: 10.1593/tlo.11154. PubMed DOI PMC

Hirata E., Girotti M.R., Viros A., Hooper S., Spencer-Dene B., Matsuda M., Larkin J., Marais R., Sahai E. Intravital Imaging Reveals How BRAF Inhibition Generates Drug-Tolerant Microenvironments with High Integrin Β1/FAK Signaling. Cancer Cell. 2015;27:574–588. doi: 10.1016/j.ccell.2015.03.008. PubMed DOI PMC

Beacham E.C.D.A. Stromagenesis: The Changing Face of Fibroblastic Microenvironments during Tumor Progression. Semin. Cancer Biol. 2005;15:329–341. doi: 10.1016/j.semcancer.2005.05.003. PubMed DOI

Rodrigues P., Vanharanta S. Circulating Tumor Cells: Come Together, Right Now, over Metastasis. Cancer Discov. 2019;9:22. doi: 10.1158/2159-8290.CD-18-1285. PubMed DOI PMC

Paget S. THE DISTRIBUTION OF SECONDARY GROWTHS IN CANCER OF THE BREAST. Lancet. 1889;133:571–573. doi: 10.1016/S0140-6736(00)49915-0. PubMed DOI

Dillekås H., Rogers M.S., Straume O. Are 90% of Deaths from Cancer Caused by Metastases? Cancer Med. 2019;8:5574. doi: 10.1002/cam4.2474. PubMed DOI PMC

Thompson A.M., Steel C.M., Chetty U., Carter D.C. Evidence for the Multistep Theory of Carcinogenesis in Human Breast Cancer. Breast. 1992;1:29–34. doi: 10.1016/0960-9776(92)90009-Q. DOI

Lacina L., Čoma M., Dvořánková B., Kodet O., Melegová N., Gál P., Smetana K. Evolution of Cancer Progression in the Context of Darwinism. Anticancer. Res. 2019;39:1–16. doi: 10.21873/anticanres.13074. PubMed DOI

Lacina L., Kodet O., Dvořánková B., Szabo P., Smetana K. Ecology of Melanoma Cell. Histol. Histopathol. 2018;33:247–254. doi: 10.14670/HH-11-926. PubMed DOI

Josson S., Matsuoka Y., Chung L.W.K., Zhau H.E., Wang R. Tumor-Stroma Co-Evolution in Prostate Cancer Progression and Metastasis. Semin. Cell Dev. Biol. 2010;21:26–32. doi: 10.1016/j.semcdb.2009.11.016. PubMed DOI PMC

Dujon A.M., Aktipis A., Alix-Panabières C., Amend S.R., Boddy A.M., Brown J.S., Capp J.P., DeGregori J., Ewald P., Gatenby R., et al. Identifying Key Questions in the Ecology and Evolution of Cancer. Evol. Appl. 2021;14:877–892. doi: 10.1111/eva.13190. PubMed DOI PMC

Papkou A., Gokhale C.S., Traulsen A., Schulenburg H. Host–Parasite Coevolution: Why Changing Population Size Matters. Zoology. 2016;119:330–338. doi: 10.1016/j.zool.2016.02.001. PubMed DOI

Becht E., Giraldo N.A., Lacroix L., Buttard B., Elarouci N., Petitprez F., Selves J., Laurent-Puig P., Sautès-Fridman C., Fridman W.H., et al. Estimating the Population Abundance of Tissue-Infiltrating Immune and Stromal Cell Populations Using Gene Expression. Genome Biol. 2016;17:218. doi: 10.1186/s13059-016-1070-5. PubMed DOI PMC

Novák Š., Kolář M., Szabó A., Vernerová Z., Lacina L., Strnad H., Šáchová J., Hradilová M., Havránek J., Španko M., et al. Desmoplastic Crosstalk in Pancreatic Ductal Adenocarcinoma Is Reflected by Different Responses of Panc-1, MIAPaCa-2, PaTu-8902, and CAPAN-2 Cell Lines to Cancer-Associated/Normal Fibroblasts. Cancer Genom. Proteom. 2021;18:221–243. doi: 10.21873/cgp.20254. PubMed DOI PMC

Norton J., Foster D., Chinta M., Titan A., Longaker M. Pancreatic Cancer Associated Fibroblasts (CAF): Under-Explored Target for Pancreatic Cancer Treatment. Cancers. 2020;12:1347. doi: 10.3390/cancers12051347. PubMed DOI PMC

Balaziova E., Vymola P., Hrabal P., Mateu R., Zubal M., Tomas R., Netuka D., Kramar F., Zemanova Z., Svobodova K., et al. Fibroblast Activation Protein Expressing Mesenchymal Cells Promote Glioblastoma Angiogenesis. Cancers. 2021;13:3304. doi: 10.3390/cancers13133304. PubMed DOI PMC

Pachva M.C., Lai H., Jia A., Rouleau M., Sorensen P.H. Extracellular Vesicles in Reprogramming of the Ewing Sarcoma Tumor Microenvironment. Front. Cell Dev. Biol. 2021;9:726205. doi: 10.3389/fcell.2021.726205. PubMed DOI PMC

Song Y.J., Xu Y., Deng C., Zhu X., Fu J., Chen H., Lu J., Xu H., Song G., Tang Q., et al. Gene Expression Classifier Reveals Prognostic Osteosarcoma Microenvironment Molecular Subtypes. Front. Immunol. 2021;12:12. doi: 10.3389/fimmu.2021.623762. PubMed DOI PMC

Raffaghello L., Vacca A., Pistoia V., Ribatti D. Cancer Associated Fibroblasts in Hematological Malignancies. Oncotarget. 2015;6:2589–2603. doi: 10.18632/oncotarget.2661. PubMed DOI PMC

Blentic A., Tandon P., Payton S., Walshe J., Carney T., Kelsh R.N., Mason I., Graham A. The Emergence of Ectomesenchyme. Dev. Dyn. 2008;237:592–601. doi: 10.1002/dvdy.21439. PubMed DOI PMC

LeBleu V.S., Neilson E.G. Origin and Functional Heterogeneity of Fibroblasts. FASEB J. 2020;34:3519–3536. doi: 10.1096/fj.201903188R. PubMed DOI

Živicová V., Lacina L., Mateu R., Smetana K., Kavková R., Krejcí E.D., Grim M., Kvasilová A., Borský J., Strnad H., et al. Analysis of Dermal Fibroblasts Isolated from Neonatal and Child Cleft Lip and Adult Skin: Developmental Implications on Reconstructive Surgery. Int. J. Mol. Med. 2017;40:1323–1334. doi: 10.3892/ijmm.2017.3128. PubMed DOI PMC

Wu F., Yang J., Liu J., Wang Y., Mu J., Zeng Q., Deng S., Zhou H. Signaling Pathways in Cancer-Associated Fibroblasts and Targeted Therapy for Cancer. Signal Transduct. Target. Ther. 2021;6:218. doi: 10.1038/s41392-021-00641-0. PubMed DOI PMC

Bukkuri A., Adler F.R. Viewing Cancer through the Lens of Corruption: Using Behavioral Ecology to Understand Cancer. Front. Ecol. Evol. 2021:9. doi: 10.3389/fevo.2021.678533. DOI

Lee Y.T., Tan Y.J., Falasca M., Oon C.E. Cancer-Associated Fibroblasts: Epigenetic Regulation and Therapeutic Intervention in Breast Cancer. Cancers. 2020;12:2949. doi: 10.3390/cancers12102949. PubMed DOI PMC

Lacina L., Brábek J., Král V., Kodet O., Smetana K. Interleukin-6: A Molecule with Complex Biological Impact in Cancer. Histol. Histopathol. 2019;34:125–136. doi: 10.14670/HH-18-033. PubMed DOI

Thiery J.P., Acloque H., Huang R.Y.J., Nieto M.A. Epithelial-Mesenchymal Transitions in Development and Disease. Cell. 2009;139:871–890. doi: 10.1016/j.cell.2009.11.007. PubMed DOI

Petersen O.W., Nielsen H.L., Gudjonsson T., Villadsen R., Rank F., Niebuhr E., Bissell M.J., Rønnov-Jessen L. Epithelial to Mesenchymal Transition in Human Breast Cancer Can Provide a Nonmalignant Stroma. Am. J. Pathol. 2003;162:391–402. doi: 10.1016/S0002-9440(10)63834-5. PubMed DOI PMC

Kopantzev E.P., Vayshlya N.A., Kopantseva M.R., Egorov V.I., Pikunov M., Zinovyeva M.V., Vinogradova T.V., Zborovskaya I.B., Sverdlov E.D. Cellular and Molecular Phenotypes of Proliferating Stromal Cells from Human Carcinomas. Br. J. Cancer. 2010;102:1533–1540. doi: 10.1038/sj.bjc.6605652. PubMed DOI PMC

Polyak K., Haviv I., Campbell I.G. Co-Evolution of Tumor Cells and Their Microenvironment. Trends Genet. 2009;25:30–38. doi: 10.1016/j.tig.2008.10.012. PubMed DOI

Haviv I., Polyak K., Qiu W., Hu M., Campbell I. Origin of Carcinoma Associated Fibroblasts. Cell Cycle (Georget. Tex.) 2009;8:589–595. doi: 10.4161/cc.8.4.7669. PubMed DOI

Kodet O., Dvořánková B., Bendlová B., Sýkorová V., Krajsová I., Štork J., Kučera J., Szabo P., Strnad H., Kolář M., et al. Microenvironment-Driven Resistance to B-Raf Inhibition in a Melanoma Patient Is Accompanied by Broad Changes of Gene Methylation and Expression in Distal Fibroblasts. Int. J. Mol. Med. 2018;41:2687–2703. doi: 10.3892/ijmm.2018.3448. PubMed DOI PMC

Dvořánková B., Smetana K., Říhová B., Kučera J., Mateu R., Szabo P. Cancer-Associated Fibroblasts Are Not Formed from Cancer Cells by Epithelial-to-Mesenchymal Transition in Nu/Nu Mice. Histochem. Cell Biol. 2015;143:463–469. doi: 10.1007/s00418-014-1293-z. PubMed DOI

Gunaydin G., Kesikli S.A., Guc D. Cancer Associated Fibroblasts Have Phenotypic and Functional Characteristics Similar to the Fibrocytes That Represent a Novel MDSC Subset. Oncoimmunology. 2015;4:1–9. doi: 10.1080/2162402X.2015.1034918. PubMed DOI PMC

Pérez L., Muñoz-Durango N., Riedel C.A., Echeverría C., Kalergis A.M., Cabello-Verrugio C., Simon F. Endothelial-to-Mesenchymal Transition: Cytokine-Mediated Pathways That Determine Endothelial Fibrosis under Inflammatory Conditions. Cytokine Growth Factor Rev. 2017;33:41–54. doi: 10.1016/j.cytogfr.2016.09.002. PubMed DOI

Ganguly D., Chandra R., Karalis J., Teke M., Aguilera T., Maddipati R., Wachsmann M.B., Ghersi D., Siravegna G., Zeh H.J., et al. Cancer-Associated Fibroblasts: Versatile Players in the Tumor Microenvironment. Cancers. 2020;12:2652. doi: 10.3390/cancers12092652. PubMed DOI PMC

Iyoshi S., Yoshihara M., Nakamura K., Sugiyama M., Koya Y., Kitami K., Uno K., Mogi K., Tano S., Tomita H., et al. Pro-Tumoral Behavior of Omental Adipocyte-Derived Fibroblasts in Tumor Microenvironment at the Metastatic Site of Ovarian Cancer. Int. J. Cancer. 2021;149:1961–1972. doi: 10.1002/ijc.33770. PubMed DOI

Louault K., Li R.R., De Clerck Y.A. Cancer-Associated Fibroblasts: Understanding Their Heterogeneity. Cancers. 2020;12:3108. doi: 10.3390/cancers12113108. PubMed DOI PMC

Manoukian P., Bijlsma M., van Laarhoven H. The Cellular Origins of Cancer-Associated Fibroblasts and Their Opposing Contributions to Pancreatic Cancer Growth. Front. Cell Dev. Biol. 2021;9:9. doi: 10.3389/fcell.2021.743907. PubMed DOI PMC

Pan C., Fang Q., Liu P., Ma D., Cao S., Zhang L., Chen Q., Hu T., Wang J. Mesenchymal Stem Cells With Cancer-Associated Fibroblast-Like Phenotype Stimulate SDF-1/CXCR4 Axis to Enhance the Growth and Invasion of B-Cell Acute Lymphoblastic Leukemia Cells Through Cell-to-Cell Communication. Front. Cell Dev. Biol. 2021;9:9. doi: 10.3389/fcell.2021.708513. PubMed DOI PMC

Dvořánková B., Szabo P., Lacina L., Gal P., Uhrova J., Zima T., Kaltner H., André S., Gabius H.J., Sykova E., et al. Human Galectins Induce Conversion of Dermal Fibroblasts into Myofibroblasts and Production of Extracellular Matrix: Potential Application in Tissue Engineering and Wound Repair. Cells Tissues Organs. 2011;194:469–480. doi: 10.1159/000324864. PubMed DOI

Ali S., Xia Q., Muhammad T., Liu L., Meng X., Bars-Cortina D., Khan A.A., Huang Y., Dong L. Glioblastoma Therapy: Rationale for a Mesenchymal Stem Cell-Based Vehicle to Carry Recombinant Viruses. Stem Cell Rev. Rep. 2021:1–21. doi: 10.1007/s12015-021-10207-w. PubMed DOI

Moreno R. Mesenchymal Stem Cells and Oncolytic Viruses: Joining Forces against Cancer. J. ImmunoTherapy Cancer. 2021;9:e001684. doi: 10.1136/jitc-2020-001684. PubMed DOI PMC

Tai Y., Woods E.L., Dally J., Kong D., Steadman R., Moseley R., Midgley A.C. Myofibroblasts: Function, Formation, and Scope of Molecular Therapies for Skin Fibrosis. Biomolecules. 2021;11:1095. doi: 10.3390/biom11081095. PubMed DOI PMC

Mifková A., Kodet O., Szabo P., Kučera J., Dvořánková B., André S., Koripelly G., Gabius H.J., Lehn J.M., Smetana K. Synthetic Polyamine BPA-C8 Inhibits TGF-Β1-Mediated Conversion of Human Dermal Fibroblast to Myofibroblasts and Establishment of Galectin-1-Rich Extracellular Matrix in Vitro. ChemBioChem. 2014;15:1465–1470. doi: 10.1002/cbic.201402087. PubMed DOI

Han C., Liu T., Yin R. Biomarkers for Cancer-Associated Fibroblasts. Biomark. Res. 2020;8:64. doi: 10.1186/s40364-020-00245-w. PubMed DOI PMC

Boyd L.N.C., Andini K.D., Peters G.J., Kazemier G., Giovannetti E. Heterogeneity and Plasticity of Cancer-Associated Fibroblasts in the Pancreatic Tumor Microenvironment. Semin. Cancer Biol. 2021:S1044-579X(21)00056-0. doi: 10.1016/j.semcancer.2021.03.006. PubMed DOI

Chen X., Liu Y., Zhang Q., Liu B., Cheng Y., Zhang Y., Sun Y., Liu J. Exosomal MiR-590-3p Derived from Cancer-Associated Fibroblasts Confers Radioresistance in Colorectal Cancer. Mol. Ther.-Nucleic Acids. 2021;24:113–126. doi: 10.1016/j.omtn.2020.11.003. PubMed DOI PMC

Joshi R.S., Kanugula S.S., Sudhir S., Pereira M.P., Jain S., Aghi M.K. The Role of Cancer-Associated Fibroblasts in Tumor Progression. Cancers. 2021;13:1399. doi: 10.3390/cancers13061399. PubMed DOI PMC

Busek P., Mateu R., Zubal M., Kotackova L., Sedo A. Targeting Fibroblast Activation Protein in Cancer-Prospects and Caveats. Front. Biosci.-Landmark. 2018;23:1933–1968. PubMed

Šimková A., Bušek P., Šedo A., Konvalinka J. Molecular Recognition of Fibroblast Activation Protein for Diagnostic and Therapeutic Applications. Biochim. Biophys. Acta-Proteins Proteom. 2020;1868:140409. doi: 10.1016/j.bbapap.2020.140409. PubMed DOI

Irvine A.F., Waise S., Green E.W., Stuart B., Thomas G.J. Characterising Cancer-Associated Fibroblast Heterogeneity in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Sci. Rep. 2021;11:1–15. doi: 10.1038/s41598-021-81796-2. PubMed DOI PMC

Miyashita N., Saito A. Organ Specificity and Heterogeneity of Cancer-Associated Fibroblasts in Colorectal Cancer. Int. J. Mol. Sci. 2021;22:10973. doi: 10.3390/ijms222010973. PubMed DOI PMC

Simon T., Salhia B. Cancer Associated Fibroblast Subpopulations with Diverse and Dynamic Roles in the Tumor Microenvironment. Mol. Cancer Res. 2021 doi: 10.1158/1541-7786.MCR-21-0282. PubMed DOI PMC

Watt D.M., Morton J.P. Heterogeneity in Pancreatic Cancer Fibroblasts—TGFβ as a Master Regulator? Cancers. 2021;13:4984. doi: 10.3390/cancers13194984. PubMed DOI PMC

Pradhan R.N., Krishnamurty A.T., Fletcher A.L., Turley S.J., Müller S. A Bird’s Eye View of Fibroblast Heterogeneity: A Pan-Disease, Pan-Cancer Perspective. Immunol. Rev. 2021;302:299–320. doi: 10.1111/imr.12990. PubMed DOI

Dvořánková B., Szabo P., Lacina L., Kodet O., Matouškové E., Smetana K., Matoušková E., Smetana K. Fibroblasts Prepared from Different Types of Malignant Tumors Stimulate Expression of Luminal Marker Keratin 8 in the EM-G3 Breast Cancer Cell Line. Histochem. Cell Biol. 2012;137:679–685. doi: 10.1007/s00418-012-0918-3. PubMed DOI

Geng X., Chen H., Zhao L., Hu J., Yang W., Li G., Cheng C., Zhao Z., Zhang T., Li L., et al. Cancer-Associated Fibroblast (CAF) Heterogeneity and Targeting Therapy of CAFs in Pancreatic Cancer. Front. Cell Dev. Biol. 2021;9:655152. doi: 10.3389/fcell.2021.655152. PubMed DOI PMC

Dvorak H.F. Tumors: Wounds That Do Not Heal. Cancer Immunol. Res. 2009;315:1650–1659. doi: 10.1158/2326-6066.CIR-14-0209. PubMed DOI PMC

Smetana K., Szabo P., Gál P., André S., Gabius H.J., Kodet O., Dvořánková B. Emerging Role of Tissue Lectins as Microenvironmental Effectors in Tumors and Wounds. Histol. Histopathol. 2015;30:293–309. doi: 10.14670/HH-30.293. PubMed DOI

Szabó P., Kolář M., Dvořánková B., Lacina L., Štork J., Vlček Č., Strnad H., Tvrdek M., Smetana K., Jr. Mouse 3T3 Fibroblasts under the Influence of Fibroblasts Isolated from Stroma of Human Basal Cell Carcinoma Acquire Properties of Multipotent Stem Cells. Biol. Cell. 2011;103:233–248. doi: 10.1042/BC20100113. PubMed DOI

Krejčí E., Dvořánková B., Szabo P., Naňka O., Strnad H., Kodet O., Lacina L., Kolář M., Smetana K. Fibroblasts as Drivers of Healing and Cancer Progression: From In Vitro Experiments to Clinics. CRC Press; Boca Raton, FL, USA: 2016.

Lacina L., Smetana K., Jr., Dvořánková B., Pytlík R., Kideryová L., Kučerová L., Plzáková Z., Štork J., Gabius H.-J., André S. Stromal Fibroblasts from Basal Cell Carcinoma Affect Phenotype of Normal Keratinocytes. Br. J. Dermatol. 2007;156:819–829. doi: 10.1111/j.1365-2133.2006.07728.x. PubMed DOI

Lacina L., Dvořánkova B., Smetana K., Jr., Chovanec M., Plzǎk J., Tachezy R., Kideryovǎ L., Kučerová L., Čada Z., Bouček J., et al. Marker Profiling of Normal Keratinocytes Identifies the Stroma from Squamous Cell Carcinoma of the Oral Cavity as a Modulatory Microenvironment in Co-Culture. Int. J. Radiat. Biol. 2007;83:837–848. doi: 10.1080/09553000701694343. PubMed DOI

Ishii T., Suzuki A., Kuwata T., Hisamitsu S., Hashimoto H., Ohara Y., Yanagihara K., Mitsunaga S., Yoshino T., Kinoshita T., et al. Drug-Exposed Cancer-Associated Fibroblasts Facilitate Gastric Cancer Cell Progression Following Chemotherapy. Gastric Cancer. 2021;24:810–822. doi: 10.1007/s10120-021-01174-9. PubMed DOI

Kučera J., Strnadová K., Dvořánková B., Lacina L., Krajsová I., Štork J., Kovářová H., Skalníková H.K., Vodička P., Motlík J., et al. Serum Proteomic Analysis of Melanoma Patients with Immunohistochemical Profiling of Primary Melanomas and Cultured Cells: Pilot Study. Oncol. Rep. 2019;42:1793–1804. doi: 10.3892/or.2019.7319. PubMed DOI PMC

Loumaye A., Thissen J.P. Biomarkers of Cancer Cachexia. Clin. Biochem. 2017;50:1281–1288. doi: 10.1016/j.clinbiochem.2017.07.011. PubMed DOI

Cehreli R., Yavuzsen T., Ates H., Akman T., Ellidokuz H., Oztop I. Can Inflammatory and Nutritional Serum Markers Predict Chemotherapy Outcomes and Survival in Advanced Stage Nonsmall Cell Lung Cancer Patients? BioMed Res. Int. 2019;2019:1–8. doi: 10.1155/2019/1648072. PubMed DOI PMC

Zivicova V., Gal P., Mifkova A., Novak S., Kaltner H., Kolar M., Strnad H., Sachova J., Hradilova M., Chovanec M., et al. Detection of Distinct Changes in Gene-Expression Profiles in Specimens of Tumors and Transition Zones of Tenascin-Positive/-Negative Head and Neck Squamous Cell Carcinoma. Anticancer. Res. 2018;38:1279–1290. doi: 10.21873/anticanres.12350. PubMed DOI

Libring S., Shinde A., Chanda M.K., Nuru M., George H., Saleh A.M., Abdullah A., Kinzer-Ursem T.L., Calve S., Wendt M.K., et al. The Dynamic Relationship of Breast Cancer Cells and Fibroblasts in Fibronectin Accumulation at Primary and Metastatic Tumor Sites. Cancers. 2020;12:1270. doi: 10.3390/cancers12051270. PubMed DOI PMC

Sapudom J., Müller C.D., Nguyen K.T., Martin S., Anderegg U., Pompe T. Matrix Remodeling and Hyaluronan Production by Myofibroblasts and Cancer-Associated Fibroblasts in 3d Collagen Matrices. Gels. 2020;6:33. doi: 10.3390/gels6040033. PubMed DOI PMC

Hashimoto M., Uesugi N., Osakabe M., Yanagawa N., Otsuka K., Kajiwara Y., Ueno H., Sasaki A., Sugai T. Expression Patterns of Microenvironmental Factors and Tenascin-C at the Invasive Front of Stage II and III Colorectal Cancer: Novel Tumor Prognostic Markers. Front. Oncol. 2021;11:690816. doi: 10.3389/fonc.2021.690816. PubMed DOI PMC

Kay E.J., Koulouras G., Zanivan S. Regulation of Extracellular Matrix Production in Activated Fibroblasts: Roles of Amino Acid Metabolism in Collagen Synthesis. Front. Oncol. 2021;11:719922. doi: 10.3389/fonc.2021.719922. PubMed DOI PMC

Lincoln V., Chao L., Woodley D.T., Murrell D., Kim M., O’Toole E.A., Ly A., Cogan J., Mosallaei D., Wysong A., et al. Over-Expression of Stromal Periostin Correlates with Poor Prognosis of Cutaneous Squamous Cell Carcinomas. Exp. Dermatol. 2021;30:698–704. doi: 10.1111/exd.14281. PubMed DOI

Schwörer S., Pavlova N.N., Cimino F.V., King B., Cai X., Sizemore G.M., Thompson C.B. Fibroblast Pyruvate Carboxylase Is Required for Collagen Production in the Tumour Microenvironment. Nat. Metab. 2021;3:1484–1499. doi: 10.1038/s42255-021-00480-x. PubMed DOI PMC

Sueyama T., Kajiwara Y., Mochizuki S., Shimazaki H., Shinto E., Hase K., Ueno H. Periostin as a Key Molecule Defining Desmoplastic Environment in Colorectal Cancer. Virchows Arch. 2021;478:865–874. doi: 10.1007/s00428-020-02965-8. PubMed DOI

Eiro N., Cid S., Fraile M., Cabrera J.R., Gonzalez L.O., Vizoso F.J. Analysis of the Gene Expression Profile of Stromal Pro-Tumor Factors in Cancer-Associated Fibroblasts from Luminal Breast Carcinomas. Diagnostics. 2020;10:865. doi: 10.3390/diagnostics10110865. PubMed DOI PMC

Miyazaki T., Akasu R., Miyazaki A. Calpain-Associated Proteolytic Regulation of the Stromal Microenvironment in Cancer. Curr. Pharm. Des. 2021;27:3128–3138. doi: 10.2174/1381612827666210311143053. PubMed DOI

Hassona Y., Cirillo N., Heesom K., Parkinson E.K., Prime S.S. Senescent Cancer-Associated Fibroblasts Secrete Active MMP-2 That Promotes Keratinocyte Dis-Cohesion and Invasion. Br. J. Cancer. 2014;111:1230–1237. doi: 10.1038/bjc.2014.438. PubMed DOI PMC

Chang J., Chaudhuri O. Beyond Proteases: Basement Membrane Mechanics and Cancer Invasion. J. Cell Biol. 2019;218:2456–2469. doi: 10.1083/jcb.201903066. PubMed DOI PMC

Conti S., Kato T., Park D., Sahai E., Trepat X., Labernadie A. Methods in Molecular Biology. Volume 2179. Springer; Berlin/Heidelberg, Germany: 2020. CAFs and Cancer Cells Co-Migration in 3D Spheroid Invasion Assay. PubMed DOI

Miyazaki K., Togo S., Okamoto R., Idiris A., Kumagai H., Miyagi Y. Collective Cancer Cell Invasion in Contact with Fibroblasts through Integrin-A5β1/Fibronectin Interaction in Collagen Matrix. Cancer Sci. 2020;111:4381–4392. doi: 10.1111/cas.14664. PubMed DOI PMC

Mishra P., Banerjee D., Ben-Baruch A. Chemokines at the Crossroads of Tumor-Fibroblast Interactions That Promote Malignancy. J. Leukoc. Biol. 2011;89:31–39. doi: 10.1189/jlb.0310182. PubMed DOI

Jobe N.P., Živicová V., Mifková A., Rösel D., Dvořánková B., Kodet O., Strnad H., Kolář M., Šedo A., Smetana K., et al. Fibroblasts Potentiate Melanoma Cells in Vitro Invasiveness Induced by UV-Irradiated Keratinocytes. Histochem. Cell Biol. 2018;149:503–516. doi: 10.1007/s00418-018-1650-4. PubMed DOI

Asokan S., Bandapalli O.R. Advances in Experimental Medicine and Biology. Volume 1302. Springer; Berlin/Heidelberg, Germany: 2021. CXCL8 Signaling in the Tumor Microenvironment. PubMed DOI

Španko M., Strnadová K., Pavlíček A.J., Szabo P., Kodet O., Valach J., Dvořánková B., Smetana K., Lacina L. Il-6 in the Ecosystem of Head and Neck Cancer: Possible Therapeutic Perspectives. Int. J. Mol. Sci. 2021;22:1027. doi: 10.3390/ijms222011027. PubMed DOI PMC

Morikawa M., Derynck R., Miyazono K. TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harb. Perspect. Biol. 2016;8:a021873. doi: 10.1101/cshperspect.a021873. PubMed DOI PMC

Brábek J., Jakubek M., Vellieux F., Novotný J., Kolář M., Lacina L., Szabo P., Strnadová K., Rösel D., Dvořánková B., et al. Interleukin-6: Molecule in the Intersection of Cancer, Ageing and COVID-19. Int. J. Mol. Sci. 2020;21:7937. doi: 10.3390/ijms21217937. PubMed DOI PMC

Shimura Y., Kurosawa H., Tsuchiya M., Sawa M., Kaneko H., Liu L., Makino Y., Nojiri H., Iwase Y., Kaneko K., et al. Serum Interleukin 6 Levels Are Associated with Depressive State of the Patients with Knee Osteoarthritis Irrespective of Disease Severity. Clin. Rheumatol. 2017;36:2781–2787. doi: 10.1007/s10067-017-3826-z. PubMed DOI

Coppé J.P., Desprez P.Y., Krtolica A., Campisi J. The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression. Annu. Rev. Pathol. Mech. Dis. 2010;5:99–118. doi: 10.1146/annurev-pathol-121808-102144. PubMed DOI PMC

Strnadova K., Sandera V., Dvorankova B., Kodet O., Duskova M., Smetana K., Lacina L. Skin Aging: The Dermal Perspective. Clin. Dermatol. 2019;37 doi: 10.1016/j.clindermatol.2019.04.005. PubMed DOI

Rose-John S. Interleukin-6 Signalling in Health and Disease. F1000Research. 2020;9:1013. doi: 10.12688/f1000research.26058.1. PubMed DOI PMC

Rose-John S. Il-6 Trans-Signaling via the Soluble IL-6 Receptor: Importance for the Proinflammatory Activities of IL-6. Int. J. Biol. Sci. 2012;8:1237–1247. doi: 10.7150/ijbs.4989. PubMed DOI PMC

Shimamoto K., Ito T., Ozaki Y., Amuro H., Tanaka A., Nishizawa T., Son Y., Inaba M., Nomura S. Serum Interleukin 6 before and after Therapy with Tocilizumab Is a Principal Biomarker in Patients with Rheumatoid Arthritis. J. Rheumatol. 2013;40:1074–1081. doi: 10.3899/jrheum.121389. PubMed DOI

Plzák J., Bouček J., Bandúrová V., Kolář M., Hradilová M., Szabo P., Lacina L., Chovanec M., Smetana K. The Head and Neck Squamous Cell Carcinoma Microenvironment as a Potential Target for Cancer Therapy. Cancers. 2019;11:440. doi: 10.3390/cancers11040440. PubMed DOI PMC

Jobe N.P., Rösel D., Dvořánková B., Kodet O., Lacina L., Mateu R., Smetana K., Brábek J. Simultaneous Blocking of IL-6 and IL-8 Is Sufficient to Fully Inhibit CAF-Induced Human Melanoma Cell Invasiveness. Histochem. Cell Biol. 2016;146:205–217. doi: 10.1007/s00418-016-1433-8. PubMed DOI

Ham I.H., Lee D., Hur H. Cancer-Associated Fibroblast-Induced Resistance to Chemotherapy and Radiotherapy in Gastrointestinal Cancers. Cancers. 2021;13:1172. doi: 10.3390/cancers13051172. PubMed DOI PMC

Fu H., Yang H., Zhang X., Xu W. The Emerging Roles of Exosomes in Tumor–Stroma Interaction. J. Cancer Res. Clin. Oncol. 2016;142:1897–1907. doi: 10.1007/s00432-016-2145-0. PubMed DOI

Steinbichler T.B., Dudás J., Riechelmann H., Skvortsova I.I. The Role of Exosomes in Cancer Metastasis. Semin. Cancer Biol. 2017;44:170–181. doi: 10.1016/j.semcancer.2017.02.006. PubMed DOI

Liu J., Ren L., Li S., Li W., Zheng X., Yang Y., Fu W., Yi J., Wang J., Du G. The Biology, Function, and Applications of Exosomes in Cancer. Acta Pharm. Sin. B. 2021;11:2783–2797. doi: 10.1016/j.apsb.2021.01.001. PubMed DOI PMC

Dror S., Sander L., Schwartz H., Sheinboim D., Barzilai A., Dishon Y., Apcher S., Golan T., Greenberger S., Barshack I., et al. Melanoma MiRNA Trafficking Controls Tumour Primary Niche Formation. Nat. Cell Biol. 2016;18:1006–1017. doi: 10.1038/ncb3399. PubMed DOI

Weidle U.H., Birzele F., Kollmorgen G., Rüger R. The Multiple Roles of Exosomes in Metastasis. Cancer Genom. Proteom. 2017;14:1–16. doi: 10.21873/cgp.20015. PubMed DOI PMC

Feng W., Dean D.C., Hornicek F.J., Shi H., Duan Z. Exosomes Promote Pre-Metastatic Niche Formation in Ovarian Cancer. Mol. Cancer. 2019;18:1–11. doi: 10.1186/s12943-019-1049-4. PubMed DOI PMC

Wortzel I., Dror S., Kenific C.M., Lyden D. Exosome-Mediated Metastasis: Communication from a Distance. Dev. Cell. 2019;49:347–360. doi: 10.1016/j.devcel.2019.04.011. PubMed DOI

Strnadová K., Pfeiferová L., Přikryl P., Dvořánková B., Vlčák E., Frýdlová J., Vokurka M., Novotný J., Šáchová J., Hradilová M., et al. Exosomes Produced by Melanoma Cells Significantly Influence the Biological Properties of Normal and Cancer-Associated Fibroblasts. Histochem. Cell Biol. 2021:1–20. doi: 10.1007/s00418-021-02052-2. PubMed DOI PMC

Lee J.S., Yoo J.E., Kim H., Rhee H., Koh M.J., Nahm J.H., Choi J.S., Lee K.H., Park Y.N. Tumor Stroma with Senescence-Associated Secretory Phenotype in Steatohepatitic Hepatocellular Carcinoma. PLoS ONE. 2017;12:e0171922. doi: 10.1371/journal.pone.0171922. PubMed DOI PMC

Yasuda T., Koiwa M., Yonemura A., Miyake K., Kariya R., Kubota S., Yokomizo-Nakano T., Yasuda-Yoshihara N., Uchihara T., Itoyama R., et al. Inflammation-Driven Senescence-Associated Secretory Phenotype in Cancer-Associated Fibroblasts Enhances Peritoneal Dissemination. Cell Rep. 2021;34:108779. doi: 10.1016/j.celrep.2021.108779. PubMed DOI

Kabir T.D., Leigh R.J., Tasena H., Mellone M., Coletta R.D., Parkinson E.K., Prime S.S., Thomas G.J., Paterson I.C., Zhou D., et al. A MiR-335/COX-2/PTEN Axis Regulates the Secretory Phenotype of Senescent Cancer-Associated Fibroblasts. Aging. 2016;8:1608–1635. doi: 10.18632/aging.100987. PubMed DOI PMC

Gener Lahav T., Adler O., Zait Y., Shani O., Amer M., Doron H., Abramovitz L., Yofe I., Cohen N., Erez N. Melanoma-Derived Extracellular Vesicles Instigate Proinflammatory Signaling in the Metastatic Microenvironment. Int. J. Cancer. 2019;145:2521–2534. doi: 10.1002/ijc.32521. PubMed DOI

Whiteside T.L. Exosome and Mesenchymal Stem Cell Cross-Talk in the Tumor Microenvironment. Semin. Immunol. 2018;35:69–79. doi: 10.1016/j.smim.2017.12.003. PubMed DOI PMC

Zhou X., Yan T., Huang C., Xu Z., Wang L., Jiang E., Wang H., Chen Y., Liu K., Shao Z., et al. Melanoma Cell-Secreted Exosomal MiR-155-5p Induce Proangiogenic Switch of Cancer-Associated Fibroblasts via SOCS1/JAK2/STAT3 Signaling Pathway. J. Exp. Clin. Cancer Res. 2018;37:242. doi: 10.1186/s13046-018-0911-3. PubMed DOI PMC

Hu T., Hu J. Melanoma-Derived Exosomes Induce Reprogramming Fibroblasts into Cancer-Associated Fibroblasts via Gm26809 Delivery. Cell Cycle. 2019;18:3085–3094. doi: 10.1080/15384101.2019.1669380. PubMed DOI PMC

Yang Y., Li J., Geng Y. Exosomes Derived from Chronic Lymphocytic Leukaemia Cells Transfer MiR-146a to Induce the Transition of Mesenchymal Stromal Cells into Cancer-Associated Fibroblasts. J. Biochem. 2020;168:491–498. doi: 10.1093/jb/mvaa064. PubMed DOI

Yang S.S., Ma S., Dou H., Liu F., Zhang S.Y., Jiang C., Xiao M., Huang Y.X. Breast Cancer-Derived Exosomes Regulate Cell Invasion and Metastasis in Breast Cancer via MiR-146a to Activate Cancer Associated Fibroblasts in Tumor Microenvironment. Exp. Cell Res. 2020;391:111983. doi: 10.1016/j.yexcr.2020.111983. PubMed DOI

Huang Q., Hsueh C.Y., Shen Y.J., Guo Y., Huang J.M., Zhang Y.F., Li J.Y., Gong H.L., Zhou L. Small Extracellular Vesicle-Packaged TGFβ1 Promotes the Reprogramming of Normal Fibroblasts into Cancer-Associated Fibroblasts by Regulating Fibronectin in Head and Neck Squamous Cell Carcinoma. Cancer Lett. 2021;517 doi: 10.1016/j.canlet.2021.05.017. PubMed DOI

Shelton M., Anene C.A., Nsengimana J., Roberts W., Newton-Bishop J., Boyne J.R. The Role of CAF Derived Exosomal MicroRNAs in the Tumour Microenvironment of Melanoma. Biochim. Biophys. Acta-Rev. Cancer. 2021;1875:188456. doi: 10.1016/j.bbcan.2020.188456. PubMed DOI

Shu S., Matsuzaki J., Want M.Y., Conway A., Benjamin-Davalos S., Allen C.L., Koroleva M., Battaglia S., Odunsi A., Minderman H., et al. An Immunosuppressive Effect of Melanoma-Derived Exosomes on NY-ESO-1 Antigen-Specific Human CD8+ T Cells Is Dependent on IL-10 and Independent of BRAFV600E Mutation in Melanoma Cell Lines. Immunol. Investig. 2020;49:744–757. doi: 10.1080/08820139.2020.1803353. PubMed DOI PMC

Wang C., Wang Y., Chang X., Ba X., Hu N., Liu Q., Fang L., Wang Z. Melanoma-Derived Exosomes Endow Fibroblasts with an Invasive Potential via Mir-21 Target Signaling Pathway. Cancer Manag. Res. 2020;12:12965–12974. doi: 10.2147/CMAR.S273718. PubMed DOI PMC

Yeon J.H., Jeong H.E., Seo H., Cho S., Kim K., Na D., Chung S., Park J., Choi N., Kang J.Y. Cancer-Derived Exosomes Trigger Endothelial to Mesenchymal Transition Followed by the Induction of Cancer-Associated Fibroblasts. Acta Biomater. 2018;76:146–153. doi: 10.1016/j.actbio.2018.07.001. PubMed DOI

Deep G., Panigrahia G.K. Hypoxia-Induced Signaling Promotes Prostate Cancer Progression: Exosomes Role as Messenger of Hypoxic Response in Tumor Microenvironmen. Crit. Rev. Oncog. 2015;20:419–434. doi: 10.1615/CritRevOncog.v20.i5-6.130. PubMed DOI PMC

Boussadia Z., Lamberti J., Mattei F., Pizzi E., Puglisi R., Zanetti C., Pasquini L., Fratini F., Fantozzi L., Felicetti F., et al. Acidic Microenvironment Plays a Key Role in Human Melanoma Progression through a Sustained Exosome Mediated Transfer of Clinically Relevant Metastatic Molecules. J. Exp. Clin. Cancer Res. 2018;37:245. doi: 10.1186/s13046-018-0915-z. PubMed DOI PMC

Xi L., Peng M., Liu S., Liu Y., Wan X., Hou Y., Qin Y., Yang L., Chen S., Zeng H., et al. Hypoxia-Stimulated ATM Activation Regulates Autophagy-Associated Exosome Release from Cancer-Associated Fibroblasts to Promote Cancer Cell Invasion. J. Extracell. Vesicles. 2021;10:e12146. doi: 10.1002/jev2.12146. PubMed DOI PMC

Melnik B.C. MiR-21: An Environmental Driver of Malignant Melanoma? J. Transl. Med. 2015;13:1–16. doi: 10.1186/s12967-015-0570-5. PubMed DOI PMC

Dou D., Ren X., Han M., Xu X., Ge X., Gu Y., Wang X. Cancer-Associated Fibroblasts-Derived Exosomes Suppress Immune Cell Function in Breast Cancer via the MiR-92/PD-L1 Pathway. Front. Immunol. 2020;11:2026. doi: 10.3389/fimmu.2020.02026. PubMed DOI PMC

Guo L., Li B., Yang J., Shen J., Ji J., Miao M. Fibroblast-Derived Exosomal MicroRNA-369 Potentiates Migration and Invasion of Lung Squamous Cell Carcinoma Cells via NF1-Mediated MAPK Signaling Pathway. Int. J. Mol. Med. 2020;46:595–608. doi: 10.3892/ijmm.2020.4614. PubMed DOI PMC

Shan G., Gu J., Zhou D., Li L., Cheng W., Wang Y., Tang T., Wang X. Cancer-Associated Fibroblast-Secreted Exosomal MiR-423-5p Promotes Chemotherapy Resistance in Prostate Cancer by Targeting GREM2 through the TGF-β Signaling Pathway. Exp. Mol. Med. 2020;52:1809–1822. doi: 10.1038/s12276-020-0431-z. PubMed DOI PMC

Chen P.Y., Wei W.F., Wu H.Z., Fan L.S., Wang W. Cancer-Associated Fibroblast Heterogeneity: A Factor That Cannot Be Ignored in Immune Microenvironment Remodeling. Front. Immunol. 2021;12:12. doi: 10.3389/fimmu.2021.671595. PubMed DOI PMC

Jiang Y., Wang K., Lu X., Wang Y., Chen J. Cancer-Associated Fibroblasts-Derived Exosomes Promote Lung Cancer Progression by OIP5-AS1/ MiR-142-5p/ PD-L1 Axis. Mol. Immunol. 2021;140:47–58. doi: 10.1016/j.molimm.2021.10.002. PubMed DOI

Kunou S., Shimada K., Takai M., Sakamoto A., Aoki T., Hikita T., Kagaya Y., Iwamoto E., Sanada M., Shimada S., et al. Exosomes Secreted from Cancer-Associated Fibroblasts Elicit Anti-Pyrimidine Drug Resistance through Modulation of Its Transporter in Malignant Lymphoma. Oncogene. 2021;40:3989–4003. doi: 10.1038/s41388-021-01829-y. PubMed DOI PMC

Luo G., Zhang Y., Wu Z., Zhang L., Liang C., Chen X. Exosomal LINC00355 Derived from Cancer-Associated Fibroblasts Promotes Bladder Cancer Cell Resistance to Cisplatin by Regulating MiR-34b-5p/ABCB1 Axis. Acta Biochim. Biophys. Sin. 2021;53:558–566. doi: 10.1093/abbs/gmab023. PubMed DOI

Yin H., Yu S., Xie Y., Dai X., Dong M., Sheng C., Hu J. Cancer-Associated Fibroblasts-Derived Exosomes Upregulate MicroRNA-135b-5p to Promote Colorectal Cancer Cell Growth and Angiogenesis by Inhibiting Thioredoxin-Interacting Protein. Cell. Signal. 2021;84:110029. doi: 10.1016/j.cellsig.2021.110029. PubMed DOI

Yugawa K., Yoshizumi T., Mano Y., Itoh S., Harada N., Ikegami T., Kohashi K., Oda Y., Mori M. Cancer-Associated Fibroblasts Promote Hepatocellular Carcinoma Progression through Downregulation of Exosomal MiR-150-3p. Eur. J. Surg. Oncol. 2021;47:384–393. doi: 10.1016/j.ejso.2020.08.002. PubMed DOI

Zhang H.W., Shi Y., Liu J.-B., Wang H.M., Wang P.Y., Wu Z.J., Li L., Gu L.P., Cao P.S., Wang G.R., et al. Cancer-Associated Fibroblast-Derived Exosomal MicroRNA-24-3p Enhances Colon Cancer Cell Resistance to MTX by down-Regulating CDX2/HEPH Axis. J. Cell. Mol. Med. 2021;25:3699–3713. doi: 10.1111/jcmm.15765. PubMed DOI PMC

Zhang T., Zhang P., Li H.X. CAFs-Derived Exosomal MiRNA-130a Confers Cisplatin Resistance of NSCLC Cells through PUM2-Dependent Packaging. Int. J. Nanomed. 2021;16:561–577. doi: 10.2147/IJN.S271976. PubMed DOI PMC

Zhan Y., Du J., Min Z., Ma L., Zhang W., Zhu W., Liu Y. Carcinoma-Associated Fibroblasts Derived Exosomes Modulate Breast Cancer Cell Stemness through Exonic CircHIF1A by MiR-580-5p in Hypoxic Stress. Cell Death Discov. 2021;7:1–15. doi: 10.1038/s41420-021-00506-z. PubMed DOI PMC

White J.P. IL-6, Cancer and Cachexia: Metabolic Dysfunction Creates the Perfect Storm. Transl. Cancer Res. 2017;6:S280–S285. doi: 10.21037/tcr.2017.03.52. PubMed DOI PMC

Yamagata A.S., Freire P.P. Are Cachexia-Associated Tumors TransmitTERS of ER Stress. Biochem. Soc. Trans. 2021;49:1841–1853. doi: 10.1042/BST20210496. PubMed DOI

Kottorou A., Dimitrakopoulos F.I., Tsezou A. Non-Coding RNAs in Cancer-Associated Cachexia: Clinical Implications and Future Perspectives. Transl. Oncol. 2021;14:101101. doi: 10.1016/j.tranon.2021.101101. PubMed DOI PMC

Miao C., Zhang W., Feng L., Gu X., Shen Q., Lu S., Fan M., Li Y., Guo X., Ma Y., et al. Cancer-Derived Exosome MiRNAs Induce Skeletal Muscle Wasting by Bcl-2-Mediated Apoptosis in Colon Cancer Cachexia. Mol. Ther.-Nucleic Acids. 2021;24:923–938. doi: 10.1016/j.omtn.2021.04.015. PubMed DOI PMC

Di W., Zhang W., Zhu B., Li X., Tang Q., Zhou Y. Colorectal Cancer Prompted Adipose Tissue Browning and Cancer Cachexia through Transferring Exosomal MiR-146b-5p. J. Cell. Physiol. 2021;236:5399–5410. doi: 10.1002/jcp.30245. PubMed DOI

Aoyagi T., Terracina K.P., Raza A., Matsubara H., Takabe K. Cancer Cachexia, Mechanism and Treatment. World J. Gastrointest. Oncol. 2015;7:17–29. doi: 10.4251/wjgo.v7.i4.17. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Wound healing: insights into autoimmunity, ageing, and cancer ecosystems through inflammation and IL-6 modulation

. 2024 ; 15 () : 1403570. [epub] 20241129

Small protein blockers of human IL-6 receptor alpha inhibit proliferation and migration of cancer cells

. 2024 May 07 ; 22 (1) : 261. [epub] 20240507

Serum concentrations of proinflammatory biomarker interleukin-6 (IL-6) as a predictor of postoperative complications after elective colorectal surgery

. 2023 Dec 14 ; 21 (1) : 384. [epub] 20231214

Expression of Selected miRNAs in Normal and Cancer-Associated Fibroblasts and in BxPc3 and MIA PaCa-2 Cell Lines of Pancreatic Ductal Adenocarcinoma

. 2023 Feb 10 ; 24 (4) : . [epub] 20230210

The Role of IL-6 in Cancer Cell Invasiveness and Metastasis-Overview and Therapeutic Opportunities

. 2022 Nov 21 ; 11 (22) : . [epub] 20221121

Autoimmunity, cancer and COVID-19 abnormally activate wound healing pathways: critical role of inflammation

. 2022 Nov ; 158 (5) : 415-434. [epub] 20220722

Advances in Cancer Metabolism and Tumour Microenvironment

. 2022 Apr 07 ; 23 (8) : . [epub] 20220407

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...