Targeted mass spectrometry for monitoring of neural differentiation
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34357391
PubMed Central
PMC8353267
DOI
10.1242/bio.058727
PII: 271174
Knihovny.cz E-zdroje
- Klíčová slova
- Cell line characterization, Mass spectrometry, Neural differentiation, Neural stem cell, Protein marker, Selected reaction monitoring,
- MeSH
- biologické markery MeSH
- buněčná diferenciace * MeSH
- buněčné linie MeSH
- buněčný rodokmen genetika MeSH
- hmotnostní spektrometrie MeSH
- imunohistochemie MeSH
- lidé MeSH
- nervové kmenové buňky cytologie metabolismus MeSH
- neuroglie MeSH
- neurony MeSH
- stanovení celkové genové exprese MeSH
- vývojová regulace genové exprese MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
Human multipotent neural stem cells could effectively be used for the treatment of a variety of neurological disorders. However, a defining signature of neural stem cell lines that would be expandable, non-tumorigenic, and differentiate into desirable neuronal/glial phenotype after in vivo grafting is not yet defined. Employing a mass spectrometry approach, based on selected reaction monitoring, we tested a panel of well-described culture conditions, and measured levels of protein markers routinely used to probe neural differentiation, i.e. POU5F1 (OCT4), SOX2, NES, DCX, TUBB3, MAP2, S100B, GFAP, GALC, and OLIG1. Our multiplexed assay enabled us to simultaneously identify the presence of pluripotent, multipotent, and lineage-committed neural cells, thus representing a powerful tool to optimize novel and highly specific propagation and differentiation protocols. The multiplexing capacity of this method permits the addition of other newly identified cell type-specific markers to further increase the specificity and quantitative accuracy in detecting targeted cell populations. Such an expandable assay may gain the advantage over traditional antibody-based assays, and represents a method of choice for quality control of neural stem cell lines intended for clinical use.
Zobrazit více v PubMed
Aebersold, R. and Mann, M. (2003). Mass spectrometry-based proteomics. Nature 422, 198-207. 10.1038/nature01511 PubMed DOI
Barker, R. A. and de Beaufort, I. (2013). Scientific and ethical issues related to stem cell research and interventions in neurodegenerative disorders of the brain. Prog. Neurobiol. 110, 63-73. 10.1016/j.pneurobio.2013.04.003 PubMed DOI
Bjarkam, C. R., Glud, A. N., Margolin, L., Reinhart, K., Franklin, R., Deding, D., Ettrup, K. S., Fitting, L. M., Nielsen, M. S., Sørensen, J.-C. H.et al. (2010). Safety and function of a new clinical intracerebral microinjection instrument for stem cells and therapeutics examined in the göttingen minipig. Stereotact. Funct. Neurosurg. 88, 56-63. 10.1159/000268743 PubMed DOI
Bodenmiller, B. (2016). Multiplexed epitope-based tissue imaging for discovery and healthcare applications. Cell Syst 2, 225-238. 10.1016/j.cels.2016.03.008 PubMed DOI
Bohaciakova, D., Hruska-Plochan, M., Tsunemoto, R., Gifford, W. D., Driscoll, S. P., Glenn, T. D., Wu, S., Marsala, S., Navarro, M., Tadokoro, T.et al. (2019). A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors. Stem Cell Res. Ther. 10, 83. 10.1186/s13287-019-1163-7 PubMed DOI PMC
Boulis, N. M. (2010). Floating spinal cannula and method of use. U.S. Patent US7833217B2 filed July 1, 2009, and issued November 16, 2010.
Carpenter, M. K., Cui, X., Hu, Z., Jackson, J., Sherman, S., Seiger, Å. and Wahlberg, L. U. (1999). In Vitro expansion of a multipotent population of human neural progenitor cells. Exp. Neurol. 158, 265-278. 10.1006/exnr.1999.7098 PubMed DOI
Cattaneo, E. and McKay, R. (1991). Identifying and manipulating neuronal stem cells. Trends Neurosci. 14, 338-340. 10.1016/0166-2236(91)90158-Q PubMed DOI
Červenka, J., Tylečková, J., Kupcová Skalníková, H., Vodičková Kepková, K., Poliakh, I., Valeková, I., Pfeiferová, L., Kolář, M., Vaškovičová, M., Pánková, T.et al. (2021). Proteomic characterization of human neural stem cells and their secretome during in vitro differentiation. Front. Cell. Neurosci. 14, 612560. 10.3389/fncel.2020.612560 PubMed DOI PMC
Chang, C.-Y., Picotti, P., Hüttenhain, R., Heinzelmann-Schwarz, V., Jovanovic, M., Aebersold, R. and Vitek, O. (2012). Protein significance analysis in selected reaction monitoring (SRM) measurements. Mol. Cell. Proteomics 11, M111.014662. 10.1074/mcp.M111.014662 PubMed DOI PMC
Choi, M., Chang, C.-Y., Clough, T., Broudy, D., Killeen, T., MacLean, B. and Vitek, O. (2014). MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 30, 2524-2526. 10.1093/bioinformatics/btu305 PubMed DOI
Cizkova, D., Kakinohana, O., Kucharova, K., Marsala, S., Johe, K., Hazel, T., Hefferan, M. P. and Marsala, M. (2007). Functional recovery in rats with ischemic paraplegia after spinal grafting of human spinal stem cells. Neuroscience 147, 546-560. 10.1016/j.neuroscience.2007.02.065 PubMed DOI PMC
Conti, L. and Cattaneo, E. (2010). Neural stem cell systems: physiological players or in vitro entities? Nat. Rev. Neurosci. 11, 176-187. 10.1038/nrn2761 PubMed DOI
Cunningham, M. G. (1998). Systems and methods for delivering therapeutic agents to selected sites in a subject. U.S. Patent US5792110A filed June 26, 1996, and issued August 11, 1998.
Doetsch, F., Caillé, I., Lim, D. A., García-Verdugo, J. M. and Alvarez-Buylla, A. (1999). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703-716. 10.1016/S0092-8674(00)80783-7 PubMed DOI
Donega, V., Burm, S. M., van Strien, M. E., van Bodegraven, E. J., Paliukhovich, I., Geut, H., van de Berg, W. D. J., Li, K. W., Smit, A. B., Basak, O.et al. (2019). Transcriptome and proteome profiling of neural stem cells from the human subventricular zone in Parkinson's disease. Acta Neuropathol Commun. 7, 84. 10.1186/s40478-019-0736-0 PubMed DOI PMC
Dunkley, T., Costa, V., Friedlein, A., Lugert, S., Aigner, S., Ebeling, M., Miller, M. T., Patsch, C., Piraino, P., Cutler, P.et al. (2015). Characterization of a human pluripotent stem cell-derived model of neuronal development using multiplexed targeted proteomics. Proteomics Clin. Appl. 9, 684-694. 10.1002/prca.201400150 PubMed DOI
Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.-M., Nordborg, C., Peterson, D. A. and Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nat. Med. 4, 1313-1317. 10.1038/3305 PubMed DOI
Ernst, A., Alkass, K., Bernard, S., Salehpour, M., Perl, S., Tisdale, J., Possnert, G., Druid, H. and Frisén, J. (2014). Neurogenesis in the striatum of the adult human brain. Cell 156, 1072-1083. 10.1016/j.cell.2014.01.044 PubMed DOI
Flax, J. D., Aurora, S., Yang, C., Simonin, C., Wills, A. M., Billinghurst, L. L., Jendoubi, M., Sidman, R. L., Wolfe, J. H., Kim, S. U.et al. (1998). Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat. Biotechnol. 16, 1033-1039. 10.1038/3473 PubMed DOI
Hefferan, M. P., Galik, J., Kakinohana, O., Sekerkova, G., Santucci, C., Marsala, S., Navarro, R., Hruska-Plochan, M., Johe, K., Feldman, E.et al. (2012). Human neural stem cell replacement therapy for amyotrophic lateral sclerosis by spinal transplantation. PLoS ONE 7, e42614. 10.1371/journal.pone.0042614 PubMed DOI PMC
Jensen, M. B., Yan, H., Krishnaney-Davison, R., Al Sawaf, A. and Zhang, S.-C. (2013). Survival and differentiation of transplanted neural stem cells derived from human induced pluripotent stem cells in a rat stroke Model. J. Stroke Cerebrovasc. Dis. 22, 304-308. 10.1016/j.jstrokecerebrovasdis.2011.09.008 PubMed DOI PMC
Johansson, C. B., Momma, S., Clarke, D. L., Risling, M., Lendahl, U. and Frisén, J. (1999). Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96, 25-34. 10.1016/S0092-8674(00)80956-3 PubMed DOI
Kelly, S., Bliss, T. M., Shah, A. K., Sun, G. H., Ma, M., Foo, W. C., Masel, J., Yenari, M. A., Weissman, I. L., Uchida, N.et al. (2004). Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc. Natl Acad. Sci. USA 101, 11839-11844. 10.1073/pnas.0404474101 PubMed DOI PMC
Klein, S. M., Behrstock, S., McHugh, J., Hoffmann, K., Wallace, K., Suzuki, M., Aebischer, P. and Svendsen, C. N. (2005). GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum. Gene. Ther. 16, 509-521. 10.1089/hum.2005.16.509 PubMed DOI
Kobayashi, Y., Okada, Y., Itakura, G., Iwai, H., Nishimura, S., Yasuda, A., Nori, S., Hikishima, K., Konomi, T., Fujiyoshi, K.et al. (2012). Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity. PLoS ONE 7, e52787. 10.1371/journal.pone.0052787 PubMed DOI PMC
Kupcova Skalnikova, H., Cizkova, J., Cervenka, J. and Vodicka, P. (2017). Advances in proteomic techniques for cytokine analysis: focus on melanoma research. Int. J. Mol. Sci. 18, 2697. 10.3390/ijms18122697 PubMed DOI PMC
Lam, M., Sanosaka, T., Lundin, A., Imaizumi, K., Etal, D., Karlsson, F. H., Clausen, M., Cairns, J., Hicks, R., Kohyama, J.et al. (2019). Single-cell study of neural stem cells derived from human iPSCs reveals distinct progenitor populations with neurogenic and gliogenic potential. Genes Cells 24, 836-847. 10.1111/gtc.12731 PubMed DOI PMC
Lange, V., Picotti, P., Domon, B. and Aebersold, R. (2008). Selected reaction monitoring for quantitative proteomics: a tutorial. Mol. Syst. Biol. 4, 222. 10.1038/msb.2008.61 PubMed DOI PMC
Lee, G., Kim, H., Elkabetz, Y., Al Shamy, G., Panagiotakos, G., Barberi, T., Tabar, V. and Studer, L. (2007). Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat. Biotechnol. 25, 1468-1475. 10.1038/nbt1365 PubMed DOI
Lu, P., Wang, Y., Graham, L., McHale, K., Gao, M., Wu, D., Brock, J., Blesch, A., Rosenzweig, E. S., Havton, L. A.et al. (2012). Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 150, 1264-1273. 10.1016/j.cell.2012.08.020 PubMed DOI PMC
Lu, P., Woodruff, G., Wang, Y., Graham, L., Hunt, M., Wu, D., Boehle, E., Ahmad, R., Poplawski, G., Brock, J.et al. (2014). Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron 83, 789-796. 10.1016/j.neuron.2014.07.014 PubMed DOI PMC
MacLean, B., Tomazela, D. M., Shulman, N., Chambers, M., Finney, G. L., Frewen, B., Kern, R., Tabb, D. L., Liebler, D. C. and MacCoss, M. J. (2010). Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966-968. 10.1093/bioinformatics/btq054 PubMed DOI PMC
Marsala, M. (2014). Spinal cord pulsation-cancelation injection system. World Intellectual Property Organization Patent WO2014047540A1 filed September 23, 2013, and issued March 27, 2014.
Melo-Braga, M. N., Schulz, M., Liu, Q., Swistowski, A., Palmisano, G., Engholm-Keller, K., Jakobsen, L., Zeng, X. and Larsen, M. R. (2014). Comprehensive quantitative comparison of the membrane proteome, phosphoproteome, and sialiome of human embryonic and neural stem cells. Mol. Cell. Proteomics 13, 311-328. 10.1074/mcp.M112.026898 PubMed DOI PMC
Melo-Braga, M. N., Meyer, M., Zeng, X. and Larsen, M. R. (2015). Characterization of human neural differentiation from pluripotent stem cells using proteomics/PTMomics—Current state-of-the-art and challenges. Proteomics 15, 656-674. 10.1002/pmic.201400388 PubMed DOI
Meyer, K., Ferraiuolo, L., Miranda, C. J., Likhite, S., McElroy, S., Renusch, S., Ditsworth, D., Lagier-Tourenne, C., Smith, R. A., Ravits, J.et al. (2014). Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS. Proc. Natl Acad. Sci. USA 111, 829-832. 10.1073/pnas.1314085111 PubMed DOI PMC
Nagato, M., Heike, T., Kato, T., Yamanaka, Y., Yoshimoto, M., Shimazaki, T., Okano, H. and Nakahata, T. (2005). Prospective characterization of neural stem cells by flow cytometry analysis using a combination of surface markers. J. Neurosci. Res. 80, 456-466. 10.1002/jnr.20442 PubMed DOI
Patro, N., Naik, A. and Patro, I. K. (2015). Differential temporal expression of S100β in developing rat brain. Front. Cell. Neurosci. 9, 87. 10.3389/fncel.2015.00087 PubMed DOI PMC
R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
Schneider, C. A., Rasband, W. S. and Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671-675. 10.1038/nmeth.2089 PubMed DOI PMC
Shoemaker, L. D. and Kornblum, H. I. (2016). Neural stem cells (NSCs) and proteomics. Mol. Cell. Proteomics 15, 344-354. 10.1074/mcp.O115.052704 PubMed DOI PMC
Song, Y., Subramanian, K., Berberich, M. J., Rodriguez, S., Latorre, I. J., Luria, C. M., Everley, R., Albers, M. W., Mitchison, T. J. and Sorger, P. K. (2019). A dynamic view of the proteomic landscape during differentiation of ReNcell VM cells, an immortalized human neural progenitor line. Scientific Data 6, 190016. 10.1038/sdata.2019.16 PubMed DOI PMC
Soste, M., Hrabakova, R., Wanka, S., Melnik, A., Boersema, P., Maiolica, A., Wernas, T., Tognetti, M., von Mering, C. and Picotti, P. (2014). A sentinel protein assay for simultaneously quantifying cellular processes. Nat. Methods 11, 1045-1048. 10.1038/nmeth.3101 PubMed DOI
Svendsen, C. N., Caldwell, M. A., Shen, J., ter Borg, M. G., Rosser, A. E., Tyers, P., Karmiol, S. and Dunnett, S. B. (1997). Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson's disease. Exp. Neurol. 148, 135-146. 10.1006/exnr.1997.6634 PubMed DOI
The International Stem Cell Initiative* (2007). Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol. 25, 803-816. 10.1038/nbt1318 PubMed DOI
Tyleckova, J., Valekova, I., Zizkova, M., Rakocyova, M., Marsala, S., Marsala, M., Gadher, S. J. and Kovarova, H. (2016). Surface N-glycoproteome patterns reveal key proteins of neuronal differentiation. J. Proteomics 132, 13-20. 10.1016/j.jprot.2015.11.008 PubMed DOI
United Nations. Nearly 1 in 6 of world's population suffer from neurological disorders – UN report (2007). UN News.
Usvald, D., Vodicka, P., Hlucilova, J., Prochazka, R., Motlik, J., Kuchorova, K., Johe, K., Marsala, S., Scadeng, M., Kakinohana, O.et al. (2010). Analysis of dosing regimen and reproducibility of intraspinal grafting of human spinal stem cells in immunosuppressed minipigs. Cell Transplant. 19, 1103-1122. 10.3727/096368910X503406 PubMed DOI
van Gorp, S., Leerink, M., Kakinohana, O., Platoshyn, O., Santucci, C., Galik, J., Joosten, E. A., Hruska-Plochan, M., Goldberg, D., Marsala, S.et al. (2013). Amelioration of motor/sensory dysfunction and spasticity in a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation. Stem Cell Res. Ther. 4, 57. 10.1186/scrt209 PubMed DOI PMC
Vescovi, A. L., Parati, E. A., Gritti, A., Poulin, P., Ferrario, M., Wanke, E., Frölichsthal-Schoeller, P., Cova, L., Arcellana-Panlilio, M., Colombo, A.et al. (1999). Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp. Neurol. 156, 71-83. 10.1006/exnr.1998.6998 PubMed DOI
Vinci, L., Ravarino, A., Fanos, V., Naccarato, A. G., Senes, G., Gerosa, C., Bevilacqua, G., Faa, G. and Ambu, R. (2016). Immunohistochemical markers of neural progenitor cells in the early embryonic human cerebral cortex. Eur. J. Histochem. 60, 13-19. 10.4081/ejh.2016.2563 PubMed DOI PMC
Wittchen, H. U., Jacobi, F., Rehm, J., Gustavsson, A., Svensson, M., Jönsson, B., Olesen, J., Allgulander, C., Alonso, J., Faravelli, C.et al. (2011). The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 21, 655-679. 10.1016/j.euroneuro.2011.07.018 PubMed DOI
World Health Organization. Neurological disorders: public health challenges (2006). World Health Organization.
Yabut, O. R. and Pleasure, S. J. (2016). The crossroads of neural stem cell development and tumorigenesis. Opera Med. Physiol. 2, 181-187. 10.20388/omp2016.003.0040 PubMed PMC
Yocum, A. K., Gratsch, T. E., Leff, N., Strahler, J. R., Hunter, C. L., Walker, A. K., Michailidis, G., Omenn, G. S., O'Shea, K. S. and Andrews, P. C. (2008). Coupled global and targeted proteomics of human embryonic stem cells during induced differentiation. Mol. Cell. Proteomics 7, 750-767. 10.1074/mcp.M700399-MCP200 PubMed DOI PMC
Yuan, S. H., Martin, J., Elia, J., Flippin, J., Paramban, R. I., Hefferan, M. P., Vidal, J. G., Mu, Y., Killian, R. L., Israel, M. A.et al. (2011). Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells. PLoS ONE 6, e17540. 10.1371/journal.pone.0017540 PubMed DOI PMC
Yuan, T., Liao, W., Feng, N.-H., Lou, Y.-L., Niu, X., Zhang, A.-J., Wang, Y. and Deng, Z.-F. (2013). Human induced pluripotent stem cell-derived neural stem cells survive, migrate, differentiate, and improve neurologic function in a rat model of middle cerebral artery occlusion. Stem Cell Res. Ther. 4, 73. 10.1186/scrt224 PubMed DOI PMC
Zhang, S.-C., Wernig, M., Duncan, I. D., Brüstle, O. and Thomson, J. A. (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 19, 1129-1133. 10.1038/nbt1201-1129 PubMed DOI
Zizkova, M., Sucha, R., Tyleckova, J., Jarkovska, K., Mairychova, K., Kotrcova, E., Marsala, M., Gadher, S. J. and Kovarova, H. (2015). Proteome-wide analysis of neural stem cell differentiation to facilitate transition to cell replacement therapies. Expert Rev. Proteomics 12, 83-95. 10.1586/14789450.2015.977381 PubMed DOI