Regulation of Fibroblast Activation Protein by Transforming Growth Factor Beta-1 in Glioblastoma Microenvironment

. 2021 Jan 21 ; 22 (3) : . [epub] 20210121

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33494271

Grantová podpora
15-31379A Ministerstvo Zdravotnictví Ceské Republiky
CZ.02.1.01/0.0/0.0/16_019/0000785 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015064 Ministerstvo Školství, Mládeže a Tělovýchovy

The proline-specific serine protease fibroblast activation protein (FAP) can participate in the progression of malignant tumors and represents a potential diagnostic and therapeutic target. Recently, we demonstrated an increased expression of FAP in glioblastomas, particularly those of the mesenchymal subtype. Factors controlling FAP expression in glioblastomas are unknown, but evidence suggests that transforming growth factor beta (TGFbeta) can trigger mesenchymal changes in these tumors. Here, we investigated whether TGFbeta promotes FAP expression in transformed and stromal cells constituting the glioblastoma microenvironment. We found that both FAP and TGFbeta-1 are upregulated in glioblastomas and display a significant positive correlation. We detected TGFbeta-1 immunopositivity broadly in glioblastoma tissues, including tumor parenchyma regions in the immediate vicinity of FAP-immunopositive perivascular stromal cells. Wedemonstrate for the first time that TGFbeta-1 induces expression of FAP in non-stem glioma cells, pericytes, and glioblastoma-derived endothelial and FAP+ mesenchymal cells, but not in glioma stem-like cells. In glioma cells, this effect is mediated by the TGFbeta type I receptor and canonical Smad signaling and involves activation of FAP gene transcription. We further present evidence of FAP regulation by TGFbeta-1 secreted by glioma cells. Our results provide insight into the previously unrecognized regulation of FAP expression by autocrine and paracrine TGFbeta-1 signaling in a broad spectrum of cell types present in the glioblastoma microenvironment.

Zobrazit více v PubMed

Perrin S.L., Samuel M.S., Koszyca B., Brown M.P., Ebert L.M., Oksdath M., Gomez G.A. Glioblastoma heterogeneity and the tumour microenvironment: Implications for preclinical research and development of new treatments. Biochem. Soc. Trans. 2019;47:625–638. doi: 10.1042/BST20180444. PubMed DOI

Broekman M.L., Maas S.L.N., Abels E.R., Mempel T.R., Krichevsky A.M., Breakefield X.O. Multidimensional communication in the microenvirons of glioblastoma. Nat. Rev. Neurol. 2018;14:482–495. doi: 10.1038/s41582-018-0025-8. PubMed DOI PMC

Busek P., Prevorovsky M., Krepela E., Sedo A. Glioma associated proteases. In: Sedo A., Mentlein R., editors. Glioma Cell Biology. Springer; Vienna, Austria: 2014. pp. 317–395.

Bušek P., Balaziova E., Matrasova I., Hilser M., Tomas R., Syrucek M., Zemanova Z., Krepela E., Belacek J., Šedo A. Fibroblast activation protein alpha is expressed by transformed and stromal cells and is associated with mesenchymal features in glioblastoma. Tumor Biol. 2016;37:13961–13971. doi: 10.1007/s13277-016-5274-9. PubMed DOI

Kelly T., Huang Y., Simms A.E., Mazur A. Fibroblast activation protein-alpha: A key modulator of the microenvironment in multiple pathologies. Int. Rev. Cell. Mol. Biol. 2012;297:83–116. PubMed

Koczorowska M.M., Tholen S., Bucher F., Lutz L., Kizhakkedathu J.N., De Wever O., Wellner U.F., Biniossek M.L., Stahl A., Lassmann S., et al. Fibroblast activation protein-alpha, a stromal cell alterations. Mol. Oncol. 2016;10:40–58. doi: 10.1016/j.molonc.2015.08.001. PubMed DOI PMC

Zhang H.E., Hamson E.J., Koczorowska M.M., Tholen S., Chowdhury S., Bailey C.G., Lay A.J., Twigg S.M., Lee Q., Roediger B., et al. Identification of Novel Natural Substrates of Fibroblast Activation Protein-alpha by Differential Degradomics and Proteomics. Mol. Cell. Proteom. 2019;18:65–85. doi: 10.1074/mcp.RA118.001046. PubMed DOI PMC

Bae S., Park C.W., Son H.K., Ju H.K., Paik D., Koh G.Y., Kim J., Kim H., Jeon C.J. Fibroblast activation protein α identifies mesenchymal stromal cells from human bone marrow. Br. J. Haematol. 2008;142:827–830. doi: 10.1111/j.1365-2141.2008.07241.x. PubMed DOI

Bušek P., Hrabal P., Fric P., Šedo A. Co-expression of the homologous proteases proteases fibroblast activation and dipeptidyl peptidase-IV in the adult human Langerhans islets. Histochem. Cell Biol. 2015;143:497–504. doi: 10.1007/s00418-014-1292-0. PubMed DOI

Huber M.A., Kraut N., Schweifer N., Dolznig H., Peter R.U., Schubert R.D., Scharffetter-Kochanek K., Pehamberger H., Garin-Chesa P. Expression of stromal cell markers in distinct compartments of human skin cancers. J. Cutan. Pathol. 2006;33:145–155. doi: 10.1111/j.0303-6987.2006.00446.x. PubMed DOI

Wäster P., Orfanidis K., Eriksson I., Rosdahl I., Seifert O., Ollinger K. UV radiation promotes melanoma dissemination mediated by the sequential reaction axis of cathepsins-TGF-beta1-FAP-alpha. Br. J. Cancer. 2017;117:535–544. doi: 10.1038/bjc.2017.182. PubMed DOI PMC

Jacob M., Chang L., Pure E. Fibroblast Activation Protein in Remodeling Tissues. Curr. Mol. Med. 2012;12:1220–1243. doi: 10.2174/156652412803833607. PubMed DOI

Juillerat-Jeanneret L., Tafelmeyer P., Golshayan D. Fibroblast activation protein-alpha in fibrogenic disorders and cancer: More than a prolyl-specific peptidase? Expert Opin. Ther. Targets. 2017;21:977–991. doi: 10.1080/14728222.2017.1370455. PubMed DOI

Puré E., Blomberg R. Pro-tumorigenic roles of fibroblast activation protein in cancer: Back to the basics. Oncogene. 2018;37:4343–4357. doi: 10.1038/s41388-018-0275-3. PubMed DOI PMC

Liu F., Qi L., Liu B., Liu J., Zhang H., Che D., Cao J., Shen J., Geng J., Bi Y., et al. Fibroblast Activation Protein Overexpression and Clinical Implications in Solid Tumors: A Meta-Analysis. PLoS ONE. 2015;10:e0116683. doi: 10.1371/journal.pone.0116683. PubMed DOI PMC

Goscinski M.A., Suo Z.H., Nesland J.M., Chen W.-T., Zakrzewska M., Wang J., Zhang S., Flørenes V.A., Giercksky K.E. Seprase, dipeptidyl peptidase IV and urokinase-type plasminogen activator expression in dysplasia and invasive squamous cell carcinoma of the esophagus. A study of 229 cases from Anyang Tumor Hospital, Henan Province, China. Oncology. 2008;75:49–59. doi: 10.1159/000151741. PubMed DOI

Goscinski M.A., Suo Z., Flørenes V.A., Vlatkovic L., Nesland J.M., Giercksky K.E. FAP-α and uPA Show Different Expression Patterns in Premalignant and Malignant Esophageal Lesions. Ultrastruct. Pathol. 2008;32:89–96. doi: 10.1080/01913120802034934. PubMed DOI

Mori Y., Kono K., Matsumoto Y., Fujii H., Yamane T., Mitsumata M., Chen W.-T. The Expression of a Type II Transmembrane Serine Protease (Seprase) in Human Gastric Carcinoma. Oncology. 2004;67:411–419. doi: 10.1159/000082926. PubMed DOI

Busek P., Mateu R., Zubal M., Kotackova L., Šedo A. Targeting fibroblast activation protein in cancer—Prospects and caveats. Front. Biosci. 2018;23:1933–1968. PubMed

Röhrich M., Loktev A., Wefers A.K., Altmann A., Paech D., Adeberg S., Windisch P., Hielscher T., Flechsig P., Floca R., et al. IDH-wildtype glioblastomas and grade III/IV IDH-mutant gliomas show elevated tracer uptake in fibroblast activation protein–specific PET/CT. Eur. J. Nucl. Med. Mol. Imaging. 2019;46:2569–2580. doi: 10.1007/s00259-019-04444-y. PubMed DOI

Šimková A., Bušek P., Šedo A., Konvalinka J. Molecular recognition of fibroblast activation protein for diagnostic and therapeutic applications. Biochim. Biophys. Acta Proteins Proteom. 2020;1868:140409. doi: 10.1016/j.bbapap.2020.140409. PubMed DOI

Fitzgerald A.A., Weiner L.M. The role of fibroblast activation protein in health and malignancy. Cancer Metastasis Rev. 2020;39:783–803. doi: 10.1007/s10555-020-09909-3. PubMed DOI PMC

Tulley S., Chen W.T. Transcriptional regulation of seprase in invasive melanoma cells by transforming growth factor-beta signaling. J. Biol. Chem. 2014;289:15280–15296. doi: 10.1074/jbc.M114.568501. PubMed DOI PMC

Knopf J.D., Tholen S., Koczorowska M.M., De Wever O., Biniossek M.L., Schilling O. The stromal cell-surface protease fibroblast activation protein-α localizes to lipid rafts and is recruited to invadopodia. Biochim. Biophys. Acta. 2015;1853:2515–2525. doi: 10.1016/j.bbamcr.2015.07.013. PubMed DOI

Wu Q.Q., Zhao M., Huang G.Z., Zheng Z.N., Chen Y., Zeng W.S., Lv X.Z. Fibroblast Activation Protein (FAP) Overexpression Induces Epithelial-Mesenchymal Transition (EMT) in Oral Squamous Cell Carcinoma by Down-Regulating Dipeptidyl Peptidase 9 (DPP9) Onco Targets Ther. 2020;13:2599–2611. doi: 10.2147/OTT.S243417. PubMed DOI PMC

Behnan J., Finocchiaro G., Hanna G. The landscape of the mesenchymal signature in brain tumours. Brain. 2019;142:847–866. doi: 10.1093/brain/awz044. PubMed DOI PMC

Joseph J.V., Balasubramaniyan V., Walenkamp A., Kruyt F.A. TGF-beta as a therapeutic target in high grade gliomas —Promises and challenges. Biochem. Pharmacol. 2013;85:478–485. doi: 10.1016/j.bcp.2012.11.005. PubMed DOI

Wang Q., Hu B., Hu X., Kim H., Squatrito M., Scarpace L., deCarvalho A.C., Lyu S., Li P., Li Y., et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 2017;32:42–56. doi: 10.1016/j.ccell.2017.06.003. PubMed DOI PMC

Heldin C.H., Moustakas A. Signaling receptors for TGF-beta family members. Cold Spring Harb. Perspect. Biol. 2016;8:a022053. doi: 10.1101/cshperspect.a022053. PubMed DOI PMC

Zhang Y.E. Non-Smad signaling pathways of the TGF-beta family. Cold Spring Harb. Perspect. Biol. 2017;9:a022129. doi: 10.1101/cshperspect.a022129. PubMed DOI PMC

Budi E.H., Duan D., Derynck R. Transforming growth factor-beta receptors and smads: Regulatory complexity and functional versatility. Trends Cell Biol. 2017;27:658–672. doi: 10.1016/j.tcb.2017.04.005. PubMed DOI

Yeh H.W., Lee S.S., Chang C.Y., Lang Y.D., Jou Y.S. A new switch for TGFbeta in cancer. Cancer Res. 2019;79:3797–3805. doi: 10.1158/0008-5472.CAN-18-2019. PubMed DOI

Bainbridge T.W., Dunshee D.R., Kljavin N.M., Skelton N.J., Sonoda J., Ernst J.A. Selective Homogeneous Assay for Circulating Endopeptidase Fibroblast Activation Protein (FAP) Sci. Rep. 2017;7:1–12. doi: 10.1038/s41598-017-12900-8. PubMed DOI PMC

Roy L.O., Poirier M.B., Fortin D. Differential Expression and Clinical Significance of Transforming Growth Factor-Beta Isoforms in GBM Tumors. Int. J. Mol. Sci. 2018;19:1113. doi: 10.3390/ijms19041113. PubMed DOI PMC

Tojo M., Hamashima Y., Hanyu A., Kajimoto T., Saitoh M., Miyazono K., Node M., Imamura T. The ALK-5 inhibitor A-83-01 inhibits Smad signaling and epithelial-to-mesenchymal transition by transforming growth factor-beta. Cancer Sci. 2005;96:791–800. doi: 10.1111/j.1349-7006.2005.00103.x. PubMed DOI PMC

Goldstein L.A., Ghersi G., Piñeiro-Sánchez M.L., Salamone M., Yeh Y., Flessate D., Chen W.-T. Molecular cloning of seprase: A serine integral membrane protease from human melanoma. Biochim. Biophys. Acta. 1997;1361:11–19. doi: 10.1016/S0925-4439(97)00032-X. PubMed DOI

Balaziova E., Bušek P., Stremenová J., Sromova L., Křepela E., Lizcova L., Šedo A. Coupled expression of dipeptidyl peptidase-IV and fibroblast activation protein-α in transformed astrocytic cells. Mol. Cell. Biochem. 2011;354:283–289. doi: 10.1007/s11010-011-0828-z. PubMed DOI

Constam D.B., Philipp J., Malipiero U.V., Ten Dijke P., Schachner M., Fontana A. Differential expression of transforming growth factor-beta 1, -beta 2, and -beta 3 by glioblastoma cells, astrocytes, and microglia. J. Immunol. 1992;148:1404–1410. PubMed

Sasaki A., Naganuma H., Satoh E., Nagasaka M., Isoe S., Nakano S., Nukui H. Secretion of transforming growth factor-beta 1 and -beta 2 by malignant glioma cells. Neurol. Med. Chir. (Tokyo) 1995;35:423–430. doi: 10.2176/nmc.35.423. PubMed DOI

Leitlein J., Aulwurm S., Waltereit R., Naumann U., Wagenknecht B., Garten W., Weller M., Platten M. Processing of immunosuppressive pro-TGF-beta 1,2 by human glioblastoma cells involves cytoplasmic and secreted furin-like proteases. J. Immunol. 2001;166:7238–7243. doi: 10.4049/jimmunol.166.12.7238. PubMed DOI

Frei K., Gramatzki D., Tritschler I., Schroeder J.J., Espinoza L., Rushing E.J., Weller M. Transforming growth factor-beta pathway activity in glioblastoma. Oncotarget. 2015;6:5963–5977. doi: 10.18632/oncotarget.3467. PubMed DOI PMC

Herbertz S., Sawyer J.S., Stauber A.J., Gueorguieva I., Driscoll K.E., Estrem S.T., Cleverly A.L., Desaiah D., Guba S.C., Benhadji K.A., et al. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des. Dev. Ther. 2015;9:4479–4499. doi: 10.2147/dddt.s86621. PubMed DOI PMC

Akhurst R.J. Targeting TGF-beta signaling for therapeutic gain. Cold Spring Harb. Perspect. Biol. 2017;9:a022301. doi: 10.1101/cshperspect.a022301. PubMed DOI PMC

Imamichi Y., Waidmann O., Hein R., Eleftheriou P., Giehl K., Menke A. TGF beta-induced focal complex formation in epithelial cells is mediated by activated ERK and JNK MAP kinases and is independent of Smad4. Biol. Chem. 2005;386:225–236. doi: 10.1515/BC.2005.028. PubMed DOI

Ikushima H., Todo T., Ino Y., Takahashi M., Miyazawa K., Miyazono K. Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell. 2009;5:504–514. doi: 10.1016/j.stem.2009.08.018. PubMed DOI

Bandyopadhyay B., Han A., Dai J., Fan J., Li Y., Chen M., Woodley D.T., Li W. TbetaRI/ Alk5-independent TbetaRII signaling to ERK1/2 in human skin cells according to distinct levels of TbetaRII expression. J. Cell Sci. 2011;124:19–24. doi: 10.1242/jcs.076505. PubMed DOI PMC

Hamidi A., Song J., Thakur N., Itoh S., Marcusson A., Bergh A., Heldin C.H., Landstrom M. TGF-beta promotes PI3K-AKT signaling and prostate cancer cell migration through the TRAF6-mediated ubiquitylation of p85alpha. Sci. Signal. 2017;10:486. doi: 10.1126/scisignal.aal4186. PubMed DOI

Zhang J., Valianou M., Cheng J.D. Identification and characterization of the promoter of fibroblast activation protein. Front. Biosci. (Elite Ed.) 2010;2:1154–1163. doi: 10.2741/e175. PubMed DOI PMC

Mikheeva S.A., Mikheev A.M., Petit A., Beyer R., Oxford R.G., Khorasani L., Maxwell J.-P., Glackin C.A., Wakimoto H., González-Herrero I., et al. TWIST1 promotes invasion through mesenchymal change in human glioblastoma. Mol. Cancer. 2010;9:194. doi: 10.1186/1476-4598-9-194. PubMed DOI PMC

Yi Y., Wang Z., Sun Y., Chen J., Zhang B., Wu M., Li T., Hu L., Zeng J. The EMT-related transcription factor snail up-regulates FAPalpha in malignant melanoma cells. Exp. Cell Res. 2018;364:160–167. doi: 10.1016/j.yexcr.2018.01.039. PubMed DOI

Chen S.J., Ning H., Ishida W., Sodin-Semrl S., Takagawa S., Mori Y., Varga J. The early-immediate gene EGR-1 is induced by transforming growth factor-beta and mediates stimulation of collagen gene expression. J. Biol. Chem. 2006;281:21183–21197. doi: 10.1074/jbc.M603270200. PubMed DOI

Cho H.J., Baek K.E., Saika S., Jeong M.J., Yoo J. Snail is required for transforming growth factor-beta-induced epithelial-mesenchymal transition by activating PI3 kinase/Akt signal pathway. Biochem. Biophys. Res. Commun. 2007;353:337–343. doi: 10.1016/j.bbrc.2006.12.035. PubMed DOI

Tan E.J., Thuault S., Caja L., Carletti T., Heldin C.H., Moustakas A. Regulation of Transcription Factor Twist Expression by the DNA Architectural Protein High Mobility Group A2 during Epithelial-to-Mesenchymal Transition. J. Biol. Chem. 2012;287:7134–7145. doi: 10.1074/jbc.M111.291385. PubMed DOI PMC

Joseph J.V., Conroy S., Tomar T., Eggens-Meijer E., Bhat K., Copray S., Walenkamp A.M., Boddeke E., Balasubramanyian V., Wagemakers M., et al. TGF-beta is an inducer of ZEB1-dependent mesenchymal transdifferentiation in glioblastoma that is associated with tumor invasion. Cell Death Dis. 2014;5:e1443. doi: 10.1038/cddis.2014.395. PubMed DOI PMC

Fuxe J., Vincent T., Garcia de Hereos A. Transcriptional crosstalk between TGF- beta and stem cell pathways in tumor cell invasion: Role of EMT promoting Smad complexes. Cell Cycle. 2010;9:2363–2374. doi: 10.4161/cc.9.12.12050. PubMed DOI

Louis D.N., Perry A., Reifenberger G., Von Deimling A., Figarella-Branger D., Cavenee W.K., Ohgaki H., Wiestler O.D., Kleihues P., Ellison D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016;131:803–820. doi: 10.1007/s00401-016-1545-1. PubMed DOI

Bowman R.L., Wang Q., Carro A., Verhaak R.G., Squatrito M. GlioVis data portal for visualization and analysis of brain tumor expression datasets. Neuro. Oncol. 2017;19:139–141. doi: 10.1093/neuonc/now247. PubMed DOI PMC

Sana J., Bušek P., Fadrus P., Besse A., Radova L., Vecera M., Reguli S., Stollinova-Sromova L., Hilser M., Lipina R., et al. Identification of microRNAs differentially expressed in glioblastoma stem-like cells and their association with patient survival. Sci. Rep. 2018;8:2836. doi: 10.1038/s41598-018-20929-6. PubMed DOI PMC

Miebach S., Grau S., Hummel V., Rieckmann P., Tonn J.-C., Goldbrunner R.H. Isolation and Culture of Microvascular Endothelial Cells from Gliomas of Different WHO Grades. J. Neuro-Oncol. 2006;76:39–48. doi: 10.1007/s11060-005-3674-6. PubMed DOI

Charalambous C., Hofman F.M., Chen T.C. Functional and phenotypic differences between glioblastoma multiforme—derived and normal human brain endothelial cells. J. Neurosurg. 2005;102:699–705. doi: 10.3171/jns.2005.102.4.0699. PubMed DOI

Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. doi: 10.1016/S0021-9258(19)52451-6. PubMed DOI

Keane F.M., Yao T.-W., Seelk S., Gall M.G., Chowdhury S., Poplawski S.E., Lai J.H., Li Y., Wu W., Farrell P., et al. Quantitation of fibroblast activation protein (FAP)-specific protease activity in mouse, baboon and human fluids and organs. FEBS Open Bio. 2013;4:43–54. doi: 10.1016/j.fob.2013.12.001. PubMed DOI PMC

Dvořáková P., Bušek P., Knedlík T., Schimer J., Etrych T., Kostka L., Stollinova-Sromova L., Šubrt V., Šácha P., Šedo A., et al. Inhibitor-Decorated Polymer Conjugates Targeting Fibroblast Activation Protein. J. Med. Chem. 2017;60:8385–8393. doi: 10.1021/acs.jmedchem.7b00767. PubMed DOI

Bušek P., Vanickova Z., Hrabal P., Brabec M., Frič P., Zavoral M., Skrha J., Kmochová K., Laclav M., Bunganič B., et al. Increased tissue and circulating levels of dipeptidyl peptidase-IV enzymatic activity in patients with pancreatic ductal adenocarcinoma. Pancreatology. 2016;16:829–838. doi: 10.1016/j.pan.2016.06.001. PubMed DOI

Matrasova I., Bušek P., Balaziova E., Šedo A. Heterogeneity of molecular forms of dipeptidyl peptidase-IV and fibroblast activation protein in human glioblastomas. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2017;161:252–260. doi: 10.5507/bp.2017.010. PubMed DOI

Krepela E., Bušek P., Hilser M., Vanickova Z., Šedo A. Species-specific real-time RT-PCR analysis of expression of stromal cell genes in a tumor xenotransplantation model in mice. Biochem. Biophys. Res. Commun. 2017;491:126–133. doi: 10.1016/j.bbrc.2017.07.061. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace