Proteomic Characterization of Human Neural Stem Cells and Their Secretome During in vitro Differentiation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33584205
PubMed Central
PMC7876319
DOI
10.3389/fncel.2020.612560
Knihovny.cz E-zdroje
- Klíčová slova
- SWATH-MS, VEGF, neural differentiation, neural stem cell, proliferation, proteome, secretome,
- Publikační typ
- časopisecké články MeSH
Cell therapies represent a promising approach to slow down the progression of currently untreatable neurodegenerative diseases (e.g., Alzheimer's and Parkinson's disease or amyotrophic lateral sclerosis), as well as to support the reconstruction of functional neural circuits after spinal cord injuries. In such therapies, the grafted cells could either functionally integrate into the damaged tissue, partially replacing dead or damaged cells, modulate inflammatory reaction, reduce tissue damage, or support neuronal survival by secretion of cytokines, growth, and trophic factors. Comprehensive characterization of cells and their proliferative potential, differentiation status, and population purity before transplantation is crucial to preventing safety risks, e.g., a tumorous growth due to the proliferation of undifferentiated stem cells. We characterized changes in the proteome and secretome of human neural stem cells (NSCs) during their spontaneous (EGF/FGF2 withdrawal) differentiation and differentiation with trophic support by BDNF/GDNF supplementation. We used LC-MS/MS in SWATH-MS mode for global cellular proteome profiling and quantified almost three thousand cellular proteins. Our analysis identified substantial protein differences in the early stages of NSC differentiation with more than a third of all the proteins regulated (including known neuronal and NSC multipotency markers) and revealed that the BDNF/GDNF support affected more the later stages of the NSC differentiation. Among the pathways identified as activated during both spontaneous and BDNF/GDNF differentiation were the HIF-1 signaling pathway, Wnt signaling pathway, and VEGF signaling pathway. Our follow-up secretome analysis using Luminex multiplex immunoassay revealed significant changes in the secretion of VEGF and IL-6 during NSC differentiation. Our results further demonstrated an increased expression of neuropilin-1 as well as catenin β-1, both known to participate in the regulation of VEGF signaling, and showed that VEGF-A isoform 121 (VEGF121), in particular, induces proliferation and supports survival of differentiating cells.
Zobrazit více v PubMed
Abati E., Bresolin N., Comi G., Corti S. (2019). Advances, challenges, and perspectives in translational stem cell therapy for amyotrophic lateral sclerosis. Mol. Neurobiol. 56, 6703–6715. 10.1007/s12035-019-1554-x PubMed DOI
Ahuja C. S., Mothe A., Khazaei M., Badhiwala J. H., Gilbert E. A., van der Kooy D., et al. . (2020). The leading edge: emerging neuroprotective and neuroregenerative cell-based therapies for spinal cord injury. Stem Cells Transl. Med. 9, 1509–1530. 10.1002/sctm.19-0135 PubMed DOI PMC
Alhamdoosh M., Ng M., Wilson N. J., Sheridan J. M., Huynh H., Wilson M. J., et al. . (2017). Combining multiple tools outperforms individual methods in gene set enrichment analyses. Bioinformatics 33, 414–424. 10.1101/042580 PubMed DOI PMC
Amariglio N., Hirshberg A., Scheithauer B. W., Cohen Y., Loewenthal R., Trakhtenbrot L., et al. . (2009). Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 6:e1000029. 10.1371/journal.pmed.1000029 PubMed DOI PMC
Balbous A., Cortes U., Guilloteau K., Villalva C., Flamant S., Gaillard A., et al. . (2014). A mesenchymal glioma stem cell profile is related to clinical outcome. Oncogenesis 3:e91. 10.1038/oncsis.2014.5 PubMed DOI PMC
Bohaciakova D., Hruska-Plochan M., Tsunemoto R., Gifford W. D., Driscoll S. P., Glenn T. D., et al. . (2019). A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors. Stem Cell Res. Ther. 10:83. 10.1186/s13287-019-1163-7 PubMed DOI PMC
Bolte S., Cordelières F. P. (2006). A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224 (Pt 3), 213–232. 10.1111/j.1365-2818.2006.01706.x PubMed DOI
Bott C. J., Winckler B. (2020). Intermediate filaments in developing neurons: beyond structure. Cytoskeleton 77, 110–128. 10.1002/cm.21597 PubMed DOI
Bradbury E. J., Burnside E. R. (2019). Moving beyond the glial scar for spinal cord repair. Nat. Commun. 10:3879. 10.1038/s41467-019-11707-7 PubMed DOI PMC
Cai Y., Wu P., Ozen M., Yu Y., Wang J., Ittmann M., et al. . (2006). Gene expression profiling and analysis of signaling pathways involved in priming and differentiation of human neural stem cells. Neuroscience 138, 133–148. 10.1016/j.neuroscience.2005.11.041 PubMed DOI
Carmeliet P., Ferreira V., Breier G., Pollefeyt S., Kieckens L., Gertsenstein M., et al. . (1996). Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439. 10.1038/380435a0 PubMed DOI
Carr-Wilkinson J., Prathalingam N., Pal D., Moad M., Lee N., Sundaresh A., et al. . (2018). Differentiation of human embryonic stem cells to sympathetic neurons: a potential model for understanding neuroblastoma pathogenesis. Stem Cells Int. 2018:e4391641. 10.1155/2018/4391641 PubMed DOI PMC
Choi M., Chang C.-Y., Clough T., Broudy D., Killeen T., MacLean B., et al. . (2014). MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 30, 2524–2526. 10.1093/bioinformatics/btu305 PubMed DOI
Cohen T., Nahari D., Cerem L. W., Neufeld G., Levi B. Z. (1996). Interleukin 6 induces the expression of vascular endothelial growth factor. J. Biol. Chem. 271, 736–741. 10.1074/jbc.271.2.736 PubMed DOI
Cuascut F. X., Hutton G. J. (2019). Stem cell-based therapies for multiple sclerosis: current perspectives. Biomedicines 7:26. 10.3390/biomedicines7020026 PubMed DOI PMC
de Gioia R., Biella F., Citterio G., Rizzo F., Abati E., Nizzardo M., et al. . (2020). Neural stem cell transplantation for neurodegenerative diseases. Int. J. Mol. Sci. 21:3103. 10.3390/ijms21093103 PubMed DOI PMC
Díaz M. L. (2019). Regenerative medicine: could Parkinson's be the first neurodegenerative disease to be cured? Future Sci. OA 5:FSO418. 10.2144/fsoa-2019-0035 PubMed DOI PMC
Einstein O., Fainstein N., Vaknin I., Mizrachi-Kol R., Reihartz E., Grigoriadis N., et al. . (2007). Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression. Ann. Neurol. 61, 209–218. 10.1002/ana.21033 PubMed DOI
Ellison S. M., Trabalza A., Tisato V., Pazarentzos E., Lee S., Papadaki V., et al. . (2013). Dose-dependent neuroprotection of VEGF165 in Huntington's disease striatum. Mol. Ther. J. Am. Soc. Gene Ther. 21, 1862–1875. 10.1038/mt.2013.132 PubMed DOI PMC
Essers J., Theil A. F., Baldeyron C., Cappellen W. A., van Houtsmuller A. B., Kanaar R., et al. . (2005). Nuclear dynamics of PCNA in DNA replication and repair. Mol. Cell Biol. 25, 9350–9359. 10.1128/MCB.25.21.9350-9359.2005 PubMed DOI PMC
Fathi A., Hatami M., Vakilian H., Han C.-L., Chen Y.-J., Baharvand H., et al. . (2014). Quantitative proteomics analysis highlights the role of redox hemostasis and energy metabolism in human embryonic stem cell differentiation to neural cells. J. Proteomics 101, 1–16. 10.1016/j.jprot.2014.02.002 PubMed DOI
Fathi A., Pakzad M., Taei A., Brink T. C., Pirhaji L., Ruiz G., et al. . (2009). Comparative proteome and transcriptome analyses of embryonic stem cells during embryoid body-based differentiation. Proteomics 9, 4859–4870. 10.1002/pmic.200900003 PubMed DOI
Ferrara N., Carver-Moore K., Chen H., Dowd M., Lu L., O'Shea K. S., et al. . (1996). Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442. 10.1038/380439a0 PubMed DOI
Fischer I., Dulin J. N., Lane M. A. (2020). Transplanting neural progenitor cells to restore connectivity after spinal cord injury. Nat. Rev. Neurosci. 21, 366–383. 10.1038/s41583-020-0314-2 PubMed DOI PMC
Forsythe J. A., Jiang B. H., Iyer N. V., Agani F., Leung S. W., Koos R. D., et al. . (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell Biol. 16, 4604–4613. 10.1128/MCB.16.9.4604 PubMed DOI PMC
Gage F. H., Temple S. (2013). Neural stem cells: generating and regenerating the brain. Neuron 80, 588–601. 10.1016/j.neuron.2013.10.037 PubMed DOI
Green C., Minassian A., Vogel S., Diedenhofen M., Beyrau A., Wiedermann D., et al. . (2018). Sensorimotor functional and structural networks after intracerebral stem cell grafts in the ischemic mouse brain. J. Neurosci. 38, 1648–1661. 10.1523/JNEUROSCI.2715-17.2018 PubMed DOI PMC
Gu Z., Eils R., Schlesner M. (2016). Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849. 10.1093/bioinformatics/btw313 PubMed DOI
Gurok U., Steinhoff C., Lipkowitz B., Ropers H.-H., Scharff C., Nuber U. A. (2004). Gene expression changes in the course of neural progenitor cell differentiation. J. Neurosci. 24, 5982–6002. 10.1523/JNEUROSCI.0809-04.2004 PubMed DOI PMC
Haigh J. J., Morelli P. I., Gerhardt H., Haigh K., Tsien J., Damert A., et al. . (2003). Cortical and retinal defects caused by dosage-dependent reductions in VEGF-A paracrine signaling. Dev. Biol. 262, 225–241. 10.1016/S0012-1606(03)00356-7 PubMed DOI
Hao T., Rockwell P. (2013). Signaling through the vascular endothelial growth factor receptor VEGFR-2 protects hippocampal neurons from mitochondrial dysfunction and oxidative stress. Free Radic. Biol. Med. 63, 421–431. 10.1016/j.freeradbiomed.2013.05.036 PubMed DOI PMC
Harris J. P., Burrell J. C., Struzyna L. A., Chen H. I., Serruya M. D., Wolf J. A., et al. (2020). Emerging regenerative medicine and tissue engineering strategies for Parkinson's disease. NPJ Park Dis. 6:4 10.1038/s41531-019-0105-5 PubMed DOI PMC
Hashimoto T., Zhang X.-M., Chen B. Y., Yang X.-J. (2006). VEGF activates divergent intracellular signaling components to regulate retinal progenitor cell proliferation and neuronal differentiation. Development 133, 2201–2210. 10.1242/dev.02385 PubMed DOI PMC
Hayashi Y., Lin H.-T., Lee C.-C., Tsai K.-J. (2020). Effects of neural stem cell transplantation in Alzheimer's disease models. J. Biomed. Sci. 27:29. 10.1186/s12929-020-0622-x PubMed DOI PMC
Herrera J. J., Nesic O., Narayana P. A. (2009). Reduced vascular endothelial growth factor expression in contusive spinal cord injury. J. Neurotrauma 26, 995–1003. 10.1089/neu.2008.0779 PubMed DOI PMC
Iacovitti L., Donaldson A. E., Marshall C. E., Suon S., Yang M. (2007). A protocol for the differentiation of human embryonic stem cells into dopaminergic neurons using only chemically defined human additives: studies in vitro and in vivo. Brain Res. 1127, 19–25. 10.1016/j.brainres.2006.10.022 PubMed DOI PMC
Islam O., Gong X., Rose-John S., Heese K. (2008). Interleukin-6 and neural stem cells: more than gliogenesis. Mol. Biol. Cell. 20, 188–199. 10.1091/mbc.e08-05-0463 PubMed DOI PMC
Kim W. K., Kim D., Cui J., Jang H. H., Kim K. S., Lee H. J., et al. . (2014). Secretome analysis of human oligodendrocytes derived from neural stem cells. PLoS ONE 9:e84292. 10.1371/journal.pone.0084292 PubMed DOI PMC
Koch S., Claesson-Welsh L. (2012). Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb. Perspect. Med. 2:a006502 10.1101/cshperspect.a006502 PubMed DOI PMC
Kumar L., Futschik M. E. (2007). Mfuzz: a software package for soft clustering of microarray data. Bioinformation 2, 5–7. 10.6026/97320630002005 PubMed DOI PMC
Kupcova Skalnikova H. (2013). Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie 95, 2196–2211. 10.1016/j.biochi.2013.07.015 PubMed DOI
Langfelder P., Horvath S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559. 10.1186/1471-2105-9-559 PubMed DOI PMC
Lenth R. (2020). emmeans: Estimated Marginal Means, aka Least-Squares Means. Available online at: https://CRAN.R-project.org/package=emmeans (accessed December 10, 2020).
Liu X.-Y., Yang L.-P., Zhao L. (2020). Stem cell therapy for Alzheimer's disease. World J. Stem Cells 12, 787–802. 10.4252/wjsc.v12.i8.787 PubMed DOI PMC
Loeffler S., Fayard B., Weis J., Weissenberger J. (2005). Interleukin-6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1. Int. J. Cancer 115, 202–213. 10.1002/ijc.20871 PubMed DOI
Mackenzie F., Ruhrberg C. (2012). Diverse roles for VEGF-A in the nervous system. Development 139, 1371–1380. 10.1242/dev.072348 PubMed DOI
MacLean B., Tomazela D. M., Shulman N., Chambers M., Finney G. L., Frewen B., et al. . (2010). Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968. 10.1093/bioinformatics/btq054 PubMed DOI PMC
Manoonkitiwongsa P. S., Schultz R. L., McCreery D. B., Whitter E. F., Lyden P. D. (2004). Neuroprotection of ischemic brain by vascular endothelial growth factor is critically dependent on proper dosage and may be compromised by angiogenesis. J. Cereb. Blood Flow Metab. 24, 693–702. 10.1097/01.WCB.0000126236.54306.21 PubMed DOI
Maurer M. H., Tripps W. K. C., Feldmann R. E., Kuschinsky W. (2003). Expression of vascular endothelial growth factor and its receptors in rat neural stem cells. Neurosci. Lett. 344, 165–168. 10.1016/S0304-3940(03)00407-5 PubMed DOI
Melo-Braga M. N., Meyer M., Zeng X., Larsen M. R. (2015). Characterization of human neural differentiation from pluripotent stem cells using proteomics/PTMomics—current state-of-the-art and challenges. Proteomics 15, 656–674. 10.1002/pmic.201400388 PubMed DOI
Nguyen L. S., Fregeac J., Bole-Feysot C., Cagnard N., Iyer A., Anink J., et al. . (2018). Role of miR-146a in neural stem cell differentiation and neural lineage determination: relevance for neurodevelopmental disorders. Mol Autism. 9:38. 10.1186/s13229-018-0219-3 PubMed DOI PMC
Oh J., McCloskey M. A., Blong C. C., Bendickson L., Nilsen-Hamilton M., Sakaguchi D. S. (2010). Astrocyte-derived interleukin-6 promotes specific neuronal differentiation of neural progenitor cells from adult hippocampus. J. Neurosci. Res. 88, 2798–2809. 10.1002/jnr.22447 PubMed DOI PMC
Okawa S., Gagrica S., Blin C., Ender C., Pollard S. M., Krijgsveld J. (2017). Proteome and secretome characterization of glioblastoma-derived neural stem cells. Stem Cells 35, 967–980. 10.1002/stem.2542 PubMed DOI PMC
Oliver D., Reddy P. H. (2019). Dynamics of dynamin-related protein 1 in Alzheimer's disease and other neurodegenerative diseases. Cells 8:961. 10.3390/cells8090961 PubMed DOI PMC
Otsu N. (1979). A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man. Cybern. 9, 62–66. 10.1109/TSMC.1979.4310076 DOI
Ottoboni L., von Wunster B., Martino G. (2020). Therapeutic plasticity of neural stem cells. Front. Neurol. 11:148. 10.3389/fneur.2020.00148 PubMed DOI PMC
Pan Q., Chathery Y., Wu Y., Rathore N., Tong R. K., Peale F., et al. . (2007). Neuropilin-1 binds to VEGF121 and regulates endothelial cell migration and sprouting. J. Biol. Chem. 282, 24049–24056. 10.1074/jbc.M703554200 PubMed DOI
Park J. E., Keller G. A., Ferrara N. (1993). The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol. Biol. Cell. 4, 1317–1326. 10.1091/mbc.4.12.1317 PubMed DOI PMC
Petrenko Y., Vackova I., Kekulova K., Chudickova M., Koci Z., Turnovcova K., et al. . (2020). A comparative analysis of multipotent mesenchymal stromal cells derived from different sources, with a focus on neuroregenerative potential. Sci. Rep. 10:4290. 10.1038/s41598-020-61167-z PubMed DOI PMC
Pluchino S., Smith J. A., Peruzzotti-Jametti L. (2020). Promises and limitations of neural stem cell therapies for progressive multiple sclerosis. Trends Mol. Med. 26, 898–912. 10.1016/j.molmed.2020.04.005 PubMed DOI
R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; Available online at: https://www.R-project.org/ (accessed December 10, 2020).
Reiter L., Rinner O., Picotti P., Hüttenhain R., Beck M., Brusniak M.-Y., et al. . (2011). mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nat. Methods 8, 430–435. 10.1038/nmeth.1584 PubMed DOI
Rosenblum S., Smith T. N., Wang N., Chua J. Y., Westbroek E., Wang K., et al. . (2015). BDNF pretreatment of human embryonic-derived neural stem cells improves cell survival and functional recovery after transplantation in hypoxic–ischemic stroke. Cell Transplant. 24, 2449–2461. 10.3727/096368914X679354 PubMed DOI
Schänzer A., Wachs F.-P., Wilhelm D., Acker T., Cooper-Kuhn C., Beck H., et al. . (2004). Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol. 14, 237–248. 10.1111/j.1750-3639.2004.tb00060.x PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. . (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. 10.1038/nmeth.2019 PubMed DOI PMC
Schwanhäusser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J., et al. . (2011). Global quantification of mammalian gene expression control. Nature 473, 337–342. 10.1038/nature10098 PubMed DOI
Shoemaker L. D., Kornblum H. I. (2016). Neural stem cells (NSCs) and proteomics. Mol. Cell Proteomics 15, 344–354. 10.1074/mcp.O115.052704 PubMed DOI PMC
Skalnikova H., Halada P., Vodicka P., Motlik J., Rehulka P., Hørning O., et al. . (2007). A proteomic approach to studying the differentiation of neural stem cells. Proteomics 7, 1825–1838. 10.1002/pmic.200600867 PubMed DOI
Skalnikova H., Motlik J., Gadher S. J., Kovarova H. (2011). Mapping of the secretome of primary isolates of mammalian cells, stem cells and derived cell lines. Proteomics 11, 691–708. 10.1002/pmic.201000402 PubMed DOI
Skalnikova H., Vodicka P., Pelech S., Motlik J., Gadher S. J., Kovarova H. (2008). Protein signaling pathways in differentiation of neural stem cells. Proteomics 8, 4547–4559. 10.1002/pmic.200800096 PubMed DOI
Smyth G., Hu Y., Ritchie M., Silver J., Wettenhall J., McCarthy D., et al. (2020). limma: Linear Models for Microarray Data [Internet]. Bioconductor version: Release (3.10). Available online at: https://bioconductor.org/packages/limma/ (accessed February 13, 2020).
Soker S., Takashima S., Miao H. Q., Neufeld G., Klagsbrun M. (1998). Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735–745. 10.1016/S0092-8674(00)81402-6 PubMed DOI
Song Y., Subramanian K., Berberich M. J., Rodriguez S., Latorre I. J., Luria C. M., et al. . (2019). A dynamic view of the proteomic landscape during differentiation of ReNcell VM cells, an immortalized human neural progenitor line. Sci. Data 6:190016. 10.1038/sdata.2019.16 PubMed DOI PMC
Storer M. A., Gallagher D., Fatt M. P., Simonetta J. V., Kaplan D. R., Miller F. D. (2018). Interleukin-6 regulates adult neural stem cell numbers during normal and abnormal post-natal development. Stem Cell Rep. 10, 1464–1480. 10.1016/j.stemcr.2018.03.008 PubMed DOI PMC
Suda S., Nito C., Yokobori S., Sakamoto Y., Nakajima M., Sowa K., et al. . (2020). Recent advances in cell-based therapies for ischemic stroke. Int. J. Mol. Sci. 21:6781. 10.3390/ijms21186718 PubMed DOI PMC
Sun X., Kaufman P. D. (2018). Ki-67: more than a proliferation marker. Chromosoma 127, 175–186. 10.1007/s00412-018-0659-8 PubMed DOI PMC
Tillo M., Erskine L., Cariboni A., Fantin A., Joyce A., Denti L., et al. . (2015). VEGF189 binds NRP1 and is sufficient for VEGF/NRP1-dependent neuronal patterning in the developing brain. Development 142, 314–319. 10.1242/dev.115998 PubMed DOI PMC
Tischer E., Mitchell R., Hartman T., Silva M., Gospodarowicz D., Fiddes J. C., et al. . (1991). The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J. Biol. Chem. 266, 11947–11954. PubMed
Tyleckova J., Valekova I., Zizkova M., Rakocyova M., Marsala S., Marsala M., et al. . (2016). Surface N-glycoproteome patterns reveal key proteins of neuronal differentiation. J. Proteomics 132, 13–20. 10.1016/j.jprot.2015.11.008 PubMed DOI
Valekova I., Skalnikova H. K., Jarkovska K., Motlik J., Kovarova H. (2015). Multiplex immunoassays for quantification of cytokines, growth factors, and other proteins in stem cell communication. Methods Mol. Biol. 1212, 39–63. 10.1007/7651_2014_94 PubMed DOI
Vallée A., Guillevin R., Vallée J.-N. (2018). Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas. Rev. Neurosci. 29, 71–91. 10.1515/revneuro-2017-0032 PubMed DOI
Večera J., Procházková J., Šumberová V., Pánská V., Paculová H., Lánová M. K., et al. . (2020). Hypoxia/Hif1α prevents premature neuronal differentiation of neural stem cells through the activation of Hes1. Stem Cell Res. 45:101770. 10.1016/j.scr.2020.101770 PubMed DOI
Wang F., Kameda M., Yasuhara T., Tajiri N., Kikuchi Y., Liang H. B., et al. . (2011). GDNF-pretreatment enhances the survival of neural stem cells following transplantation in a rat model of Parkinson's disease. Neurosci. Res. 71, 92–98. 10.1016/j.neures.2011.05.019 PubMed DOI
Wang S., Li Z., Shen H., Zhang Z., Yin Y., Wang Q., et al. . (2016). Quantitative phosphoproteomic study reveals that protein kinase A regulates neural stem cell differentiation through phosphorylation of catenin beta-1 and glycogen synthase kinase 3β. Stem Cells 34, 2090–2101. 10.1002/stem.2387 PubMed DOI
Wang Y., Duan W., Wang W., Di W., Liu Y., Liu Y., et al. . (2016). scAAV9-VEGF prolongs the survival of transgenic ALS mice by promoting activation of M2 microglia and the PI3K/Akt pathway. Brain Res. 1648, 1–10. 10.1016/j.brainres.2016.06.043 PubMed DOI
Woolard J., Bevan H. S., Harper S. J., Bates D. O. (2009). Molecular diversity of VEGF-A as a regulator of its biological activity. Microcirculation 16, 572–592. 10.1080/10739680902997333 PubMed DOI PMC
Xu Q., Briggs J., Park S., Niu G., Kortylewski M., Zhang S., et al. . (2005). Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene 24, 5552–5560. 10.1038/sj.onc.1208719 PubMed DOI
Yao Y., Zheng X.-R., Zhang S.-S., Wang X., Yu X.-H., Tan J.-L., et al. (2016). Transplantation of vascular endothelial growth factor-modified neural stem/progenitor cells promotes the recovery of neurological function following hypoxic-ischemic brain damage. Neural Regen. Res. 11, 1456–1463. 10.4103/1673-5374.191220 PubMed DOI PMC
Yasuhara T., Shingo T., Muraoka K., wen Ji Y., Kameda M., Takeuchi A., et al. (2005). The differences between high and low-dose administration of VEGF to dopaminergic neurons of in vitro and in vivo Parkinson's disease model. Brain Res. 1038, 1–10. 10.1016/j.brainres.2004.12.055 PubMed DOI
Yu G., Wang L.-G., Han Y., He Q.-Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS J. Integr. Biol. 16, 284–287. 10.1089/omi.2011.0118 PubMed DOI PMC
Zheng X., Boyer L., Jin M., Mertens J., Kim Y., Ma L., et al. . (2016). Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. eLife 5:e13374. 10.7554/eLife.13374 PubMed DOI PMC
Zhu W., Mao Y., Zhao Y., Zhou L.-F., Wang Y., Zhu J.-H., et al. . (2005). Transplantation of vascular endothelial growth factor-transfected neural stem cells into the rat brain provides neuroprotection after transient focal cerebral ischemia. Neurosurgery 57, 325–333, discussion 325–333. 10.1227/01.NEU.0000166682.50272.BC PubMed DOI
Zizkova M., Sucha R., Tyleckova J., Jarkovska K., Mairychova K., Kotrcova E., et al. . (2015). Proteome-wide analysis of neural stem cell differentiation to facilitate transition to cell replacement therapies. Expert Rev. Proteomics 12, 83–95. 10.1586/14789450.2015.977381 PubMed DOI
Fibrillar extracellular matrix produced by pericyte-like cells facilitates glioma cell dissemination
Proteomic Analysis of Human Neural Stem Cell Differentiation by SWATH-MS
Targeted mass spectrometry for monitoring of neural differentiation