Fibrillar extracellular matrix produced by pericyte-like cells facilitates glioma cell dissemination

. 2024 Nov ; 34 (6) : e13265. [epub] 20240505

Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38705944

Grantová podpora
LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023053 Ministerstvo Školství, Mládeže a Tělovýchovy
CNECZ.02.1.01/0.0/0.0/16_019/0000785 Ministerstvo Školství, Mládeže a Tělovýchovy
NV19-03-00501 Ministerstvo Zdravotnictví České Republiky
GAUK1084120 Univerzita Karlova
Cooperatio Univerzita Karlova

Gliomagenesis induces profound changes in the composition of the extracellular matrix (ECM) of the brain. In this study, we identified a cellular population responsible for the increased deposition of collagen I and fibronectin in glioblastoma. Elevated levels of the fibrillar proteins collagen I and fibronectin were associated with the expression of fibroblast activation protein (FAP), which is predominantly found in pericyte-like cells in glioblastoma. FAP+ pericyte-like cells were present in regions rich in collagen I and fibronectin in biopsy material and produced substantially more collagen I and fibronectin in vitro compared to other cell types found in the GBM microenvironment. Using mass spectrometry, we demonstrated that 3D matrices produced by FAP+ pericyte-like cells are rich in collagen I and fibronectin and contain several basement membrane proteins. This expression pattern differed markedly from glioma cells. Finally, we have shown that ECM produced by FAP+ pericyte-like cells enhances the migration of glioma cells including glioma stem-like cells, promotes their adhesion, and activates focal adhesion kinase (FAK) signaling. Taken together, our findings establish FAP+ pericyte-like cells as crucial producers of a complex ECM rich in collagen I and fibronectin, facilitating the dissemination of glioma cells through FAK activation.

Zobrazit více v PubMed

Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella‐Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231–1251. PubMed PMC

Sottoriva A, Spiteri I, Piccirillo SGM, Touloumis A, Collins VP, Marioni JC, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA. 2013;110(10):4009–4014. PubMed PMC

Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110. PubMed PMC

Cuddapah VA, Robel S, Watkins S, Sontheimer H. A neurocentric perspective on glioma invasion. Nat Rev Neurosci. 2014;15(7):455–465. PubMed PMC

Ngo MT, Sarkaria JN, Harley BAC. Perivascular stromal cells instruct glioblastoma invasion, proliferation, and therapeutic response within an engineered brain perivascular niche model. Adv Sci. 2022;9(31):e2201888. PubMed PMC

Charles N, Holland EC. The perivascular niche microenvironment in brain tumor progression. Cell Cycle. 2010;9(15):3012–3021. PubMed PMC

Boyd NH, Tran AN, Bernstock JD, Etminan T, Jones AB, Gillespie GY, et al. Glioma stem cells and their roles within the hypoxic tumor microenvironment. Theranostics. 2021;11(2):665–683. PubMed PMC

Dapash M, Hou D, Castro B, Lee‐Chang C, Lesniak MS. The interplay between glioblastoma and its microenvironment. Cells. 2021;10(9):2257. PubMed PMC

Schiffer D, Annovazzi L, Casalone C, Corona C, Mellai M. Glioblastoma: microenvironment and niche concept. Cancers. 2018;11(1):5. PubMed PMC

Busek P, Balaziova E, Matrasova I, Hilser M, Tomas R, Syrucek M, et al. Fibroblast activation protein alpha is expressed by transformed and stromal cells and is associated with mesenchymal features in glioblastoma. Tumour Biol. 2016;37(10):13961–13971. PubMed

Motegi H, Kamoshima Y, Terasaka S, Kobayashi H, Houkin K. Type 1 collagen as a potential niche component for CD133‐positive glioblastoma cells. Neuropathology. 2014;34(4):378–385. PubMed

Lee SY, Choi SH, Lee MS, Kurmashev A, Lee HN, Ko YG, et al. Retraction fibers produced by fibronectin‐integrin α5β1 interaction promote motility of brain tumor cells. FASEB J. 2021;35(10):e21906. PubMed

Huijbers IJ, Iravani M, Popov S, Robertson D, al‐Sarraj S, Jones C, et al. A role for fibrillar collagen deposition and the collagen internalization receptor endo180 in glioma invasion. PLoS One. 2010;5(3):e9808. PubMed PMC

Pointer KB, Clark PA, Schroeder AB, Salamat MS, Eliceiri KW, Kuo JS. Association of collagen architecture with glioblastoma patient survival. J Neurosurg. 2017;126(6):1812–1821. PubMed PMC

Comba A, Faisal SM, Dunn PJ, Argento AE, Hollon TC, al‐Holou WN, et al. Spatiotemporal analysis of glioma heterogeneity reveals COL1A1 as an actionable target to disrupt tumor progression. Nat Commun. 2022;13(1):3606. PubMed PMC

Yin W, Zhu H, Tan J, Xin Z, Zhou Q, Cao Y, et al. Identification of collagen genes related to immune infiltration and epithelial‐mesenchymal transition in glioma. Cancer Cell Int. 2021;21(1):276. PubMed PMC

Kaufman LJ, Brangwynne CP, Kasza KE, Filippidi E, Gordon VD, Deisboeck TS, et al. Glioma expansion in collagen I matrices: analyzing collagen concentration‐dependent growth and motility patterns. Biophys J. 2005;89(1):635–650. PubMed PMC

Frolov A, Evans IM, Li N, Sidlauskas K, Paliashvili K, Lockwood N, et al. Imatinib and Nilotinib increase glioblastoma cell invasion via Abl‐independent stimulation of p130Cas and FAK signalling. Sci Rep. 2016;6:27378. PubMed PMC

Wu S, Liu C, Wei X, Nong WX, Lin LN, Li F, et al. High expression of fibronectin 1 predicts a poor prognosis in glioblastoma. Curr Med Sci. 2022;42(5):1055–1065. PubMed

Kabir F, Apu MNH. Multi‐omics analysis predicts fibronectin 1 as a prognostic biomarker in glioblastoma multiforme. Genomics. 2022;114(3):110378. PubMed

Olmos G, Muñoz‐Félix JM, Mora I, Müller AG, Ruiz‐Torres MP, López‐Novoa JM, et al. Impaired erythropoietin synthesis in chronic kidney disease is caused by alterations in extracellular matrix composition. J Cell Mol Med. 2018;22(1):302–314. PubMed PMC

Meng XN, Jin Y, Yu Y, Bai J, Liu GY, Zhu J, et al. Characterisation of fibronectin‐mediated FAK signalling pathways in lung cancer cell migration and invasion. Br J Cancer. 2009;101(2):327–334. PubMed PMC

Alza L, Nàger M, Visa A, Cantí C, Herreros J. FAK inhibition induces glioblastoma cell senescence‐like state through p62 and p27. Cancers. 2020;12(5):1086. PubMed PMC

Dong C, Li X, Yang J, Yuan D, Zhou Y, Zhang Y, et al. PPFIBP1 induces glioma cell migration and invasion through FAK/Src/JNK signaling pathway. Cell Death Dis. 2021;12(9):827. PubMed PMC

Yang M, Li Y, Chilukuri K, Brady OA, Boulos MI, Kappes JC, et al. L1 stimulation of human glioma cell motility correlates with FAK activation. J Neurooncol. 2011;105(1):27–44. PubMed PMC

Ebert LM, Yu W, Gargett T, Toubia J, Kollis PM, Tea MN, et al. Endothelial, pericyte and tumor cell expression in glioblastoma identifies fibroblast activation protein (FAP) as an excellent target for immunotherapy. Clin Transl Immunology. 2020;9(10):e1191. PubMed PMC

Balaziova E, Vymola P, Hrabal P, Mateu R, Zubal M, Tomas R, et al. Fibroblast activation protein expressing mesenchymal cells promote glioblastoma angiogenesis. Cancers. 2021;13(13):3304. PubMed PMC

Puchalski RB, Shah N, Miller J, Dalley R, Nomura SR, Yoon JG, et al. An anatomic transcriptional atlas of human glioblastoma. Science. 2018;360(6389):660–663. PubMed PMC

Krepela E, Vanickova Z, Hrabal P, Zubal M, Chmielova B, Balaziova E, et al. Regulation of fibroblast activation protein by transforming growth factor beta‐1 in glioblastoma microenvironment. Int J Mol Sci. 2021;22(3):1046. PubMed PMC

Castelló‐Cros R, Cukierman E. Stromagenesis during tumorigenesis: characterization of tumor‐associated fibroblasts and stroma‐derived 3D matrices. Methods Mol Biol. 2009;522:275–305. PubMed PMC

Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics. 2012;11(4):M111.014647. PubMed PMC

Busek P, Mateu R, Zubal M, Kotackova L, Sedo A. Targeting fibroblast activation protein in cancer—prospects and caveats. Front Biosci (Landmark Ed). 2018;23(10):1933–1968. PubMed

Wen X, He X, Jiao F, Wang C, Sun Y, Ren X, et al. Fibroblast activation protein‐α‐positive fibroblasts promote gastric cancer progression and resistance to immune checkpoint blockade. Oncol Res. 2017;25(4):629–640. PubMed PMC

Wu X, Wang Y, Xu J, Luo T, Deng J, Hu Y. MM‐BMSCs induce naïve CD4+ T lymphocytes dysfunction through fibroblast activation protein α. Oncotarget. 2017;8(32):52614–52628. PubMed PMC

Teichgräber V, Monasterio C, Chaitanya K, Boger R, Gordon K, Dieterle T, et al. Specific inhibition of fibroblast activation protein (FAP)‐alpha prevents tumor progression in vitro. Adv Med Sci. 2015;60(2):264–272. PubMed

Feig C, Jones JO, Kraman M, Wells RJB, Deonarine A, Chan DS, et al. Targeting CXCL12 from FAP‐expressing carcinoma‐associated fibroblasts synergizes with anti‐PD‐L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci USA. 2013;110(50):20212–20217. PubMed PMC

Kaps L, Schuppan D. Targeting cancer associated fibroblasts in liver fibrosis and liver cancer using nanocarriers. Cells. 2020;9(9):2027. PubMed PMC

Mazur A, Holthoff E, Vadali S, Kelly T, Post SR. Cleavage of type I collagen by fibroblast activation protein‐α enhances class A scavenger receptor mediated macrophage adhesion. PLoS One. 2016;11(3):e0150287. PubMed PMC

Zubaľ M, Výmolová B, Matrasová I, Výmola P, Vepřková J, Syrůček M, et al. Fibroblast activation protein as a potential theranostic target in brain metastases of diverse solid tumours. Pathology. 2023;55:806–817. PubMed

Ballal S, Yadav MP, Raju S, Roesch F, Martin M, Tripathi M, et al. [177Lu]Lu‐DOTAGA.Glu.(FAPi)2 Radionuclide Therapy: a New Treatment Option for Patients with Glioblastoma Multiforme. PubMed PMC

Martin M, Ballal S, Yadav MP, Bal C, van Rymenant Y, de Loose J, et al. Novel generation of FAP inhibitor‐based homodimers for improved application in radiotheranostics. Cancers. 2023;15(6):1889. PubMed PMC

Koh I, Cha J, Park J, Choi J, Kang SG, Kim P. The mode and dynamics of glioblastoma cell invasion into a decellularized tissue‐derived extracellular matrix‐based three‐dimensional tumor model. Sci Rep. 2018;8(1):4608. PubMed PMC

Serres E, Debarbieux F, Stanchi F, Maggiorella L, Grall D, Turchi L, et al. Fibronectin expression in glioblastomas promotes cell cohesion, collective invasion of basement membrane in vitro and orthotopic tumor growth in mice. Oncogene. 2014;33(26):3451–3462. PubMed

Rupp T, Langlois B, Koczorowska MM, Radwanska A, Sun Z, Hussenet T, et al. Tenascin‐C orchestrates glioblastoma angiogenesis by modulation of pro‐ and anti‐angiogenic signaling. Cell Rep. 2016;17(10):2607–2619. PubMed

Zamecnik J. The extracellular space and matrix of gliomas. Acta Neuropathol. 2005;110(5):435–442. PubMed

Kaphle P, Li Y, Yao L. The mechanical and pharmacological regulation of glioblastoma cell migration in 3D matrices. J Cell Physiol. 2019;234(4):3948–3960. PubMed PMC

Wang Y, Sakaguchi M, Sabit H, Tamai S, Ichinose T, Tanaka S, et al. COL1A2 inhibition suppresses glioblastoma cell proliferation and invasion. J Neurosurg. 2023;138(3):639–648. PubMed

Jain RK. Molecular regulation of vessel maturation. Nat Med. 2003;9(6):685–693. PubMed

Raza A, Franklin MJ, Dudek AZ. Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am J Hematol. 2010;85(8):593–598. PubMed

Zhu C, Chrifi I, Mustafa D, van der Weiden M, Leenen PJM, Duncker DJ, et al. CECR1‐mediated cross talk between macrophages and vascular mural cells promotes neovascularization in malignant glioma. Oncogene. 2017;36(38):5356–5368. PubMed PMC

Bhattacharjee S, Hamberger F, Ravichandra A, Miller M, Nair A, Affo S, et al. Tumor restriction by type I collagen opposes tumor‐promoting effects of cancer‐associated fibroblasts. J Clin Invest. 2021;131(11):e146897. PubMed PMC

Wright K, Ly T, Kriet M, Czirok A, Thomas SM. Cancer‐associated fibroblasts: master tumor microenvironment modifiers. Cancers. 2023;15(6):1899. PubMed PMC

Midulla M, Verma R, Pignatelli M, Ritter MA, Courtenay‐Luck NS, George AJ. Source of oncofetal ED‐B‐containing fibronectin: implications of production by both tumor and endothelial cells. Cancer Res. 2000;60(1):164–169. PubMed

Paulus W, Huettner C, Tonn JC. Collagens, integrins and the mesenchymal drift in glioblastomas: a comparison of biopsy specimens, spheroid and early monolayer cultures. Int J Cancer. 1994;58(6):841–846. PubMed

Gao L, Chen B, Li J, Yang F, Cen X, Liao Z, et al. Wnt/β‐catenin signaling pathway inhibits the proliferation and apoptosis of U87 glioma cells via different mechanisms. PLoS One. 2017;12(8):e0181346. PubMed PMC

Vik‐Mo EO, Sandberg C, Olstorn H, Varghese M, Brandal P, Ramm‐Pettersen J, et al. Brain tumor stem cells maintain overall phenotype and tumorigenicity after in vitro culturing in serum‐free conditions. Neuro Oncol. 2010;12(12):1220–1230. PubMed PMC

Zhong C, Tao B, Tang F, Yang X, Peng T, You J, et al. Remodeling cancer stemness by collagen/fibronectin via the AKT and CDC42 signaling pathway crosstalk in glioma. Theranostics. 2021;11(4):1991–2005. PubMed PMC

Mikheeva SA, Mikheev AM, Petit A, Beyer R, Oxford RG, Khorasani L, et al. TWIST1 promotes invasion through mesenchymal change in human glioblastoma. Mol Cancer. 2010;9:194. PubMed PMC

Sana J, Busek P, Fadrus P, Besse A, Radova L, Vecera M, et al. Identification of microRNAs differentially expressed in glioblastoma stem‐like cells and their association with patient survival. Sci Rep. 2018;8(1):2836. PubMed PMC

Červenka J, Tylečková J, Skalníková HK, Kepková KV, Poliakh I, Valeková I, et al. Proteomic characterization of human neural stem cells and their Secretome during in vitro differentiation. Front Cell Neurosci. 2020;14:612560. PubMed PMC

Tyleckova J, Cervenka J, Poliakh I, Novak J, Kepkova KV, Skalnikova HK, et al. Proteomic analysis of human neural stem cell differentiation by SWATH‐MS. Methods Mol Biol. 2022;2520:335–360. PubMed

UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 2023;51(D1):D523–d531. PubMed PMC

Pino LK, Searle BC, Bollinger JG, Nunn B, MacLean B, MacCoss MJ. The skyline ecosystem: informatics for quantitative mass spectrometry proteomics. Mass Spectrom Rev. 2020;39(3):229–244. PubMed PMC

Reiter L, Rinner O, Picotti P, Hüttenhain R, Beck M, Brusniak MY, et al. mProphet: automated data processing and statistical validation for large‐scale SRM experiments. Nat Methods. 2011;8(5):430–435. PubMed

R: A language and environment for statistical computing. R Foundation for Statistical Computing we 2023. Available from: https://www.R-project.org/

Choi M, Chang CY, Clough T, Broudy D, Killeen T, MacLean B, et al. MSstats: an R package for statistical analysis of quantitative mass spectrometry‐based proteomic experiments. Bioinformatics. 2014;30(17):2524–2526. PubMed

Franco‐Barraza J, Beacham DA, Amatangelo MD, Cukierman E. Preparation of extracellular matrices produced by cultured and primary fibroblasts. Curr Protoc Cell Biol. 2016;71:10.9.1–10.9.34. PubMed PMC

Zhang X, Smits AH, van Tilburg GBA, Ovaa H, Huber W, Vermeulen M. Proteome‐wide identification of ubiquitin interactions using UbIA‐MS. Nat Protoc. 2018;13(3):530–550. PubMed

Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32(18):2847–2849. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...