Regulation of Fibroblast Activation Protein by Transforming Growth Factor Beta-1 in Glioblastoma Microenvironment
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
15-31379A
Ministerstvo Zdravotnictví Ceské Republiky
CZ.02.1.01/0.0/0.0/16_019/0000785
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015064
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33494271
PubMed Central
PMC7864518
DOI
10.3390/ijms22031046
PII: ijms22031046
Knihovny.cz E-zdroje
- Klíčová slova
- Smad2, fibroblast activation protein, glioblastoma, regulation of expression, seprase, signaling, transforming growth factor beta, tumor microenvironment,
- MeSH
- endopeptidasy genetika metabolismus MeSH
- fluorescenční protilátková technika MeSH
- fosforylace MeSH
- glioblastom etiologie metabolismus patologie MeSH
- imunohistochemie MeSH
- kultivované buňky MeSH
- lidé MeSH
- membránové proteiny genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- nádorové mikroprostředí účinky léků genetika MeSH
- regulace genové exprese u nádorů * účinky léků MeSH
- transformující růstový faktor beta1 metabolismus farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- endopeptidasy MeSH
- fibroblast activation protein alpha MeSH Prohlížeč
- membránové proteiny MeSH
- TGFB1 protein, human MeSH Prohlížeč
- transformující růstový faktor beta1 MeSH
The proline-specific serine protease fibroblast activation protein (FAP) can participate in the progression of malignant tumors and represents a potential diagnostic and therapeutic target. Recently, we demonstrated an increased expression of FAP in glioblastomas, particularly those of the mesenchymal subtype. Factors controlling FAP expression in glioblastomas are unknown, but evidence suggests that transforming growth factor beta (TGFbeta) can trigger mesenchymal changes in these tumors. Here, we investigated whether TGFbeta promotes FAP expression in transformed and stromal cells constituting the glioblastoma microenvironment. We found that both FAP and TGFbeta-1 are upregulated in glioblastomas and display a significant positive correlation. We detected TGFbeta-1 immunopositivity broadly in glioblastoma tissues, including tumor parenchyma regions in the immediate vicinity of FAP-immunopositive perivascular stromal cells. Wedemonstrate for the first time that TGFbeta-1 induces expression of FAP in non-stem glioma cells, pericytes, and glioblastoma-derived endothelial and FAP+ mesenchymal cells, but not in glioma stem-like cells. In glioma cells, this effect is mediated by the TGFbeta type I receptor and canonical Smad signaling and involves activation of FAP gene transcription. We further present evidence of FAP regulation by TGFbeta-1 secreted by glioma cells. Our results provide insight into the previously unrecognized regulation of FAP expression by autocrine and paracrine TGFbeta-1 signaling in a broad spectrum of cell types present in the glioblastoma microenvironment.
Zobrazit více v PubMed
Perrin S.L., Samuel M.S., Koszyca B., Brown M.P., Ebert L.M., Oksdath M., Gomez G.A. Glioblastoma heterogeneity and the tumour microenvironment: Implications for preclinical research and development of new treatments. Biochem. Soc. Trans. 2019;47:625–638. doi: 10.1042/BST20180444. PubMed DOI
Broekman M.L., Maas S.L.N., Abels E.R., Mempel T.R., Krichevsky A.M., Breakefield X.O. Multidimensional communication in the microenvirons of glioblastoma. Nat. Rev. Neurol. 2018;14:482–495. doi: 10.1038/s41582-018-0025-8. PubMed DOI PMC
Busek P., Prevorovsky M., Krepela E., Sedo A. Glioma associated proteases. In: Sedo A., Mentlein R., editors. Glioma Cell Biology. Springer; Vienna, Austria: 2014. pp. 317–395.
Bušek P., Balaziova E., Matrasova I., Hilser M., Tomas R., Syrucek M., Zemanova Z., Krepela E., Belacek J., Šedo A. Fibroblast activation protein alpha is expressed by transformed and stromal cells and is associated with mesenchymal features in glioblastoma. Tumor Biol. 2016;37:13961–13971. doi: 10.1007/s13277-016-5274-9. PubMed DOI
Kelly T., Huang Y., Simms A.E., Mazur A. Fibroblast activation protein-alpha: A key modulator of the microenvironment in multiple pathologies. Int. Rev. Cell. Mol. Biol. 2012;297:83–116. PubMed
Koczorowska M.M., Tholen S., Bucher F., Lutz L., Kizhakkedathu J.N., De Wever O., Wellner U.F., Biniossek M.L., Stahl A., Lassmann S., et al. Fibroblast activation protein-alpha, a stromal cell alterations. Mol. Oncol. 2016;10:40–58. doi: 10.1016/j.molonc.2015.08.001. PubMed DOI PMC
Zhang H.E., Hamson E.J., Koczorowska M.M., Tholen S., Chowdhury S., Bailey C.G., Lay A.J., Twigg S.M., Lee Q., Roediger B., et al. Identification of Novel Natural Substrates of Fibroblast Activation Protein-alpha by Differential Degradomics and Proteomics. Mol. Cell. Proteom. 2019;18:65–85. doi: 10.1074/mcp.RA118.001046. PubMed DOI PMC
Bae S., Park C.W., Son H.K., Ju H.K., Paik D., Koh G.Y., Kim J., Kim H., Jeon C.J. Fibroblast activation protein α identifies mesenchymal stromal cells from human bone marrow. Br. J. Haematol. 2008;142:827–830. doi: 10.1111/j.1365-2141.2008.07241.x. PubMed DOI
Bušek P., Hrabal P., Fric P., Šedo A. Co-expression of the homologous proteases proteases fibroblast activation and dipeptidyl peptidase-IV in the adult human Langerhans islets. Histochem. Cell Biol. 2015;143:497–504. doi: 10.1007/s00418-014-1292-0. PubMed DOI
Huber M.A., Kraut N., Schweifer N., Dolznig H., Peter R.U., Schubert R.D., Scharffetter-Kochanek K., Pehamberger H., Garin-Chesa P. Expression of stromal cell markers in distinct compartments of human skin cancers. J. Cutan. Pathol. 2006;33:145–155. doi: 10.1111/j.0303-6987.2006.00446.x. PubMed DOI
Wäster P., Orfanidis K., Eriksson I., Rosdahl I., Seifert O., Ollinger K. UV radiation promotes melanoma dissemination mediated by the sequential reaction axis of cathepsins-TGF-beta1-FAP-alpha. Br. J. Cancer. 2017;117:535–544. doi: 10.1038/bjc.2017.182. PubMed DOI PMC
Jacob M., Chang L., Pure E. Fibroblast Activation Protein in Remodeling Tissues. Curr. Mol. Med. 2012;12:1220–1243. doi: 10.2174/156652412803833607. PubMed DOI
Juillerat-Jeanneret L., Tafelmeyer P., Golshayan D. Fibroblast activation protein-alpha in fibrogenic disorders and cancer: More than a prolyl-specific peptidase? Expert Opin. Ther. Targets. 2017;21:977–991. doi: 10.1080/14728222.2017.1370455. PubMed DOI
Puré E., Blomberg R. Pro-tumorigenic roles of fibroblast activation protein in cancer: Back to the basics. Oncogene. 2018;37:4343–4357. doi: 10.1038/s41388-018-0275-3. PubMed DOI PMC
Liu F., Qi L., Liu B., Liu J., Zhang H., Che D., Cao J., Shen J., Geng J., Bi Y., et al. Fibroblast Activation Protein Overexpression and Clinical Implications in Solid Tumors: A Meta-Analysis. PLoS ONE. 2015;10:e0116683. doi: 10.1371/journal.pone.0116683. PubMed DOI PMC
Goscinski M.A., Suo Z.H., Nesland J.M., Chen W.-T., Zakrzewska M., Wang J., Zhang S., Flørenes V.A., Giercksky K.E. Seprase, dipeptidyl peptidase IV and urokinase-type plasminogen activator expression in dysplasia and invasive squamous cell carcinoma of the esophagus. A study of 229 cases from Anyang Tumor Hospital, Henan Province, China. Oncology. 2008;75:49–59. doi: 10.1159/000151741. PubMed DOI
Goscinski M.A., Suo Z., Flørenes V.A., Vlatkovic L., Nesland J.M., Giercksky K.E. FAP-α and uPA Show Different Expression Patterns in Premalignant and Malignant Esophageal Lesions. Ultrastruct. Pathol. 2008;32:89–96. doi: 10.1080/01913120802034934. PubMed DOI
Mori Y., Kono K., Matsumoto Y., Fujii H., Yamane T., Mitsumata M., Chen W.-T. The Expression of a Type II Transmembrane Serine Protease (Seprase) in Human Gastric Carcinoma. Oncology. 2004;67:411–419. doi: 10.1159/000082926. PubMed DOI
Busek P., Mateu R., Zubal M., Kotackova L., Šedo A. Targeting fibroblast activation protein in cancer—Prospects and caveats. Front. Biosci. 2018;23:1933–1968. PubMed
Röhrich M., Loktev A., Wefers A.K., Altmann A., Paech D., Adeberg S., Windisch P., Hielscher T., Flechsig P., Floca R., et al. IDH-wildtype glioblastomas and grade III/IV IDH-mutant gliomas show elevated tracer uptake in fibroblast activation protein–specific PET/CT. Eur. J. Nucl. Med. Mol. Imaging. 2019;46:2569–2580. doi: 10.1007/s00259-019-04444-y. PubMed DOI
Šimková A., Bušek P., Šedo A., Konvalinka J. Molecular recognition of fibroblast activation protein for diagnostic and therapeutic applications. Biochim. Biophys. Acta Proteins Proteom. 2020;1868:140409. doi: 10.1016/j.bbapap.2020.140409. PubMed DOI
Fitzgerald A.A., Weiner L.M. The role of fibroblast activation protein in health and malignancy. Cancer Metastasis Rev. 2020;39:783–803. doi: 10.1007/s10555-020-09909-3. PubMed DOI PMC
Tulley S., Chen W.T. Transcriptional regulation of seprase in invasive melanoma cells by transforming growth factor-beta signaling. J. Biol. Chem. 2014;289:15280–15296. doi: 10.1074/jbc.M114.568501. PubMed DOI PMC
Knopf J.D., Tholen S., Koczorowska M.M., De Wever O., Biniossek M.L., Schilling O. The stromal cell-surface protease fibroblast activation protein-α localizes to lipid rafts and is recruited to invadopodia. Biochim. Biophys. Acta. 2015;1853:2515–2525. doi: 10.1016/j.bbamcr.2015.07.013. PubMed DOI
Wu Q.Q., Zhao M., Huang G.Z., Zheng Z.N., Chen Y., Zeng W.S., Lv X.Z. Fibroblast Activation Protein (FAP) Overexpression Induces Epithelial-Mesenchymal Transition (EMT) in Oral Squamous Cell Carcinoma by Down-Regulating Dipeptidyl Peptidase 9 (DPP9) Onco Targets Ther. 2020;13:2599–2611. doi: 10.2147/OTT.S243417. PubMed DOI PMC
Behnan J., Finocchiaro G., Hanna G. The landscape of the mesenchymal signature in brain tumours. Brain. 2019;142:847–866. doi: 10.1093/brain/awz044. PubMed DOI PMC
Joseph J.V., Balasubramaniyan V., Walenkamp A., Kruyt F.A. TGF-beta as a therapeutic target in high grade gliomas —Promises and challenges. Biochem. Pharmacol. 2013;85:478–485. doi: 10.1016/j.bcp.2012.11.005. PubMed DOI
Wang Q., Hu B., Hu X., Kim H., Squatrito M., Scarpace L., deCarvalho A.C., Lyu S., Li P., Li Y., et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 2017;32:42–56. doi: 10.1016/j.ccell.2017.06.003. PubMed DOI PMC
Heldin C.H., Moustakas A. Signaling receptors for TGF-beta family members. Cold Spring Harb. Perspect. Biol. 2016;8:a022053. doi: 10.1101/cshperspect.a022053. PubMed DOI PMC
Zhang Y.E. Non-Smad signaling pathways of the TGF-beta family. Cold Spring Harb. Perspect. Biol. 2017;9:a022129. doi: 10.1101/cshperspect.a022129. PubMed DOI PMC
Budi E.H., Duan D., Derynck R. Transforming growth factor-beta receptors and smads: Regulatory complexity and functional versatility. Trends Cell Biol. 2017;27:658–672. doi: 10.1016/j.tcb.2017.04.005. PubMed DOI
Yeh H.W., Lee S.S., Chang C.Y., Lang Y.D., Jou Y.S. A new switch for TGFbeta in cancer. Cancer Res. 2019;79:3797–3805. doi: 10.1158/0008-5472.CAN-18-2019. PubMed DOI
Bainbridge T.W., Dunshee D.R., Kljavin N.M., Skelton N.J., Sonoda J., Ernst J.A. Selective Homogeneous Assay for Circulating Endopeptidase Fibroblast Activation Protein (FAP) Sci. Rep. 2017;7:1–12. doi: 10.1038/s41598-017-12900-8. PubMed DOI PMC
Roy L.O., Poirier M.B., Fortin D. Differential Expression and Clinical Significance of Transforming Growth Factor-Beta Isoforms in GBM Tumors. Int. J. Mol. Sci. 2018;19:1113. doi: 10.3390/ijms19041113. PubMed DOI PMC
Tojo M., Hamashima Y., Hanyu A., Kajimoto T., Saitoh M., Miyazono K., Node M., Imamura T. The ALK-5 inhibitor A-83-01 inhibits Smad signaling and epithelial-to-mesenchymal transition by transforming growth factor-beta. Cancer Sci. 2005;96:791–800. doi: 10.1111/j.1349-7006.2005.00103.x. PubMed DOI PMC
Goldstein L.A., Ghersi G., Piñeiro-Sánchez M.L., Salamone M., Yeh Y., Flessate D., Chen W.-T. Molecular cloning of seprase: A serine integral membrane protease from human melanoma. Biochim. Biophys. Acta. 1997;1361:11–19. doi: 10.1016/S0925-4439(97)00032-X. PubMed DOI
Balaziova E., Bušek P., Stremenová J., Sromova L., Křepela E., Lizcova L., Šedo A. Coupled expression of dipeptidyl peptidase-IV and fibroblast activation protein-α in transformed astrocytic cells. Mol. Cell. Biochem. 2011;354:283–289. doi: 10.1007/s11010-011-0828-z. PubMed DOI
Constam D.B., Philipp J., Malipiero U.V., Ten Dijke P., Schachner M., Fontana A. Differential expression of transforming growth factor-beta 1, -beta 2, and -beta 3 by glioblastoma cells, astrocytes, and microglia. J. Immunol. 1992;148:1404–1410. PubMed
Sasaki A., Naganuma H., Satoh E., Nagasaka M., Isoe S., Nakano S., Nukui H. Secretion of transforming growth factor-beta 1 and -beta 2 by malignant glioma cells. Neurol. Med. Chir. (Tokyo) 1995;35:423–430. doi: 10.2176/nmc.35.423. PubMed DOI
Leitlein J., Aulwurm S., Waltereit R., Naumann U., Wagenknecht B., Garten W., Weller M., Platten M. Processing of immunosuppressive pro-TGF-beta 1,2 by human glioblastoma cells involves cytoplasmic and secreted furin-like proteases. J. Immunol. 2001;166:7238–7243. doi: 10.4049/jimmunol.166.12.7238. PubMed DOI
Frei K., Gramatzki D., Tritschler I., Schroeder J.J., Espinoza L., Rushing E.J., Weller M. Transforming growth factor-beta pathway activity in glioblastoma. Oncotarget. 2015;6:5963–5977. doi: 10.18632/oncotarget.3467. PubMed DOI PMC
Herbertz S., Sawyer J.S., Stauber A.J., Gueorguieva I., Driscoll K.E., Estrem S.T., Cleverly A.L., Desaiah D., Guba S.C., Benhadji K.A., et al. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des. Dev. Ther. 2015;9:4479–4499. doi: 10.2147/dddt.s86621. PubMed DOI PMC
Akhurst R.J. Targeting TGF-beta signaling for therapeutic gain. Cold Spring Harb. Perspect. Biol. 2017;9:a022301. doi: 10.1101/cshperspect.a022301. PubMed DOI PMC
Imamichi Y., Waidmann O., Hein R., Eleftheriou P., Giehl K., Menke A. TGF beta-induced focal complex formation in epithelial cells is mediated by activated ERK and JNK MAP kinases and is independent of Smad4. Biol. Chem. 2005;386:225–236. doi: 10.1515/BC.2005.028. PubMed DOI
Ikushima H., Todo T., Ino Y., Takahashi M., Miyazawa K., Miyazono K. Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell. 2009;5:504–514. doi: 10.1016/j.stem.2009.08.018. PubMed DOI
Bandyopadhyay B., Han A., Dai J., Fan J., Li Y., Chen M., Woodley D.T., Li W. TbetaRI/ Alk5-independent TbetaRII signaling to ERK1/2 in human skin cells according to distinct levels of TbetaRII expression. J. Cell Sci. 2011;124:19–24. doi: 10.1242/jcs.076505. PubMed DOI PMC
Hamidi A., Song J., Thakur N., Itoh S., Marcusson A., Bergh A., Heldin C.H., Landstrom M. TGF-beta promotes PI3K-AKT signaling and prostate cancer cell migration through the TRAF6-mediated ubiquitylation of p85alpha. Sci. Signal. 2017;10:486. doi: 10.1126/scisignal.aal4186. PubMed DOI
Zhang J., Valianou M., Cheng J.D. Identification and characterization of the promoter of fibroblast activation protein. Front. Biosci. (Elite Ed.) 2010;2:1154–1163. doi: 10.2741/e175. PubMed DOI PMC
Mikheeva S.A., Mikheev A.M., Petit A., Beyer R., Oxford R.G., Khorasani L., Maxwell J.-P., Glackin C.A., Wakimoto H., González-Herrero I., et al. TWIST1 promotes invasion through mesenchymal change in human glioblastoma. Mol. Cancer. 2010;9:194. doi: 10.1186/1476-4598-9-194. PubMed DOI PMC
Yi Y., Wang Z., Sun Y., Chen J., Zhang B., Wu M., Li T., Hu L., Zeng J. The EMT-related transcription factor snail up-regulates FAPalpha in malignant melanoma cells. Exp. Cell Res. 2018;364:160–167. doi: 10.1016/j.yexcr.2018.01.039. PubMed DOI
Chen S.J., Ning H., Ishida W., Sodin-Semrl S., Takagawa S., Mori Y., Varga J. The early-immediate gene EGR-1 is induced by transforming growth factor-beta and mediates stimulation of collagen gene expression. J. Biol. Chem. 2006;281:21183–21197. doi: 10.1074/jbc.M603270200. PubMed DOI
Cho H.J., Baek K.E., Saika S., Jeong M.J., Yoo J. Snail is required for transforming growth factor-beta-induced epithelial-mesenchymal transition by activating PI3 kinase/Akt signal pathway. Biochem. Biophys. Res. Commun. 2007;353:337–343. doi: 10.1016/j.bbrc.2006.12.035. PubMed DOI
Tan E.J., Thuault S., Caja L., Carletti T., Heldin C.H., Moustakas A. Regulation of Transcription Factor Twist Expression by the DNA Architectural Protein High Mobility Group A2 during Epithelial-to-Mesenchymal Transition. J. Biol. Chem. 2012;287:7134–7145. doi: 10.1074/jbc.M111.291385. PubMed DOI PMC
Joseph J.V., Conroy S., Tomar T., Eggens-Meijer E., Bhat K., Copray S., Walenkamp A.M., Boddeke E., Balasubramanyian V., Wagemakers M., et al. TGF-beta is an inducer of ZEB1-dependent mesenchymal transdifferentiation in glioblastoma that is associated with tumor invasion. Cell Death Dis. 2014;5:e1443. doi: 10.1038/cddis.2014.395. PubMed DOI PMC
Fuxe J., Vincent T., Garcia de Hereos A. Transcriptional crosstalk between TGF- beta and stem cell pathways in tumor cell invasion: Role of EMT promoting Smad complexes. Cell Cycle. 2010;9:2363–2374. doi: 10.4161/cc.9.12.12050. PubMed DOI
Louis D.N., Perry A., Reifenberger G., Von Deimling A., Figarella-Branger D., Cavenee W.K., Ohgaki H., Wiestler O.D., Kleihues P., Ellison D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016;131:803–820. doi: 10.1007/s00401-016-1545-1. PubMed DOI
Bowman R.L., Wang Q., Carro A., Verhaak R.G., Squatrito M. GlioVis data portal for visualization and analysis of brain tumor expression datasets. Neuro. Oncol. 2017;19:139–141. doi: 10.1093/neuonc/now247. PubMed DOI PMC
Sana J., Bušek P., Fadrus P., Besse A., Radova L., Vecera M., Reguli S., Stollinova-Sromova L., Hilser M., Lipina R., et al. Identification of microRNAs differentially expressed in glioblastoma stem-like cells and their association with patient survival. Sci. Rep. 2018;8:2836. doi: 10.1038/s41598-018-20929-6. PubMed DOI PMC
Miebach S., Grau S., Hummel V., Rieckmann P., Tonn J.-C., Goldbrunner R.H. Isolation and Culture of Microvascular Endothelial Cells from Gliomas of Different WHO Grades. J. Neuro-Oncol. 2006;76:39–48. doi: 10.1007/s11060-005-3674-6. PubMed DOI
Charalambous C., Hofman F.M., Chen T.C. Functional and phenotypic differences between glioblastoma multiforme—derived and normal human brain endothelial cells. J. Neurosurg. 2005;102:699–705. doi: 10.3171/jns.2005.102.4.0699. PubMed DOI
Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. doi: 10.1016/S0021-9258(19)52451-6. PubMed DOI
Keane F.M., Yao T.-W., Seelk S., Gall M.G., Chowdhury S., Poplawski S.E., Lai J.H., Li Y., Wu W., Farrell P., et al. Quantitation of fibroblast activation protein (FAP)-specific protease activity in mouse, baboon and human fluids and organs. FEBS Open Bio. 2013;4:43–54. doi: 10.1016/j.fob.2013.12.001. PubMed DOI PMC
Dvořáková P., Bušek P., Knedlík T., Schimer J., Etrych T., Kostka L., Stollinova-Sromova L., Šubrt V., Šácha P., Šedo A., et al. Inhibitor-Decorated Polymer Conjugates Targeting Fibroblast Activation Protein. J. Med. Chem. 2017;60:8385–8393. doi: 10.1021/acs.jmedchem.7b00767. PubMed DOI
Bušek P., Vanickova Z., Hrabal P., Brabec M., Frič P., Zavoral M., Skrha J., Kmochová K., Laclav M., Bunganič B., et al. Increased tissue and circulating levels of dipeptidyl peptidase-IV enzymatic activity in patients with pancreatic ductal adenocarcinoma. Pancreatology. 2016;16:829–838. doi: 10.1016/j.pan.2016.06.001. PubMed DOI
Matrasova I., Bušek P., Balaziova E., Šedo A. Heterogeneity of molecular forms of dipeptidyl peptidase-IV and fibroblast activation protein in human glioblastomas. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2017;161:252–260. doi: 10.5507/bp.2017.010. PubMed DOI
Krepela E., Bušek P., Hilser M., Vanickova Z., Šedo A. Species-specific real-time RT-PCR analysis of expression of stromal cell genes in a tumor xenotransplantation model in mice. Biochem. Biophys. Res. Commun. 2017;491:126–133. doi: 10.1016/j.bbrc.2017.07.061. PubMed DOI
Fibrillar extracellular matrix produced by pericyte-like cells facilitates glioma cell dissemination
Advances in Cancer Metabolism and Tumour Microenvironment
Fibroblast Activation Protein Expressing Mesenchymal Cells Promote Glioblastoma Angiogenesis