Caspase-12 is a molecule whose functions are still not well understood. Although its expression has been found in various tissues, specific roles have been described in only a few cases. These include the effect of caspase-12 on murine bone cell differentiation during craniofacial development. This work focused on the development of the limbs taking place through endochondral ossification, which precedes the formation of the cartilaginous growth plate. Caspase-12 was described here for the first time in growth plate chondrocytes during physiological development. Using pharmacological inhibition, caspase-12 was found to affect chondrogenesis. Limb-derived micromass cultures showed a significantly increased area of chondrogenic nodules after caspase-12 inhibition and there were changes in gene expression, the most significant of which was the reduction of Mmp9. These data point to potential new functions of caspase-12 in chondrogenesis.
- MeSH
- buněčná diferenciace MeSH
- chondrocyty * MeSH
- chondrogeneze * fyziologie MeSH
- inhibitory kaspas farmakologie MeSH
- kaspasa 12 * metabolismus genetika MeSH
- kultivované buňky MeSH
- matrixová metaloproteinasa 9 metabolismus genetika MeSH
- myši MeSH
- růstová ploténka růst a vývoj MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Fibroblast activation protein (FAP) has been extensively studied as a cancer biomarker for decades. Recently, small-molecule FAP inhibitors have been widely adopted as a targeting moiety of experimental theranostic radiotracers. Here we present a fast qPCR-based analytical method allowing FAP inhibition screening in a high-throughput regime. To identify clinically relevant compounds that might interfere with FAP-targeted approaches, we focused on a library of FDA-approved drugs. Using the DNA-linked Inhibitor Antibody Assay (DIANA), we tested a library of 2667 compounds within just a few hours and identified numerous FDA-approved drugs as novel FAP inhibitors. Among these, prodrugs of cephalosporin antibiotics and reverse transcriptase inhibitors, along with one elastase inhibitor, were the most potent FAP inhibitors in our dataset. In addition, by employing FAP DIANA in the quantification mode, we were able to determine FAP concentrations in human plasma samples. Together, our work expands the repertoire of FAP inhibitors, analyzes the potential interference of co-administered drugs with FAP-targeting strategies, and presents a sensitive and low-consumption ELISA alternative for FAP quantification with a detection limit of 50 pg/ml.
- MeSH
- cefalosporiny chemie farmakologie MeSH
- endopeptidasy * metabolismus MeSH
- knihovny malých molekul farmakologie chemie MeSH
- lidé MeSH
- membránové proteiny * antagonisté a inhibitory metabolismus MeSH
- molekulární struktura MeSH
- rychlé screeningové testy * MeSH
- schvalování léčiv MeSH
- serinové endopeptidasy * metabolismus MeSH
- Úřad Spojených států pro potraviny a léky MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- želatinasy * antagonisté a inhibitory metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Spojené státy americké MeSH
Cíl: Srovnání cervikálního stromatu u pacientek s pokročilými stadii karcinomu děložního hrdla s kontrolní skupinou: v období před léčbou srovnat hematologické parametry u pacientek se stejnými parametry v kontrolní skupině; ověřit souvislost stromálních markerů s s prognostickými faktory karcinomu děložního hrdla. Materiál a metody: Prospektivně bylo hodnoceno 16 pacientek s diagnózou pokročilého invazivního karcinomu děložního hrdla. Kontrolní skupinu tvořilo 22 pacientek (s děložním myomem). Bylo provedeno imunohistochemické vyšetření k detekci hladkosvalového aktinu alfa (SMA – alpha-smooth muscle actin) a fibroblasty aktivujícího proteinu alfa (FAP – fibroblast activation protein alpha). Výsledky imunohistochemického vyšetření a hematologické parametry byly vyhodnoceny pomocí Fisherova exaktního testu a Mann-Whitneyho testu. Výsledky: Silné imunobarvení FAP bylo častější u pacientek s karcinomem děložního hrdla v porovnání s pacientkami s děložním myomem (p = 0,0002). Co se týká SMA, silné imunobarvení bylo také ve větší míře zjištěno ve skupině pacientek s karcinomem oproti kontrolní skupině (p < 0,00001). Poměr neutrofily/lymfocyty (NLR) byl vyšší u pacientek s neoplazií děložního hrdla ve srovnání s kontrolní skupinou (p = 0,0019). Souvislost mezi zkoumanými parametry a prognostickými faktory nebyla prokázána. Závěr: Silné imunohistochemické barvení FAP a SMA je ve srovnání s kontrolní skupinou častější u pacientek s karcinomem děložního hrdla. Poměr NLR u nich byl rovněž vyšší.
Objective: To compare cervical stroma in advanced cervical cancer with the control group; to compare, in the pre-treatment period, hemogram parameters in patients with advanced cervical cancer with the same parameters as the control group; and to verify if there is an association of stromal markers with prognostic factors in cervical cancer. Materials and methods: We prospectively evaluated 16 patients diagnosed with advanced invasive cervical cancer. A control group of 22 patients was used (uterine leiomyoma). Immunohistochemistry was performed to verify the stromal immunostaining of alpha-smooth muscle actin (SMA) and fibroblast activation protein alpha (FAP). Immunostainings and hemogram parameters were compared using Fisher's exact and Mann-Whitney Test, respectively. Results: Strong FAP immunostaining was more frequent in patients with cervical cancer when compared with patients with leiomyoma (P = 0.0002). Regarding SMA, strong immunostaining was also found more in the group of cancer patients compared to the control group (P < 0.00001). The neutrophil-lymphocyte ratio (NLR) values were higher in the cancer patient group compared to the control group (P = 0.0019). There was no association of the parameters studied with prognostic factors. Conclusions: Strong FAP and SMA immunostaining was found more in patients with cervical cancer when compared to the control group. NLR values were also higher in cervical cancer.
- MeSH
- aktiny analýza metabolismus MeSH
- endopeptidasy MeSH
- klinická studie jako téma MeSH
- leiomyom patologie MeSH
- lidé MeSH
- membránové proteiny analýza metabolismus MeSH
- nádory děložního čípku * patologie MeSH
- serinové endopeptidasy analýza metabolismus MeSH
- želatinasy analýza metabolismus MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
Gliomagenesis induces profound changes in the composition of the extracellular matrix (ECM) of the brain. In this study, we identified a cellular population responsible for the increased deposition of collagen I and fibronectin in glioblastoma. Elevated levels of the fibrillar proteins collagen I and fibronectin were associated with the expression of fibroblast activation protein (FAP), which is predominantly found in pericyte-like cells in glioblastoma. FAP+ pericyte-like cells were present in regions rich in collagen I and fibronectin in biopsy material and produced substantially more collagen I and fibronectin in vitro compared to other cell types found in the GBM microenvironment. Using mass spectrometry, we demonstrated that 3D matrices produced by FAP+ pericyte-like cells are rich in collagen I and fibronectin and contain several basement membrane proteins. This expression pattern differed markedly from glioma cells. Finally, we have shown that ECM produced by FAP+ pericyte-like cells enhances the migration of glioma cells including glioma stem-like cells, promotes their adhesion, and activates focal adhesion kinase (FAK) signaling. Taken together, our findings establish FAP+ pericyte-like cells as crucial producers of a complex ECM rich in collagen I and fibronectin, facilitating the dissemination of glioma cells through FAK activation.
- MeSH
- endopeptidasy MeSH
- extracelulární matrix * metabolismus patologie MeSH
- fibronektiny * metabolismus MeSH
- glioblastom patologie metabolismus MeSH
- gliom * patologie metabolismus MeSH
- kolagen typu I metabolismus MeSH
- lidé MeSH
- membránové proteiny metabolismus MeSH
- nádorové buněčné linie MeSH
- nádorové mikroprostředí fyziologie MeSH
- nádory mozku * patologie metabolismus MeSH
- pericyty * metabolismus patologie MeSH
- pohyb buněk fyziologie MeSH
- serinové endopeptidasy metabolismus MeSH
- želatinasy metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Matrix metalloproteinases (MMPs) play an important role in central nervous system infections. We analysed the levels of 8 different MMPs in the cerebrospinal fluid (CSF) of 89 adult patients infected with tick-borne encephalitis (TBE) virus and compared them with the levels in a control group. MMP-9 was the only MMP that showed significantly increased CSF levels in TBE patients. Serum MMP-9 levels were subsequently measured in 101 adult TBE patients at various time points during the neurological phase of TBE and at follow-up. In addition, serum MMP-9 was analysed in 37 paediatric TBE patients. Compared with control levels, both paediatric and adult TBE patients had significantly elevated serum MMP-9 levels. In most adult patients, serum MMP-9 levels peaked at hospital admission, with higher serum MMP-9 levels observed in patients with encephalitis than in patients with meningitis. Elevated serum MMP-9 levels were observed throughout hospitalisation but decreased to normal levels at follow-up. Serum MMP-9 levels correlated with clinical course, especially in patients heterozygous for the single-nucleotide polymorphism rs17576 (A/G; Gln279Arg) in the MMP9 gene. The results highlight the importance of MMP-9 in the pathogenesis of TBE and suggest that serum MMP-9 may serve as a promising bioindicator of TBE in both paediatric and adult TBE patients.
- MeSH
- biologické markery MeSH
- dítě MeSH
- dospělí MeSH
- jednonukleotidový polymorfismus MeSH
- klíšťová encefalitida * diagnóza mozkomíšní mok MeSH
- lidé MeSH
- matrixová metaloproteinasa 9 genetika MeSH
- viry klíšťové encefalitidy * genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Tumor necrosis factor-alpha (TNF-α) agonists revolutionized therapeutic algorithms in inflammatory bowel disease (IBD) management. However, approximately every third IBD patient does not respond to this therapy in the long term, which delays efficient control of the intestinal inflammation. METHODS: We analyzed the power of serum biomarkers to predict the failure of anti-TNF-α. We collected serum of 38 IBD patients at therapy prescription and 38 weeks later and analyzed them with relation to therapy response (no-, partial-, and full response). We used enzyme-linked immunosorbent assay to quantify 16 biomarkers related to gut barrier (intestinal fatty acid-binding protein, liver fatty acid-binding protein, trefoil factor 3, and interleukin (IL)-33), microbial translocation, immune system regulation (TNF-α, CD14, lipopolysaccharide-binding protein, mannan-binding lectin, IL-18, transforming growth factor-β1 (TGF-β1), osteoprotegerin (OPG), insulin-like growth factor 2 (IGF-2), endocrine-gland-derived vascular endothelial growth factor), and matrix metalloproteinase system (MMP-9, MMP-14, and tissue inhibitors of metalloproteinase-1). RESULTS: We found that future full-responders have different biomarker profiles than non-responders, while partial-responders cannot be distinguished from either group. When future non-responders were compared to responders, their baseline contained significantly more TGF-β1, less CD14, and increased level of MMP-9, and concentration of these factors could predict non-responders with high accuracy (AUC = 0.938). Interestingly, during the 38 weeks, levels of MMP-9 decreased in all patients, irrespective of the outcome, while OPG, IGF-2, and TGF-β1 were higher in non-responders compared to full-responders both at the beginning and the end of the treatment. CONCLUSIONS: The TGF-β1 and CD14 can distinguish non-responders from responders. The changes in biomarker dynamics during the therapy suggest that growth factors (such as OPG, IGF-2, and TGF-β) are not markedly influenced by the treatment and that anti-TNF-α therapy decreases MMP-9 without influencing the treatment outcome.
Patients with preexisting metabolic disorders such as diabetes are at a higher risk of developing severe coronavirus disease 2019 (COVID-19). Mitochondrion, the very organelle that controls cellular metabolism, holds the key to understanding disease progression at the cellular level. Our current study aimed to understand how cellular metabolism contributes to COVID-19 outcomes. Metacore pathway enrichment analyses on differentially expressed genes (encoded by both mitochondrial and nuclear deoxyribonucleic acid (DNA)) involved in cellular metabolism, regulation of mitochondrial respiration and organization, and apoptosis, was performed on RNA sequencing (RNASeq) data from blood samples collected from healthy controls and patients with mild/moderate or severe COVID-19. Genes from the enriched pathways were analyzed by network analysis to uncover interactions among them and up- or downstream genes within each pathway. Compared to the mild/moderate COVID-19, the upregulation of a myriad of growth factor and cell cycle signaling pathways, with concomitant downregulation of interferon signaling pathways, were observed in the severe group. Matrix metallopeptidase 9 (MMP9) was found in five of the top 10 upregulated pathways, indicating its potential as therapeutic target against COVID-19. In summary, our data demonstrates aberrant activation of endocrine signaling in severe COVID-19, and its implication in immune and metabolic dysfunction.
Hypoxia can cause basement membrane (BM) degradation in tissues. Matrix metalloproteinase 9 (MMP-9) is involved in various human cancers as well as BM degradation by downregulating type IV collagen (COL4). This study investigated the role of MMP-9 in hypoxia-mediated BM degradation in rat bone marrow based on its regulation of collagen type IV alpha 1 chain (COL4A1). Eighty male rats were randomly divided into four groups based on exposure to hypoxic conditions at a simulated altitude of 7,000 m, control (normoxia) and 3, 7, and 10 days of hypoxia exposure. BM degradation in bone marrow was determined by transmission electron microscopy. MMP-9 levels were assessed by western blot and real-time PCR, and COL4A1 levels were assessed by western blot and immunohistochemistry. Microvessels BMs in bone marrow exposed to acute hypoxia were observed by electron microscopy. MMP-9 expression increased, COL4A1 protein expression decreased, and BM degradation occurred in the 10-, 7-, and 3-day hypoxia groups compared with that in the control group (all P < 0.05). Hypoxia increased MMP-9 levels, which in turn downregulated COL4A1, thereby increasing BM degradation. MMP-9 upregulation significantly promoted BM degradation and COL4A1 downregulation. Our results suggest that MMP-9 is related to acute hypoxia-induced BM degradation in bone marrow by regulating COL4A1.
- MeSH
- bazální membrána * metabolismus MeSH
- hypoxie metabolismus MeSH
- kolagen typu IV * metabolismus MeSH
- krysa rodu rattus MeSH
- matrixová metaloproteinasa 9 * metabolismus MeSH
- upregulace MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The increasing risk of antibiotic failure in the treatment of Pseudomonas aeruginosa infections is largely related to the production of a wide range of virulence factors. The use of non-thermal plasma (NTP) is a promising alternative to antimicrobial treatment. Nevertheless, there is still a lack of knowledge about the effects of NTP on the virulence factors production. We evaluated the ability of four NTP-affected P. aeruginosa strains to re-form biofilm and produce Las-B elastase, proteases, lipases, haemolysins, gelatinase or pyocyanin. Highly strains-dependent inhibitory activity of NTP against extracellular virulence factors production was observed. Las-B elastase activity was reduced up to 82% after 15-min NTP treatment, protease activity and pyocyanin production by biofilm cells was completely inhibited after 60 min, in contrast to lipases and gelatinase production, which remained unchanged. However, for all strains tested, a notable reduction in biofilm re-development ability was depicted using spinning disc confocal microscopy. In addition, NTP exposure of mature biofilms caused disruption of biofilm cells and their dispersion into the environment, as shown by transmission electron microscopy. This appears to be a key step that could help overcome the high resistance of P. aeruginosa and its eventual elimination, for example in combination with antibiotics still highly effective against planktonic cells.
- MeSH
- antibakteriální látky farmakologie MeSH
- biofilmy MeSH
- endopeptidasy farmakologie MeSH
- faktory virulence MeSH
- hemolyziny farmakologie MeSH
- lidé MeSH
- pankreatická elastasa MeSH
- plankton MeSH
- plazmové plyny * farmakologie MeSH
- proteasy MeSH
- pseudomonádové infekce * MeSH
- Pseudomonas aeruginosa MeSH
- pyokyanin MeSH
- quorum sensing MeSH
- želatinasy farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The preocular tear film is critically important for maintaining healthy ocular surface. In lagophthalmos, increased evaporation and tear film instability can occur. The level of tear matrix metalloproteinase 9 (MMP-9) is considered as a possible marker of ocular surface damage and inflammation. The aim of this study was to evaluate the possible usefulness of measuring tear film levels of MMP-9 in patients with lagophthalmos. Sixteen adult patients with unilateral lagophthalmos due to cerebellopontine angle mass surgery were included. Basic clinical examination including tear film osmolarity, degree of lagophthalmos, ocular surface sensitivity testing, corneal fluorescein staining, and tear break-up time (TBUT) were performed. Furthermore, tear MMP-9 quantification was performed and the values from lagophthalmic and contralateral healthy eye were compared. Possible correlations between tear MMP-9 levels and other parameters were analyzed. The Oxford score was higher in lagophthalmic eyes in comparison to healthy eyes. TBUT and corneal sensitivity were lower in lagophthalmic eyes. There was no difference in osmolarity between the two groups. Tear MMP-9 values were higher in lagophthalmic eyes. A higher MMP-9 value was associated with an increase in ocular surface fluorescein staining and a decrease of TBUT in lagophthalmic eyes. Tear MMP-9 may be used for monitoring ocular surface damage, contribute to early detection of inflammation progression and facilitate treatment adjustments.
- MeSH
- dospělí MeSH
- fluorescein MeSH
- lidé MeSH
- matrixová metaloproteinasa 9 MeSH
- nemoci očních víček * MeSH
- osmolární koncentrace MeSH
- poranění oka * MeSH
- slzy MeSH
- syndromy suchého oka * diagnóza MeSH
- zánět MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH