Fibroblast Activation Protein Expressing Mesenchymal Cells Promote Glioblastoma Angiogenesis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018133
Ministerstvo Školství, Mládeže a Tělovýchovy
1084120
Grantová Agentura, Univerzita Karlova
Progres Q28/1LFUK
Univerzita Karlova v Praze
CZ.02.1.01/0.0/0.0/16_019/0000785
Ministerstvo Školství, Mládeže a Tělovýchovy
Conceptual development of research organization 64165, General University Hospital in Prague, Czech Republic
Ministerstvo Zdravotnictví Ceské Republiky
NU21-04-00100
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
34282761
PubMed Central
PMC8267680
DOI
10.3390/cancers13133304
PII: cancers13133304
Knihovny.cz E-zdroje
- Klíčová slova
- angiogenesis, angiopoietin, fibroblast activation protein, glioblastoma, microenvironment, seprase, vessel destabilisation,
- Publikační typ
- časopisecké články MeSH
Fibroblast activation protein (FAP) is a membrane-bound protease that is upregulated in a wide range of tumours and viewed as a marker of tumour-promoting stroma. Previously, we demonstrated increased FAP expression in glioblastomas and described its localisation in cancer and stromal cells. In this study, we show that FAP+ stromal cells are mostly localised in the vicinity of activated CD105+ endothelial cells and their quantity positively correlates with glioblastoma vascularisation. FAP+ mesenchymal cells derived from human glioblastomas are non-tumorigenic and mostly lack the cytogenetic aberrations characteristic of glioblastomas. Conditioned media from these cells induce angiogenic sprouting and chemotaxis of endothelial cells and promote migration and growth of glioma cells. In a chorioallantoic membrane assay, co-application of FAP+ mesenchymal cells with glioma cells was associated with enhanced abnormal angiogenesis, as evidenced by an increased number of erythrocytes in vessel-like structures and higher occurrence of haemorrhages. FAP+ mesenchymal cells express proangiogenic factors, but in comparison to normal pericytes exhibit decreased levels of antiangiogenic molecules and an increased Angiopoietin 2/1 ratio. Our results show that FAP+ mesenchymal cells promote angiogenesis and glioma cell migration and growth by paracrine communication and in this manner, they may thus contribute to glioblastoma progression.
Department of Pathology Military University Hospital 169 02 Prague Czech Republic
Departments of Neurosurgery Na Homolce Hospital 150 00 Prague Czech Republic
Institute of Computer Science The Czech Academy of Sciences 128 00 Prague Czech Republic
Zobrazit více v PubMed
Louis D.N., Perry A., Reifenberger G., von Deimling A., Figarella-Branger D., Cavenee W.K., Ohgaki H., Wiestler O.D., Kleihues P., Ellison D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016;131:803–820. doi: 10.1007/s00401-016-1545-1. PubMed DOI
Brat D.J., Van Meir E.G. Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma. Lab. Investig. 2004;84:397–405. doi: 10.1038/labinvest.3700070. PubMed DOI
Scharpfenecker M., Fiedler U., Reiss Y., Augustin H.G. The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J. Cell Sci. 2005;118:771–780. doi: 10.1242/jcs.01653. PubMed DOI
Zhang L., Yang N., Park J.W., Katsaros D., Fracchioli S., Cao G., O’Brien-Jenkins A., Randall T.C., Rubin S.C., Coukos G. Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res. 2003;63:3403–3412. PubMed
Cancer Genome Atlas Research Network Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–1068. doi: 10.1038/nature07385. PubMed DOI PMC
Broekman M.L., Maas S.L.N., Abels E.R., Mempel T.R., Krichevsky A.M., Breakefield X.O. Multidimensional communication in the microenvirons of glioblastoma. Nat. Rev. Neurol. 2018;14:482–495. doi: 10.1038/s41582-018-0025-8. PubMed DOI PMC
Mikheeva S.A., Mikheev A.M., Petit A., Beyer R., Oxford R.G., Khorasani L., Maxwell J.P., Glackin C.A., Wakimoto H., Gonzalez-Herrero I., et al. TWIST1 promotes invasion through mesenchymal change in human glioblastoma. Mol. Cancer. 2010;9:194. doi: 10.1186/1476-4598-9-194. PubMed DOI PMC
Busek P., Balaziova E., Matrasova I., Hilser M., Tomas R., Syrucek M., Zemanova Z., Krepela E., Belacek J., Sedo A. Fibroblast activation protein alpha is expressed by transformed and stromal cells and is associated with mesenchymal features in glioblastoma. Tumour Biol. 2016;37:13961–13971. doi: 10.1007/s13277-016-5274-9. PubMed DOI
Mentlein R., Hattermann K., Hemion C., Jungbluth A.A., Held-Feindt J. Expression and role of the cell surface protease seprase/fibroblast activation protein-alpha (FAP-alpha) in astroglial tumors. Biol. Chem. 2011;392:199–207. doi: 10.1515/bc.2010.119. PubMed DOI
Pure E., Blomberg R. Pro-tumorigenic roles of fibroblast activation protein in cancer: Back to the basics. Oncogene. 2018;37:4343–4357. doi: 10.1038/s41388-018-0275-3. PubMed DOI PMC
Phillips H.S., Kharbanda S., Chen R., Forrest W.F., Soriano R.H., Wu T.D., Misra A., Nigro J.M., Colman H., Soroceanu L., et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9:157–173. doi: 10.1016/j.ccr.2006.02.019. PubMed DOI
Verhaak R.G., Hoadley K.A., Purdom E., Wang V., Qi Y., Wilkerson M.D., Miller C.R., Ding L., Golub T., Mesirov J.P., et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110. doi: 10.1016/j.ccr.2009.12.020. PubMed DOI PMC
Ebert L.M., Yu W., Gargett T., Toubia J., Kollis P.M., Tea M.N., Ebert B.W., Bardy C., van den Hurk M., Bonder C.S., et al. Endothelial, pericyte and tumor cell expression in glioblastoma identifies fibroblast activation protein (FAP) as an excellent target for immunotherapy. Clin. Transl. Immunol. 2020;9:e1191. doi: 10.1002/cti2.1191. PubMed DOI PMC
Calabrese C., Poppleton H., Kocak M., Hogg T.L., Fuller C., Hamner B., Oh E.Y., Gaber M.W., Finklestein D., Allen M., et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11:69–82. doi: 10.1016/j.ccr.2006.11.020. PubMed DOI
von Bulow C., Hayen W., Hartmann A., Mueller-Klieser W., Allolio B., Nehls V. Endothelial capillaries chemotactically attract tumour cells. J. Pathol. 2001;193:367–376. doi: 10.1002/1096-9896(2000)9999:9999<::AID-PATH810>3.0.CO;2-1. PubMed DOI
Schiffer D., Cavalla P., Dutto A., Borsotti L. Cell proliferation and invasion in malignant gliomas. Anticancer Res. 1997;17:61–69. PubMed
Lugassy C., Haroun R.I., Brem H., Tyler B.M., Jones R.V., Fernandez P.M., Patierno S.R., Kleinman H.K., Barnhill R.L. Pericytic-like angiotropism of glioma and melanoma cells. Am. J. Dermatopathol. 2002;24:473–478. doi: 10.1097/00000372-200212000-00003. PubMed DOI
Kraman M., Bambrough P.J., Arnold J.N., Roberts E.W., Magiera L., Jones J.O., Gopinathan A., Tuveson D.A., Fearon D.T. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science. 2010;330:827–830. doi: 10.1126/science.1195300. PubMed DOI
Kawase T., Yasui Y., Nishina S., Hara Y., Yanatori I., Tomiyama Y., Nakashima Y., Yoshida K., Kishi F., Nakamura M., et al. Fibroblast activation protein-alpha-expressing fibroblasts promote the progression of pancreatic ductal adenocarcinoma. BMC Gastroenterol. 2015;15:109. doi: 10.1186/s12876-015-0340-0. PubMed DOI PMC
Koczorowska M.M., Tholen S., Bucher F., Lutz L., Kizhakkedathu J.N., De Wever O., Wellner U.F., Biniossek M.L., Stahl A., Lassmann S., et al. Fibroblast activation protein-alpha, a stromal cell surface protease, shapes key features of cancer associated fibroblasts through proteome and degradome alterations. Mol. Oncol. 2016;10:40–58. doi: 10.1016/j.molonc.2015.08.001. PubMed DOI PMC
Cai F., Li Z., Wang C., Xian S., Xu G., Peng F., Wei Y., Lu Y. Short hairpin RNA targeting of fibroblast activation protein inhibits tumor growth and improves the tumor microenvironment in a mouse model. BMB Rep. 2013;46:252–257. doi: 10.5483/BMBRep.2013.46.5.172. PubMed DOI PMC
Lo A., Wang L.S., Scholler J., Monslow J., Avery D., Newick K., O’Brien S., Evans R.A., Bajor D.J., Clendenin C., et al. Tumor-Promoting Desmoplasia Is Disrupted by Depleting FAP-Expressing Stromal Cells. Cancer Res. 2015;75:2800–2810. doi: 10.1158/0008-5472.CAN-14-3041. PubMed DOI PMC
Stupp R., Mason W.P., van den Bent M.J., Weller M., Fisher B., Taphoorn M.J., Belanger K., Brandes A.A., Marosi C., Bogdahn U., et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005;352:987–996. doi: 10.1056/NEJMoa043330. PubMed DOI
Taylor J.W., Molinaro A.M., Butowski N., Prados M. Clinical trial endpoints for patients with gliomas. Neuro-Oncol. Pr. 2017;4:201–208. doi: 10.1093/nop/npw034. PubMed DOI PMC
Schemper M., Kaider A., Wakounig S., Heinze G. Estimating the correlation of bivariate failure times under censoring. Stat. Med. 2013;32:4781–4790. doi: 10.1002/sim.5874. PubMed DOI
Miebach S., Grau S., Hummel V., Rieckmann P., Tonn J.C., Goldbrunner R.H. Isolation and culture of microvascular endothelial cells from gliomas of different WHO grades. J. Neuro-Oncol. 2006;76:39–48. doi: 10.1007/s11060-005-3674-6. PubMed DOI
Busek P., Stremenova J., Sromova L., Hilser M., Balaziova E., Kosek D., Trylcova J., Strnad H., Krepela E., Sedo A. Dipeptidyl peptidase-IV inhibits glioma cell growth independent of its enzymatic activity. Int. J. Biochem. Cell Biol. 2012;44:738–747. doi: 10.1016/j.biocel.2012.01.011. PubMed DOI
Heiss M., Hellstrom M., Kalen M., May T., Weber H., Hecker M., Augustin H.G., Korff T. Endothelial cell spheroids as a versatile tool to study angiogenesis in vitro. FASEB J. 2015;29:3076–3084. doi: 10.1096/fj.14-267633. PubMed DOI
Stremenova J., Krepela E., Mares V., Trim J., Dbaly V., Marek J., Vanickova Z., Lisa V., Yea C., Sedo A. Expression and enzymatic activity of dipeptidyl peptidase-IV in human astrocytic tumours are associated with tumour grade. Int. J. Oncol. 2007;31:785–792. doi: 10.3892/ijo.31.4.785. PubMed DOI
Guarnaccia L., Navone S.E., Trombetta E., Cordiglieri C., Cherubini A., Crisa F.M., Rampini P., Miozzo M., Fontana L., Caroli M., et al. Angiogenesis in human brain tumors: Screening of drug response through a patient-specific cell platform for personalized therapy. Sci. Rep. 2018;8:8748. doi: 10.1038/s41598-018-27116-7. PubMed DOI PMC
Wang Y., Zhang Z., Chi Y., Zhang Q., Xu F., Yang Z., Meng L., Yang S., Yan S., Mao A., et al. Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation. Cell Death Dis. 2013;4:e950. doi: 10.1038/cddis.2013.480. PubMed DOI PMC
Fomchenko E.I., Dougherty J.D., Helmy K.Y., Katz A.M., Pietras A., Brennan C., Huse J.T., Milosevic A., Holland E.C. Recruited cells can become transformed and overtake PDGF-induced murine gliomas in vivo during tumor progression. PLoS ONE. 2011;6:e20605. doi: 10.1371/journal.pone.0020605. PubMed DOI PMC
McGahan B.G., Neilsen B.K., Kelly D.L., McComb R.D., Kazmi S.A., White M.L., Zhang Y., Aizenberg M.R. Assessment of vascularity in glioblastoma and its implications on patient outcomes. J. Neurooncol. 2017;132:35–44. doi: 10.1007/s11060-016-2350-3. PubMed DOI PMC
Cheng L., Huang Z., Zhou W., Wu Q., Donnola S., Liu J.K., Fang X., Sloan A.E., Mao Y., Lathia J.D., et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell. 2013;153:139–152. doi: 10.1016/j.cell.2013.02.021. PubMed DOI PMC
Hossain A., Gumin J., Gao F., Figueroa J., Shinojima N., Takezaki T., Priebe W., Villarreal D., Kang S.G., Joyce C., et al. Mesenchymal Stem Cells Isolated From Human Gliomas Increase Proliferation and Maintain Stemness of Glioma Stem Cells Through the IL-6/gp130/STAT3 Pathway. Stem Cells. 2015;33:2400–2415. doi: 10.1002/stem.2053. PubMed DOI PMC
Balaziova E. (Charles University, Prague, Czech Republic), Vymola P. (Charles University, Prague, Czech Republic). Personal communication. 2021.
Ribatti D. The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model. Mech. Dev. 2016;141:70–77. doi: 10.1016/j.mod.2016.05.003. PubMed DOI
Mitsuhashi N., Shimizu H., Ohtsuka M., Wakabayashi Y., Ito H., Kimura F., Yoshidome H., Kato A., Nukui Y., Miyazaki M. Angiopoietins and Tie-2 expression in angiogenesis and proliferation of human hepatocellular carcinoma. Hepatology. 2003;37:1105–1113. doi: 10.1053/jhep.2003.50204. PubMed DOI
Herrlinger U., Schafer N., Steinbach J.P., Weyerbrock A., Hau P., Goldbrunner R., Friedrich F., Rohde V., Ringel F., Schlegel U., et al. Bevacizumab Plus Irinotecan Versus Temozolomide in Newly Diagnosed O6-Methylguanine-DNA Methyltransferase Nonmethylated Glioblastoma: The Randomized GLARIUS Trial. J. Clin. Oncol. 2016;34:1611–1619. doi: 10.1200/JCO.2015.63.4691. PubMed DOI
Senft C., Bink A., Franz K., Vatter H., Gasser T., Seifert V. Intraoperative MRI guidance and extent of resection in glioma surgery: A randomised, controlled trial. Lancet Oncol. 2011;12:997–1003. doi: 10.1016/S1470-2045(11)70196-6. PubMed DOI
Busek P., Mateu R., Zubal M., Kotackova L., Sedo A. Targeting fibroblast activation protein in cancer—Prospects and caveats. Front. Biosci. 2018;23:1933–1968. PubMed
Huang Y., Simms A.E., Mazur A., Wang S., Leon N.R., Jones B., Aziz N., Kelly T. Fibroblast activation protein-alpha promotes tumor growth and invasion of breast cancer cells through non-enzymatic functions. Clin. Exp. Metastasis. 2011;28:567–579. doi: 10.1007/s10585-011-9392-x. PubMed DOI
Clavreul A., Etcheverry A., Chassevent A., Quillien V., Avril T., Jourdan M.L., Michalak S., Francois P., Carre J.L., Mosser J., et al. Isolation of a new cell population in the glioblastoma microenvironment. J. Neuro-Oncol. 2012;106:493–504. doi: 10.1007/s11060-011-0701-7. PubMed DOI
Trylcova J., Busek P., Smetana K., Jr., Balaziova E., Dvorankova B., Mifkova A., Sedo A. Effect of cancer-associated fibroblasts on the migration of glioma cells in vitro. Tumour Biol. 2015;36:5873–5879. doi: 10.1007/s13277-015-3259-8. PubMed DOI
Krepela E., Vanickova Z., Hrabal P., Zubal M., Chmielova B., Balaziova E., Vymola P., Matrasova I., Busek P., Sedo A. Regulation of Fibroblast Activation Protein by Transforming Growth Factor Beta-1 in Glioblastoma Microenvironment. Int. J. Mol. Sci. 2021;22:1046. doi: 10.3390/ijms22031046. PubMed DOI PMC
Santos A.M., Jung J., Aziz N., Kissil J.L., Pure E. Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice. J. Clin. Investig. 2009;119:3613–3625. doi: 10.1172/JCI38988. PubMed DOI PMC
Wang T., Shi W. Expression of fibroblast activation proteins in corneal stromal neovascularization. Curr. Eye Res. 2009;34:112–117. doi: 10.1080/02713680802607732. PubMed DOI
Huang Y., Wang S., Kelly T. Seprase promotes rapid tumor growth and increased microvessel density in a mouse model of human breast cancer. Cancer Res. 2004;64:2712–2716. doi: 10.1158/0008-5472.CAN-03-3184. PubMed DOI
Wong P.F., Gall M.G., Bachovchin W.W., McCaughan G.W., Keane F.M., Gorrell M.D. Neuropeptide Y is a physiological substrate of fibroblast activation protein: Enzyme kinetics in blood plasma and expression of Y2R and Y5R in human liver cirrhosis and hepatocellular carcinoma. Peptides. 2016;75:80–95. doi: 10.1016/j.peptides.2015.11.004. PubMed DOI
Levy M.T., McCaughan G.W., Abbott C.A., Park J.E., Cunningham A.M., Muller E., Rettig W.J., Gorrell M.D. Fibroblast activation protein: A cell surface dipeptidyl peptidase and gelatinase expressed by stellate cells at the tissue remodelling interface in human cirrhosis. Hepatology. 1999;29:1768–1778. doi: 10.1002/hep.510290631. PubMed DOI
Lin N., Meng L., Lin J., Chen S., Zhang P., Chen Q., Lin Y. Activated hepatic stellate cells promote angiogenesis in hepatocellular carcinoma by secreting angiopoietin-1. J. Cell Biochem. 2020;121:1441–1451. doi: 10.1002/jcb.29380. PubMed DOI
Sanz-Cameno P., Martin-Vilchez S., Lara-Pezzi E., Borque M.J., Salmeron J., Munoz de Rueda P., Solis J.A., Lopez-Cabrera M., Moreno-Otero R. Hepatitis B virus promotes angiopoietin-2 expression in liver tissue: Role of HBV x protein. Am. J. Pathol. 2006;169:1215–1222. doi: 10.2353/ajpath.2006.051246. PubMed DOI PMC
Cirri P., Chiarugi P. Cancer associated fibroblasts: The dark side of the coin. Am. J. Cancer Res. 2011;1:482–497. PubMed PMC
Clavreul A., Guette C., Faguer R., Tetaud C., Boissard A., Lemaire L., Rousseau A., Avril T., Henry C., Coqueret O., et al. Glioblastoma-associated stromal cells (GASCs) from histologically normal surgical margins have a myofibroblast phenotype and angiogenic properties. J. Pathol. 2014;233:74–88. doi: 10.1002/path.4332. PubMed DOI
Li M., Li G., Kiyokawa J., Tirmizi Z., Richardson L.G., Ning J., Das S., Martuza R.L., Stemmer-Rachamimov A., Rabkin S.D., et al. Characterization and Oncol.ytic virus targeting of FAP-expressing tumor-associated pericytes in glioblastoma. Acta Neuropathol. Commun. 2020;8:221. doi: 10.1186/s40478-020-01096-0. PubMed DOI PMC
Lindahl P., Johansson B.R., Leveen P., Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 1997;277:242–245. doi: 10.1126/science.277.5323.242. PubMed DOI
Sundberg C., Ivarsson M., Gerdin B., Rubin K. Pericytes as collagen-producing cells in excessive dermal scarring. Lab. Investig. 1996;74:452–466. PubMed
Hosaka K., Yang Y., Seki T., Fischer C., Dubey O., Fredlund E., Hartman J., Religa P., Morikawa H., Ishii Y., et al. Pericyte-fibroblast transition promotes tumor growth and metastasis. Proc. Natl. Acad. Sci. USA. 2016;113:E5618–E5627. doi: 10.1073/pnas.1608384113. PubMed DOI PMC
Gerhardt H., Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 2003;314:15–23. doi: 10.1007/s00441-003-0745-x. PubMed DOI
Dore-Duffy P., LaManna J.C. Physiologic angiodynamics in the brain. Antioxid. Redox Signal. 2007;9:1363–1371. doi: 10.1089/ars.2007.1713. PubMed DOI
Nehls V., Denzer K., Drenckhahn D. Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res. 1992;270:469–474. doi: 10.1007/BF00645048. PubMed DOI
Orlidge A., D’Amore P.A. Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J. Cell Biol. 1987;105:1455–1462. doi: 10.1083/jcb.105.3.1455. PubMed DOI PMC
Virgintino D., Girolamo F., Errede M., Capobianco C., Robertson D., Stallcup W.B., Perris R., Roncali L. An intimate interplay between precocious, migrating pericytes and endothelial cells governs human fetal brain angiogenesis. Angiogenesis. 2007;10:35–45. doi: 10.1007/s10456-006-9061-x. PubMed DOI
Hirschi K.K., Rohovsky S.A., Beck L.H., Smith S.R., D’Amore P.A. Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ. Res. 1999;84:298–305. doi: 10.1161/01.RES.84.3.298. PubMed DOI
Wakui S., Yokoo K., Muto T., Suzuki Y., Takahashi H., Furusato M., Hano H., Endou H., Kanai Y. Localization of Ang-1, -2, Tie-2, and VEGF expression at endothelial-pericyte interdigitation in rat angiogenesis. Lab. Investig. 2006;86:1172–1184. doi: 10.1038/labinvest.3700476. PubMed DOI
Suri C., Jones P.F., Patan S., Bartunkova S., Maisonpierre P.C., Davis S., Sato T.N., Yancopoulos G.D. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell. 1996;87:1171–1180. doi: 10.1016/S0092-8674(00)81813-9. PubMed DOI
Visconti R.P., Richardson C.D., Sato T.N. Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF) Proc. Natl. Acad. Sci. USA. 2002;99:8219–8224. doi: 10.1073/pnas.122109599. PubMed DOI PMC
Hosono J., Morikawa S., Ezaki T., Kawamata T., Okada Y. Pericytes promote abnormal tumor angiogenesis in a rat RG2 glioma model. Brain Tumor Pathol. 2017;34:120–129. doi: 10.1007/s10014-017-0291-y. PubMed DOI
Mao P., Smith L., Xie W., Wang M. Dying endothelial cells stimulate proliferation of malignant glioma cells via a caspase 3-mediated pathway. Oncol. Lett. 2013;5:1615–1620. doi: 10.3892/ol.2013.1223. PubMed DOI PMC
Clavreul A., Etcheverry A., Tetaud C., Rousseau A., Avril T., Henry C., Mosser J., Menei P. Identification of two glioblastoma-associated stromal cell subtypes with different carcinogenic properties in histologically normal surgical margins. J. Neuro-Oncol. 2015;122:1–10. doi: 10.1007/s11060-014-1683-z. PubMed DOI
Liu F., Qi L., Liu B., Liu J., Zhang H., Che D., Cao J., Shen J., Geng J., Bi Y., et al. Fibroblast activation protein overexpression and clinical implications in solid tumors: A meta-analysis. PLoS ONE. 2015;10:e0116683. doi: 10.1371/journal.pone.0116683. PubMed DOI PMC
Leon S.P., Folkerth R.D., Black P.M. Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer. 1996;77:362–372. doi: 10.1002/(SICI)1097-0142(19960115)77:2<362::AID-CNCR20>3.0.CO;2-Z. PubMed DOI
Fibrillar extracellular matrix produced by pericyte-like cells facilitates glioma cell dissemination