Advances in Proteomic Techniques for Cytokine Analysis: Focus on Melanoma Research

. 2017 Dec 13 ; 18 (12) : . [epub] 20171213

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29236046

Melanoma is a skin cancer with permanently increasing incidence and resistance to therapies in advanced stages. Reports of spontaneous regression and tumour infiltration with T-lymphocytes makes melanoma candidate for immunotherapies. Cytokines are key factors regulating immune response and intercellular communication in tumour microenvironment. Cytokines may be used in therapy of melanoma to modulate immune response. Cytokines also possess diagnostic and prognostic potential and cytokine production may reflect effects of immunotherapies. The purpose of this review is to give an overview of recent advances in proteomic techniques for the detection and quantification of cytokines in melanoma research. Approaches covered span from mass spectrometry to immunoassays for single molecule detection (ELISA, western blot), multiplex assays (chemiluminescent, bead-based (Luminex) and planar antibody arrays), ultrasensitive techniques (Singulex, Simoa, immuno-PCR, proximity ligation/extension assay, immunomagnetic reduction assay), to analyses of single cells producing cytokines (ELISpot, flow cytometry, mass cytometry and emerging techniques for single cell secretomics). Although this review is focused mainly on cancer and particularly melanoma, the discussed techniques are in general applicable to broad research field of biology and medicine, including stem cells, development, aging, immunology and intercellular communication.

Zobrazit více v PubMed

Ferlay J., Steliarova-Foucher E., Lortet-Tieulent J., Rosso S., Coebergh J.W.W., Comber H., Forman D., Bray F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur. J. Cancer. 2013;49:1374–1403. doi: 10.1016/j.ejca.2012.12.027. PubMed DOI

Guy G.P., Jr., Thomas C.C., Thompson T., Watson M., Massetti G.M., Richardson L.C. Vital signs: Melanoma incidence and mortality trends and projections—United States, 1982–2030. Morb. Mortal. Wkly. Rep. 2015;64:591–596. PubMed PMC

Dunki-Jacobs E.M., Callender G.G., McMasters K.M. Current management of melanoma. Curr. Probl. Surg. 2013;50:351–382. doi: 10.1067/j.cpsurg.2013.04.001. PubMed DOI

Lo J.A., Fisher D.E. The melanoma revolution: From UV carcinogenesis to a new era in therapeutics. Science. 2014;346:945–949. doi: 10.1126/science.1253735. PubMed DOI PMC

Ali Z., Yousaf N., Larkin J. Melanoma epidemiology, biology and prognosis. EJC Suppl. EJC Off. J. EORTC Eur. Organ. Res. Treat. Cancer Al. 2013;11:81–91. doi: 10.1016/j.ejcsup.2013.07.012. PubMed DOI PMC

Gilchrest B.A., Eller M.S., Geller A.C., Yaar M. The pathogenesis of melanoma induced by ultraviolet radiation. N. Engl. J. Med. 1999;340:1341–1348. doi: 10.1056/NEJM199904293401707. PubMed DOI

Lea C.S., Scotto J.A., Buffler P.A., Fine J., Barnhill R.L., Berwick M. Ambient UVB and melanoma risk in the United States: A case-control analysis. Ann. Epidemiol. 2007;17:447–453. doi: 10.1016/j.annepidem.2007.01.030. PubMed DOI

Rivers J.K. Melanoma. Lancet. 1996;347:803–806. doi: 10.1016/S0140-6736(96)90873-9. PubMed DOI

Beaumont K.A., Mohana-Kumaran N., Haass N.K. Modeling Melanoma In Vitro and In Vivo. Healthcare. 2013;2:27–46. doi: 10.3390/healthcare2010027. PubMed DOI PMC

Kuzu O.F., Nguyen F.D., Noory M.A., Sharma A. Current State of Animal (Mouse) Modeling in Melanoma Research. Cancer Growth Metastasis. 2015;8:81–94. doi: 10.4137/CGM.S21214. PubMed DOI PMC

Van der Weyden L., Patton E.E., Wood G.A., Foote A.K., Brenn T., Arends M.J., Adams D.J. Cross-species models of human melanoma. J. Pathol. 2016;238:152–165. doi: 10.1002/path.4632. PubMed DOI PMC

Bourneuf E. The MeLiM Minipig: An Original Spontaneous Model to Explore Cutaneous Melanoma Genetic Basis. Front. Genet. 2017;8:146. doi: 10.3389/fgene.2017.00146. PubMed DOI PMC

Cole W.H., Everson T.C. Spontaneous regression of cancer: Preliminary report. Ann. Surg. 1956;144:366–383. PubMed PMC

High W.A., Stewart D., Wilbers C.R.H., Cockerell C.J., Hoang M.P., Fitzpatrick J.E. Completely regressed primary cutaneous malignant melanoma with nodal and/or visceral metastases: A report of 5 cases and assessment of the literature and diagnostic criteria. J. Am. Acad. Dermatol. 2005;53:89–100. doi: 10.1016/j.jaad.2005.03.006. PubMed DOI

Blessing K., McLaren K.M. Histological regression in primary cutaneous melanoma: Recognition, prevalence and significance. Histopathology. 1992;20:315–322. doi: 10.1111/j.1365-2559.1992.tb00988.x. PubMed DOI

Haanen J.B.A.G. Immunotherapy of melanoma. EJC Suppl. EJC Off. J. EORTC Eur. Organ. Res. Treat. Cancer Al. 2013;11:97–105. doi: 10.1016/j.ejcsup.2013.07.013. PubMed DOI PMC

Kalialis L.V., Drzewiecki K.T., Klyver H. Spontaneous regression of metastases from melanoma: Review of the literature. Melanoma Res. 2009;19:275–282. doi: 10.1097/CMR.0b013e32832eabd5. PubMed DOI

Aung P.P., Nagarajan P., Prieto V.G. Regression in primary cutaneous melanoma: Etiopathogenesis and clinical significance. Lab. Investig. J. Tech. Methods Pathol. 2017 doi: 10.1038/labinvest.2017.8. PubMed DOI

Maio M. Melanoma as a model tumour for immuno-oncology. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2012;23(Suppl. 8):viii10–viii14. doi: 10.1093/annonc/mds257. PubMed DOI

Martín J.M., Pinazo I., Mateo J.F., Escandell I., Jordá E., Monteagudo C. Assessment of regression in successive primary melanomas. Actas Dermosifiliogr. 2014;105:768–773. doi: 10.1016/j.ad.2014.01.006. PubMed DOI

Creagan E.T., Ahmann D.L., Green S.J., Long H.J., Frytak S., O’Fallon J.R., Itri L.M. Phase II study of low-dose recombinant leukocyte A interferon in disseminated malignant melanoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1984;2:1002–1005. doi: 10.1200/JCO.1984.2.9.1002. PubMed DOI

Robinson W.A., Mughal T.I., Thomas M.R., Johnson M., Spiegel R.J. Treatment of metastatic malignant melanoma with recombinant interferon alpha 2. Immunobiology. 1986;172:275–282. doi: 10.1016/S0171-2985(86)80109-7. PubMed DOI

Rosenberg S.A., Lotze M.T., Muul L.M., Chang A.E., Avis F.P., Leitman S., Linehan W.M., Robertson C.N., Lee R.E., Rubin J.T. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N. Engl. J. Med. 1987;316:889–897. doi: 10.1056/NEJM198704093161501. PubMed DOI

Dutcher J.P., Creekmore S., Weiss G.R., Margolin K., Markowitz A.B., Roper M., Parkinson D., Ciobanu N., Fisher R.I., Boldt D.H. A phase II study of interleukin-2 and lymphokine-activated killer cells in patients with metastatic malignant melanoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1989;7:477–485. doi: 10.1200/JCO.1989.7.4.477. PubMed DOI

Maker A.V., Phan G.Q., Attia P., Yang J.C., Sherry R.M., Topalian S.L., Kammula U.S., Royal R.E., Haworth L.R., Levy C., et al. Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: A phase I/II study. Ann. Surg. Oncol. 2005;12:1005–1016. doi: 10.1245/ASO.2005.03.536. PubMed DOI PMC

Aris M., Mordoh J., Barrio M.M. Immunomodulatory Monoclonal Antibodies in Combined Immunotherapy Trials for Cutaneous Melanoma. Front. Immunol. 2017;8:1024. doi: 10.3389/fimmu.2017.01024. PubMed DOI PMC

Ryu S., Youn C., Moon A.R., Howland A., Armstrong C.A., Song P.I. Therapeutic Inhibitors against Mutated BRAF and MEK for the Treatment of Metastatic Melanoma. Chonnam Med. J. 2017;53:173–177. doi: 10.4068/cmj.2017.53.3.173. PubMed DOI PMC

Dudley M.E., Wunderlich J.R., Robbins P.F., Yang J.C., Hwu P., Schwartzentruber D.J., Topalian S.L., Sherry R., Restifo N.P., Hubicki A.M., et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298:850–854. doi: 10.1126/science.1076514. PubMed DOI PMC

Atkins M.B., Hsu J., Lee S., Cohen G.I., Flaherty L.E., Sosman J.A., Sondak V.K., Kirkwood J.M., Eastern Cooperative Oncology Group Phase III trial comparing concurrent biochemotherapy with cisplatin, vinblastine, dacarbazine, interleukin-2 and interferon alfa-2b with cisplatin, vinblastine and dacarbazine alone in patients with metastatic malignant melanoma (E3695): A trial coordinated by the Eastern Cooperative Oncology Group. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2008;26:5748–5754. doi: 10.1200/JCO.2008.17.5448. PubMed DOI PMC

Seung S.K., Curti B.D., Crittenden M., Walker E., Coffey T., Siebert J.C., Miller W., Payne R., Glenn L., Bageac A., et al. Phase 1 study of stereotactic body radiotherapy and interleukin-2—Tumor and immunological responses. Sci. Transl. Med. 2012;4:137ra74. doi: 10.1126/scitranslmed.3003649. PubMed DOI

Sosman J.A., Carrillo C., Urba W.J., Flaherty L., Atkins M.B., Clark J.I., Dutcher J., Margolin K.A., Mier J., Gollob J., et al. Three phase II cytokine working group trials of gp100 (210M) peptide plus high-dose interleukin-2 in patients with HLA-A2-positive advanced melanoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2008;26:2292–2298. doi: 10.1200/JCO.2007.13.3165. PubMed DOI PMC

Schwartzentruber D.J., Lawson D.H., Richards J.M., Conry R.M., Miller D.M., Treisman J., Gailani F., Riley L., Conlon K., Pockaj B., et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N. Engl. J. Med. 2011;364:2119–2127. doi: 10.1056/NEJMoa1012863. PubMed DOI PMC

Luke J.J., Flaherty K.T., Ribas A., Long G.V. Targeted agents and immunotherapies: Optimizing outcomes in melanoma. Nat. Rev. Clin. Oncol. 2017;14:463–482. doi: 10.1038/nrclinonc.2017.43. PubMed DOI

Dvořánková B., Szabo P., Kodet O., Strnad H., Kolář M., Lacina L., Krejčí E., Naňka O., Šedo A., Smetana K. Intercellular crosstalk in human malignant melanoma. Protoplasma. 2017;254:1143–1150. doi: 10.1007/s00709-016-1038-z. PubMed DOI

Lacina L., Kodet O., Dvořánková B., Szabo P., Smetana K. Ecology of melanoma cell. Histol. Histopathol. 2018:247–254. doi: 10.14670/HH-11-926. PubMed DOI

Lacina L., Plzak J., Kodet O., Szabo P., Chovanec M., Dvorankova B., Smetana K. Cancer Microenvironment: What Can We Learn from the Stem Cell Niche. Int. J. Mol. Sci. 2015;16:24094–24110. doi: 10.3390/ijms161024094. PubMed DOI PMC

Paulitschke V., Kunstfeld R., Mohr T., Slany A., Micksche M., Drach J., Zielinski C., Pehamberger H., Gerner C. Entering a new era of rational biomarker discovery for early detection of melanoma metastases: Secretome analysis of associated stroma cells. J. Proteome Res. 2009;8:2501–2510. doi: 10.1021/pr8010827. PubMed DOI

D’Orazio J., Jarrett S., Amaro-Ortiz A., Scott T. UV radiation and the skin. Int. J. Mol. Sci. 2013;14:12222–12248. doi: 10.3390/ijms140612222. PubMed DOI PMC

Kodet O., Lacina L., Krejčí E., Dvořánková B., Grim M., Štork J., Kodetová D., Vlček Č., Šáchová J., Kolář M., et al. Melanoma cells influence the differentiation pattern of human epidermal keratinocytes. Mol. Cancer. 2015;14:1. doi: 10.1186/1476-4598-14-1. PubMed DOI PMC

Wang Y., Viennet C., Robin S., Berthon J.-Y., He L., Humbert P. Precise role of dermal fibroblasts on melanocyte pigmentation. J. Dermatol. Sci. 2017;88:159–166. doi: 10.1016/j.jdermsci.2017.06.018. PubMed DOI

Kolář M., Szabo P., Dvořánková B., Lacina L., Gabius H.-J., Strnad H., Sáchová J., Vlček C., Plzák J., Chovanec M., et al. Upregulation of IL-6, IL-8 and CXCL-1 production in dermal fibroblasts by normal/malignant epithelial cells in vitro: Immunohistochemical and transcriptomic analyses. Biol. Cell. 2012;104:738–751. doi: 10.1111/boc.201200018. PubMed DOI

Jobe N.P., Rösel D., Dvořánková B., Kodet O., Lacina L., Mateu R., Smetana K., Brábek J. Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. Histochem. Cell Biol. 2016;146:205–217. doi: 10.1007/s00418-016-1433-8. PubMed DOI

Hoejberg L., Bastholt L., Schmidt H. Interleukin-6 and melanoma. Melanoma Res. 2012;22:327–333. doi: 10.1097/CMR.0b013e3283543d72. PubMed DOI

Singh S., Singh A.P., Sharma B., Owen L.B., Singh R.K. CXCL8 and its cognate receptors in melanoma progression and metastasis. Future Oncol. 2010;6:111–116. doi: 10.2217/fon.09.128. PubMed DOI PMC

Kučera J., Dvořánková B., Smetana K., Szabo P., Kodet O. Fibroblasts isolated from the malignant melanoma influence phenotype of normal human keratinocytes. J. Appl. Biomed. 2015;13:195–198. doi: 10.1016/j.jab.2015.03.002. DOI

Gasser S., Lim L.H.K., Cheung F.S.G. The role of the tumour microenvironment in immunotherapy. Endocr. Relat. Cancer. 2017;24:T283–T295. doi: 10.1530/ERC-17-0146. PubMed DOI

Fløe A., Løppke C., Hilberg O., Wejse C., Brix L., Jacobsen K. Development of an epitope panel for consistent identification of antigen-specific T-cells in humans. Immunology. 2017;152:298–307. doi: 10.1111/imm.12769. PubMed DOI PMC

Zikich D., Schachter J., Besser M.J. Predictors of tumor-infiltrating lymphocyte efficacy in melanoma. Immunotherapy. 2016;8:35–43. doi: 10.2217/imt.15.99. PubMed DOI

Ouyang Z., Wu H., Li L., Luo Y., Li X., Huang G. Regulatory T cells in the immunotherapy of melanoma. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2016;37:77–85. doi: 10.1007/s13277-015-4315-0. PubMed DOI

Fujimura T., Kakizaki A., Furudate S., Kambayashi Y., Aiba S. Tumor-associated macrophages in skin: How to treat their heterogeneity and plasticity. J. Dermatol. Sci. 2016;83:167–173. doi: 10.1016/j.jdermsci.2016.05.015. PubMed DOI

Mignogna C., Scali E., Camastra C., Presta I., Zeppa P., Barni T., Donato G., Bottoni U., Di Vito A. Innate immunity in cutaneous melanoma. Clin. Exp. Dermatol. 2017;42:243–250. doi: 10.1111/ced.13023. PubMed DOI

Tarazona R., Duran E., Solana R. Natural Killer Cell Recognition of Melanoma: New Clues for a More Effective Immunotherapy. Front. Immunol. 2015;6:649. doi: 10.3389/fimmu.2015.00649. PubMed DOI PMC

Saadeh D., Kurban M., Abbas O. Plasmacytoid dendritic cell role in cutaneous malignancies. J. Dermatol. Sci. 2016;83:3–9. doi: 10.1016/j.jdermsci.2016.05.008. PubMed DOI

Chiaruttini G., Mele S., Opzoomer J., Crescioli S., Ilieva K.M., Lacy K.E., Karagiannis S.N. B cells and the humoral response in melanoma: The overlooked players of the tumor microenvironment. Oncoimmunology. 2017;6:e1294296. doi: 10.1080/2162402X.2017.1294296. PubMed DOI PMC

Weidle U.H., Birzele F., Kollmorgen G., Rüger R. The Multiple Roles of Exosomes in Metastasis. Cancer Genom. Proteom. 2017;14:1–15. doi: 10.21873/cgp.20015. PubMed DOI PMC

O’Loghlen A. Role for extracellular vesicles in the tumour microenvironment. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018;373 doi: 10.1098/rstb.2016.0488. PubMed DOI PMC

Romano G., Kwong L.N. miRNAs, Melanoma and Microenvironment: An Intricate Network. Int. J. Mol. Sci. 2017;18 doi: 10.3390/ijms18112354. PubMed DOI PMC

Ratnikov B.I., Scott D.A., Osterman A.L., Smith J.W., Ronai Z.A. Metabolic rewiring in melanoma. Oncogene. 2017;36:147–157. doi: 10.1038/onc.2016.198. PubMed DOI PMC

Stenken J.A., Poschenrieder A.J. Bioanalytical chemistry of cytokines—A review. Anal. Chim. Acta. 2015;853:95–115. doi: 10.1016/j.aca.2014.10.009. PubMed DOI PMC

Yao M., Brummer G., Acevedo D., Cheng N. Cytokine Regulation of Metastasis and Tumorigenicity. Adv. Cancer Res. 2016;132:265–367. doi: 10.1016/bs.acr.2016.05.005. PubMed DOI

Atretkhany K.-S.N., Drutskaya M.S., Nedospasov S.A., Grivennikov S.I., Kuprash D.V. Chemokines, cytokines and exosomes help tumors to shape inflammatory microenvironment. Pharmacol. Ther. 2016;168:98–112. doi: 10.1016/j.pharmthera.2016.09.011. PubMed DOI

Herraiz C., Jiménez-Cervantes C., Sánchez-Laorden B., García-Borrón J.C. Functional interplay between secreted ligands and receptors in melanoma. Semin. Cell Dev. Biol. 2017 doi: 10.1016/j.semcdb.2017.06.021. PubMed DOI

Liu Q., Li A., Tian Y., Wu J.D., Liu Y., Li T., Chen Y., Han X., Wu K. The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev. 2016;31:61–71. doi: 10.1016/j.cytogfr.2016.08.002. PubMed DOI PMC

Sanmamed M.F., Carranza-Rua O., Alfaro C., Oñate C., Martín-Algarra S., Perez G., Landazuri S.F., Gonzalez A., Gross S., Rodriguez I., et al. Serum interleukin-8 reflects tumor burden and treatment response across malignancies of multiple tissue origins. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014;20:5697–5707. doi: 10.1158/1078-0432.CCR-13-3203. PubMed DOI

Alegre E., Sammamed M., Fernandez-Landazuri S., Zubiri L., Gonzalez A. Advances in Clinical Chemistry. Volume 69. Elsevier; Amsterdam, The Netherlands: 2015. Circulating Biomarkers in Malignant Melanoma; pp. 47–89. PubMed

Filitis D.C., Rauh J., Mahalingam M. The HGF-cMET signaling pathway in conferring stromal-induced BRAF-inhibitor resistance in melanoma. Melanoma Res. 2015;25:470–478. doi: 10.1097/CMR.0000000000000194. PubMed DOI

Matsumoto K., Umitsu M., De Silva D.M., Roy A., Bottaro D.P. Hepatocyte growth factor/MET in cancer progression and biomarker discovery. Cancer Sci. 2017;108:296–307. doi: 10.1111/cas.13156. PubMed DOI PMC

Lok E., Chung A.S., Swanson K.D., Wong E.T. Melanoma brain metastasis globally reconfigures chemokine and cytokine profiles in patient cerebrospinal fluid. Melanoma Res. 2014;24:120–130. doi: 10.1097/CMR.0000000000000045. PubMed DOI PMC

Najjar Y.G., Ding F., Lin Y., VanderWeele R., Butterfield L.H., Tarhini A.A. Melanoma antigen-specific effector T cell cytokine secretion patterns in patients treated with ipilimumab. J. Transl. Med. 2017;15:39. doi: 10.1186/s12967-017-1140-9. PubMed DOI PMC

Xu D.H., Zhu Z., Xiao H., Wakefield M.R., Bai Q., Nicholl M.B., Ding V.A., Fang Y. Unveil the mysterious mask of cytokine-based immunotherapy for melanoma. Cancer Lett. 2017;394:43–51. doi: 10.1016/j.canlet.2017.02.022. PubMed DOI

Jiang T., Zhou C., Ren S. Role of IL-2 in cancer immunotherapy. Oncoimmunology. 2016;5:e1163462. doi: 10.1080/2162402X.2016.1163462. PubMed DOI PMC

Ives N.J., Suciu S., Eggermont A.M.M., Kirkwood J., Lorigan P., Markovic S.N., Garbe C., Wheatley K., International Melanoma Meta-Analysis Collaborative Group (IMMCG) Adjuvant interferon-α for the treatment of high-risk melanoma: An individual patient data meta-analysis. Eur. J. Cancer. 2017;82:171–183. doi: 10.1016/j.ejca.2017.06.006. PubMed DOI

Hoeller C., Michielin O., Ascierto P.A., Szabo Z., Blank C.U. Systematic review of the use of granulocyte-macrophage colony-stimulating factor in patients with advanced melanoma. Cancer Immunol. Immunother. 2016;65:1015–1034. doi: 10.1007/s00262-016-1860-3. PubMed DOI PMC

Liu G., Qi M., Hutchinson M.R., Yang G., Goldys E.M. Recent advances in cytokine detection by immunosensing. Biosens. Bioelectron. 2016;79:810–821. doi: 10.1016/j.bios.2016.01.020. PubMed DOI

Kulbe H., Chakravarty P., Leinster D.A., Charles K.A., Kwong J., Thompson R.G., Coward J.I., Schioppa T., Robinson S.C., Gallagher W.M., et al. A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Res. 2012;72:66–75. doi: 10.1158/0008-5472.CAN-11-2178. PubMed DOI PMC

Nilsson T., Mann M., Aebersold R., Yates J.R., Bairoch A., Bergeron J.J.M. Mass spectrometry in high-throughput proteomics: Ready for the big time. Nat. Methods. 2010;7:681–685. doi: 10.1038/nmeth0910-681. PubMed DOI

Anderson N.L., Anderson N.G. The human plasma proteome: History, character and diagnostic prospects. Mol. Cell. Proteom. 2002;1:845–867. doi: 10.1074/mcp.R200007-MCP200. PubMed DOI

Rocco M., Malorni L., Cozzolino R., Palmieri G., Rozzo C., Manca A., Parente A., Chambery A. Proteomic profiling of human melanoma metastatic cell line secretomes. J. Proteome Res. 2011;10:4703–4714. doi: 10.1021/pr200511f. PubMed DOI

Alečković M., Wei Y., LeRoy G., Sidoli S., Liu D.D., Garcia B.A., Kang Y. Identification of Nidogen 1 as a lung metastasis protein through secretome analysis. Genes Dev. 2017;31:1439–1455. doi: 10.1101/gad.301937.117. PubMed DOI PMC

Boyle G.M., Pedley J., Martyn A.C., Banducci K.J., Strutton G.M., Brown D.A., Breit S.N., Parsons P.G. Macrophage inhibitory cytokine-1 is overexpressed in malignant melanoma and is associated with tumorigenicity. J. Investig. Dermatol. 2009;129:383–391. doi: 10.1038/jid.2008.270. PubMed DOI

Rosenberger G., Koh C.C., Guo T., Röst H.L., Kouvonen P., Collins B.C., Heusel M., Liu Y., Caron E., Vichalkovski A., et al. A repository of assays to quantify 10,000 human proteins by SWATH-MS. Sci. Data. 2014;1:140031. doi: 10.1038/sdata.2014.31. PubMed DOI PMC

Collins B.C., Hunter C.L., Liu Y., Schilling B., Rosenberger G., Bader S.L., Chan D.W., Gibson B.W., Gingras A.-C., Held J.M., et al. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat. Commun. 2017;8:291. doi: 10.1038/s41467-017-00249-5. PubMed DOI PMC

Anjo S.I., Santa C., Manadas B. SWATH-MS as a tool for biomarker discovery: From basic research to clinical applications. Proteomics. 2017;17 doi: 10.1002/pmic.201600278. PubMed DOI

Lin Q., Lim H.S.R., Lin H.L., Tan H.T., Lim T.K., Cheong W.K., Cheah P.Y., Tang C.L., Chow P.K.H., Chung M.C.M. Analysis of colorectal cancer glyco-secretome identifies laminin β-1 (LAMB1) as a potential serological biomarker for colorectal cancer. Proteomics. 2015;15:3905–3920. doi: 10.1002/pmic.201500236. PubMed DOI

Manfredi M., Martinotti S., Gosetti F., Ranzato E., Marengo E. The secretome signature of malignant mesothelioma cell lines. J. Proteom. 2016;145:3–10. doi: 10.1016/j.jprot.2016.02.021. PubMed DOI

Addona T.A., Abbatiello S.E., Schilling B., Skates S.J., Mani D.R., Bunk D.M., Spiegelman C.H., Zimmerman L.J., Ham A.-J.L., Keshishian H., et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat. Biotechnol. 2009;27:633–641. doi: 10.1038/nbt.1546. PubMed DOI PMC

Percy A.J., Chambers A.G., Yang J., Hardie D.B., Borchers C.H. Advances in multiplexed MRM-based protein biomarker quantitation toward clinical utility. Biochim. Biophys. Acta. 2014;1844:917–926. doi: 10.1016/j.bbapap.2013.06.008. PubMed DOI

Parker C.E., Borchers C.H. Mass spectrometry based biomarker discovery, verification and validation—Quality assurance and control of protein biomarker assays. Mol. Oncol. 2014;8:840–858. doi: 10.1016/j.molonc.2014.03.006. PubMed DOI PMC

Bredehöft M., Schänzer W., Thevis M. Quantification of human insulin-like growth factor-1 and qualitative detection of its analogues in plasma using liquid chromatography/electrospray ionisation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2008;22:477–485. doi: 10.1002/rcm.3388. PubMed DOI

Anderson N.L., Anderson N.G., Haines L.R., Hardie D.B., Olafson R.W., Pearson T.W. Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA) J. Proteome Res. 2004;3:235–244. doi: 10.1021/pr034086h. PubMed DOI

Kuhn E., Whiteaker J.R., Mani D.R., Jackson A.M., Zhao L., Pope M.E., Smith D., Rivera K.D., Anderson N.L., Skates S.J., et al. Interlaboratory evaluation of automated, multiplexed peptide immunoaffinity enrichment coupled to multiple reaction monitoring mass spectrometry for quantifying proteins in plasma. Mol. Cell. Proteom. 2012;11:M111.013854. doi: 10.1074/mcp.M111.013854. PubMed DOI PMC

Sherma N.D., Borges C.R., Trenchevska O., Jarvis J.W., Rehder D.S., Oran P.E., Nelson R.W., Nedelkov D. Mass Spectrometric Immunoassay for the qualitative and quantitative analysis of the cytokine Macrophage Migration Inhibitory Factor (MIF) Proteome Sci. 2014;12:52. doi: 10.1186/s12953-014-0052-3. PubMed DOI PMC

Pompach P., Benada O., Rosůlek M., Darebná P., Hausner J., Růžička V., Volný M., Novák P. Protein Chips Compatible with MALDI Mass Spectrometry Prepared by Ambient Ion Landing. Anal. Chem. 2016;88:8526–8534. doi: 10.1021/acs.analchem.6b01366. PubMed DOI

Pompach P., Nováková J., Kavan D., Benada O., Růžička V., Volný M., Novák P. Planar Functionalized Surfaces for Direct Immunoaffinity Desorption/Ionization Mass Spectrometry. Clin. Chem. 2016;62:270–278. doi: 10.1373/clinchem.2015.244004. PubMed DOI

Engvall E., Jonsson K., Perlmann P. Enzyme-linked immunosorbent assay. II. Quantitative assay of protein antigen, immunoglobulin G, by means of enzyme-labelled antigen and antibody-coated tubes. Biochim. Biophys. Acta. 1971;251:427–434. doi: 10.1016/0005-2795(71)90132-2. PubMed DOI

Van Weemen B.K., Schuurs A.H.W.M. Immunoassay using antigen-enzyme conjugates. FEBS Lett. 1971;15:232–236. doi: 10.1016/0014-5793(71)80319-8. PubMed DOI

Shah K., Maghsoudlou P. Enzyme-linked immunosorbent assay (ELISA): The basics. Br. J. Hosp. Med. 2016;77:C98–C101. doi: 10.12968/hmed.2016.77.7.C98. PubMed DOI

Whiteside T.L. Cytokine assays. BioTechniques. 2002;10:S4–S15. PubMed

Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA. 1979;76:4350–4354. doi: 10.1073/pnas.76.9.4350. PubMed DOI PMC

Apte R.N., Dotan S., Elkabets M., White M.R., Reich E., Carmi Y., Song X., Dvozkin T., Krelin Y., Voronov E. The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev. 2006;25:387–408. doi: 10.1007/s10555-006-9004-4. PubMed DOI

Schneider K.S., Thomas C.J., Groß O. Inflammasome activation and inhibition in primary murine bone marrow-derived cells and assays for IL-1α, IL-1β and caspase-1. Methods Mol. Biol. 2013;1040:117–135. doi: 10.1007/978-1-62703-523-1_10. PubMed DOI

Guey B., Petrilli V. Assessing Caspase-1 Activation. Methods Mol. Biol. 2016;1417:197–206. doi: 10.1007/978-1-4939-3566-6_13. PubMed DOI

Logan P., Burnier J., Burnier M.N. Vascular endothelial growth factor expression and inhibition in uveal melanoma cell lines. Ecancermedicalscience. 2013;7:336. doi: 10.3332/ecancer.2013.336. PubMed DOI PMC

Gatla H.R., Singha B., Persaud V., Vancurova I. Evaluating cytoplasmic and nuclear levels of inflammatory cytokines in cancer cells by western blotting. Methods Mol. Biol. 2014;1172:271–283. doi: 10.1007/978-1-4939-0928-5_25. PubMed DOI

Miskolci V., Hodgson L., Cox D., Vancurova I. Western analysis of intracellular interleukin-8 in human mononuclear leukocytes. Methods Mol. Biol. 2014;1172:285–293. doi: 10.1007/978-1-4939-0928-5_26. PubMed DOI PMC

Wessendorf J.H., Garfinkel S., Zhan X., Brown S., Maciag T. Identification of a nuclear localization sequence within the structure of the human interleukin-1 alpha precursor. J. Biol. Chem. 1993;268:22100–22104. PubMed

Boraschi D., Lucchesi D., Hainzl S., Leitner M., Maier E., Mangelberger D., Oostingh G.J., Pfaller T., Pixner C., Posselt G., et al. IL-37: A new anti-inflammatory cytokine of the IL-1 family. Eur. Cytokine Netw. 2011;22:127–147. doi: 10.1684/ecn.2011.0288. PubMed DOI

Ross R., Grimmel J., Goedicke S., Möbus A.M., Bulau A.-M., Bufler P., Ali S., Martin M.U. Analysis of nuclear localization of interleukin-1 family cytokines by flow cytometry. J. Immunol. Methods. 2013;387:219–227. doi: 10.1016/j.jim.2012.10.017. PubMed DOI

Bertheloot D., Latz E. HMGB1, IL-1α, IL-33 and S100 proteins: Dual-function alarmins. Cell. Mol. Immunol. 2017;14:43–64. doi: 10.1038/cmi.2016.34. PubMed DOI PMC

Miskolci V., Ghosh C.C., Rollins J., Romero C., Vu H.-Y., Robinson S., Davidson D., Vancurova I. TNFalpha release from peripheral blood leukocytes depends on a CRM1-mediated nuclear export. Biochem. Biophys. Res. Commun. 2006;351:354–360. doi: 10.1016/j.bbrc.2006.10.045. PubMed DOI

Richter M.M. Electrochemiluminescence (ECL) Chem. Rev. 2004;104:3003–3036. doi: 10.1021/cr020373d. PubMed DOI

Rhyne P.W., Wong O.T., Zhang Y.J., Weiner R.S. Electrochemiluminescence in bioanalysis. Bioanalysis. 2009;1:919–935. doi: 10.4155/bio.09.80. PubMed DOI

Wei H., Wang E. Electrochemiluminescence of tris(2,2′-bipyridyl)ruthenium and its applications in bioanalysis: A review. Lumin. J. Biol. Chem. Lumin. 2011;26:77–85. doi: 10.1002/bio.1279. PubMed DOI

Obenauer-Kutner L.J., Jacobs S.J., Kolz K., Tobias L.M., Bordens R.W. A highly sensitive electrochemiluminescence immunoassay for interferon alfa-2b in human serum. J. Immunol. Methods. 1997;206:25–33. doi: 10.1016/S0022-1759(97)00081-1. PubMed DOI

Hercules D.M., Lytle F.E. Chemiluminescence from Reduction Reactions. J. Am. Chem. Soc. 1966;88:4745–4746. doi: 10.1021/ja00972a052. DOI

Chowdhury F., Williams A., Johnson P. Validation and comparison of two multiplex technologies, Luminex and Mesoscale Discovery, for human cytokine profiling. J. Immunol. Methods. 2009;340:55–64. doi: 10.1016/j.jim.2008.10.002. PubMed DOI

Fu Q., Zhu J., Van Eyk J.E. Comparison of multiplex immunoassay platforms. Clin. Chem. 2010;56:314–318. doi: 10.1373/clinchem.2009.135087. PubMed DOI PMC

Dabitao D., Margolick J.B., Lopez J., Bream J.H. Multiplex measurement of proinflammatory cytokines in human serum: Comparison of the Meso Scale Discovery electrochemiluminescence assay and the Cytometric Bead Array. J. Immunol. Methods. 2011;372:71–77. doi: 10.1016/j.jim.2011.06.033. PubMed DOI PMC

Ryan B.M., Pine S.R., Chaturvedi A.K., Caporaso N., Harris C.C. A combined prognostic serum interleukin-8 and interleukin-6 classifier for stage 1 lung cancer in the prostate, lung, colorectal and ovarian cancer screening trial. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer. 2014;9:1494–1503. doi: 10.1097/JTO.0000000000000278. PubMed DOI PMC

Block M.S., Maurer M.J., Goergen K., Kalli K.R., Erskine C.L., Behrens M.D., Oberg A.L., Knutson K.L. Plasma immune analytes in patients with epithelial ovarian cancer. Cytokine. 2015;73:108–113. doi: 10.1016/j.cyto.2015.01.035. PubMed DOI PMC

Pan Y.W., Zhou Z.G., Wang M., Dong J.Q., Du K.P., Li S., Liu Y.L., Lv P.J., Gao J.B. Combination of IL-6, IL-10 and MCP-1 with traditional serum tumor markers in lung cancer diagnosis and prognosis. Genet. Mol. Res. 2016;15 doi: 10.4238/gmr15048949. PubMed DOI

Shimizu Y., Furuya H., Bryant Greenwood P., Chan O., Dai Y., Thornquist M.D., Goodison S., Rosser C.J. A multiplex immunoassay for the non-invasive detection of bladder cancer. J. Transl. Med. 2016;14:31. doi: 10.1186/s12967-016-0783-2. PubMed DOI PMC

Wilson J.J., Burgess R., Mao Y.-Q., Luo S., Tang H., Jones V.S., Weisheng B., Huang R.-Y., Chen X., Huang R.-P. Antibody arrays in biomarker discovery. Adv. Clin. Chem. 2015;69:255–324. doi: 10.1016/bs.acc.2015.01.002. PubMed DOI

Valekova I., Skalnikova H.K., Jarkovska K., Motlik J., Kovarova H. Multiplex immunoassays for quantification of cytokines, growth factors and other proteins in stem cell communication. Methods Mol. Biol. 2015;1212:39–63. doi: 10.1007/7651_2014_94. PubMed DOI

Faresjö M. A useful guide for analysis of immune markers by fluorochrome (Luminex) technique. Methods Mol. Biol. 2014;1172:87–96. doi: 10.1007/978-1-4939-0928-5_7. PubMed DOI

Valekova I., Jarkovska K., Kotrcova E., Bucci J., Ellederova Z., Juhas S., Motlik J., Gadher S.J., Kovarova H. Revelation of the IFNα, IL-10, IL-8 and IL-1β as promising biomarkers reflecting immuno-pathological mechanisms in porcine Huntington’s disease model. J. Neuroimmunol. 2016;293:71–81. doi: 10.1016/j.jneuroim.2016.02.012. PubMed DOI

Rosenberg-Hasson Y., Hansmann L., Liedtke M., Herschmann I., Maecker H.T. Effects of serum and plasma matrices on multiplex immunoassays. Immunol. Res. 2014;58:224–233. doi: 10.1007/s12026-014-8491-6. PubMed DOI PMC

Tarhini A.A., Lin Y., Zahoor H., Shuai Y., Butterfield L.H., Ringquist S., Gogas H., Sander C., Lee S., Agarwala S.S., et al. Pro-Inflammatory Cytokines Predict Relapse-Free Survival after One Month of Interferon-α but Not Observation in Intermediate Risk Melanoma Patients. PLoS ONE. 2015;10:e0132745. doi: 10.1371/journal.pone.0132745. PubMed DOI PMC

Shetty G., Beasley G.M., Sparks S., Barfield M., Masoud M., Mosca P.J., Pruitt S.K., Salama A.K.S., Chan C., Tyler D.S., et al. Plasma cytokine analysis in patients with advanced extremity melanoma undergoing isolated limb infusion. Ann. Surg. Oncol. 2013;20:1128–1135. doi: 10.1245/s10434-012-2785-5. PubMed DOI PMC

Triozzi P.L., Aldrich W., Crabb J.W., Singh A.D. Spontaneous cellular and humoral tumor antigen responses in patients with uveal melanoma. Melanoma Res. 2015;25:510–518. doi: 10.1097/CMR.0000000000000207. PubMed DOI

Ly L.V., Bronkhorst I.H.G., van Beelen E., Vrolijk J., Taylor A.W., Versluis M., Luyten G.P.M., Jager M.J. Inflammatory cytokines in eyes with uveal melanoma and relation with macrophage infiltration. Investig. Ophthalmol. Vis. Sci. 2010;51:5445–5451. doi: 10.1167/iovs.10-5526. PubMed DOI PMC

Sanz H., Aponte J.J., Harezlak J., Dong Y., Ayestaran A., Nhabomba A., Mpina M., Maurin O.R., Díez-Padrisa N., Aguilar R., et al. drLumi: An open-source package to manage data, calibrate and conduct quality control of multiplex bead-based immunoassays data analysis. PLoS ONE. 2017;12:e0187901. doi: 10.1371/journal.pone.0187901. PubMed DOI PMC

Chang T.W. Binding of cells to matrixes of distinct antibodies coated on solid surface. J. Immunol. Methods. 1983;65:217–223. doi: 10.1016/0022-1759(83)90318-6. PubMed DOI

Antibody Arrays for Protein Detection. [(accessed on 27 November 2017)]; Available online: https://www.raybiotech.com/antibody-array.

Kopf E., Zharhary D. Antibody arrays—An emerging tool in cancer proteomics. Int. J. Biochem. Cell Biol. 2007;39:1305–1317. doi: 10.1016/j.biocel.2007.04.029. PubMed DOI

Sanchez-Carbayo M. Antibody array-based technologies for cancer protein profiling and functional proteomic analyses using serum and tissue specimens. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2010;31:103–112. doi: 10.1007/s13277-009-0014-z. PubMed DOI

Gál P., Varinská L., Fáber L., Novák Š., Szabo P., Mitrengová P., Mirossay A., Mučaji P., Smetana K. How Signaling Molecules Regulate Tumor Microenvironment: Parallels to Wound Repair. Molecules. 2017;22 doi: 10.3390/molecules22111818. PubMed DOI PMC

Rissin D.M., Kan C.W., Campbell T.G., Howes S.C., Fournier D.R., Song L., Piech T., Patel P.P., Chang L., Rivnak A.J., et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 2010;28:595–599. doi: 10.1038/nbt.1641. PubMed DOI PMC

Fischer S.K., Joyce A., Spengler M., Yang T.-Y., Zhuang Y., Fjording M.S., Mikulskis A. Emerging technologies to increase ligand binding assay sensitivity. AAPS J. 2015;17:93–101. doi: 10.1208/s12248-014-9682-8. PubMed DOI PMC

Andreasson U., Blennow K., Zetterberg H. Update on ultrasensitive technologies to facilitate research on blood biomarkers for central nervous system disorders. Alzheimers Dement. Amst. Neth. 2016;3:98–102. doi: 10.1016/j.dadm.2016.05.005. PubMed DOI PMC

Smith J.G., Gerszten R.E. Emerging Affinity-Based Proteomic Technologies for Large-Scale Plasma Profiling in Cardiovascular Disease. Circulation. 2017;135:1651–1664. doi: 10.1161/CIRCULATIONAHA.116.025446. PubMed DOI PMC

Simon S., Ezan E. Ultrasensitive bioanalysis: Current status and future trends. Bioanalysis. 2017;9:753–764. doi: 10.4155/bio-2017-0018. PubMed DOI

Singh M., Truong J., Reeves W.B., Hahm J.-I. Emerging Cytokine Biosensors with Optical Detection Modalities and Nanomaterial-Enabled Signal Enhancement. Sensors. 2017;17 doi: 10.3390/s17020428. PubMed DOI PMC

Rodríguez-Frade J.M., Martínez-Muñoz L., Villares R., Cascio G., Lucas P., Gomariz R.P., Mellado M. Chemokine Detection Using Receptors Immobilized on an SPR Sensor Surface. Methods Enzymol. 2016;570:1–18. doi: 10.1016/bs.mie.2015.09.013. PubMed DOI

Zhou Q., Son K., Liu Y., Revzin A. Biosensors for Cell Analysis. Annu. Rev. Biomed. Eng. 2015;17:165–190. doi: 10.1146/annurev-bioeng-071114-040525. PubMed DOI

Chen P., Huang N.-T., Chung M.-T., Cornell T.T., Kurabayashi K. Label-free cytokine micro- and nano-biosensing towards personalized medicine of systemic inflammatory disorders. Adv. Drug Deliv. Rev. 2015;95:90–103. doi: 10.1016/j.addr.2015.09.005. PubMed DOI PMC

Yang X., Tang Y., Alt R.R., Xie X., Li F. Emerging techniques for ultrasensitive protein analysis. Analyst. 2016;141:3473–3481. doi: 10.1039/C6AN00059B. PubMed DOI

Cretich M., Daaboul G.G., Sola L., Ünlü M.S., Chiari M. Digital detection of biomarkers assisted by nanoparticles: Application to diagnostics. Trends Biotechnol. 2015;33:343–351. doi: 10.1016/j.tibtech.2015.03.002. PubMed DOI

Zhang Y., Noji H. Digital Bioassays: Theory, Applications and Perspectives. Anal. Chem. 2017;89:92–101. doi: 10.1021/acs.analchem.6b04290. PubMed DOI

Ahn S., Zhang P., Yu H., Lee S., Kang S.H. Ultrasensitive Detection of α-Fetoprotein by Total Internal Reflection Scattering-Based Super-Resolution Microscopy for Superlocalization of Nano-Immunoplasmonics. Anal. Chem. 2016;88:11070–11076. doi: 10.1021/acs.analchem.6b03069. PubMed DOI

Wu A.H.B., Fukushima N., Puskas R., Todd J., Goix P. Development and preliminary clinical validation of a high sensitivity assay for cardiac troponin using a capillary flow (single molecule) fluorescence detector. Clin. Chem. 2006;52:2157–2159. doi: 10.1373/clinchem.2006.073163. PubMed DOI

Todd J., Freese B., Lu A., Held D., Morey J., Livingston R., Goix P. Ultrasensitive flow-based immunoassays using single-molecule counting. Clin. Chem. 2007;53:1990–1995. doi: 10.1373/clinchem.2007.091181. PubMed DOI

Gilbert M., Livingston R., Felberg J., Bishop J.J. Multiplex single molecule counting technology used to generate interleukin 4, interleukin 6 and interleukin 10 reference limits. Anal. Biochem. 2016;503:11–20. doi: 10.1016/j.ab.2016.03.008. PubMed DOI

Wu D., Milutinovic M.D., Walt D.R. Single molecule array (Simoa) assay with optimal antibody pairs for cytokine detection in human serum samples. Analyst. 2015;140:6277–6282. doi: 10.1039/C5AN01238D. PubMed DOI

Rissin D.M., Kan C.W., Song L., Rivnak A.J., Fishburn M.W., Shao Q., Piech T., Ferrell E.P., Meyer R.E., Campbell T.G., et al. Multiplexed single molecule immunoassays. Lab. Chip. 2013;13:2902–2911. doi: 10.1039/c3lc50416f. PubMed DOI PMC

Rivnak A.J., Rissin D.M., Kan C.W., Song L., Fishburn M.W., Piech T., Campbell T.G., DuPont D.R., Gardel M., Sullivan S., et al. A fully-automated, six-plex single molecule immunoassay for measuring cytokines in blood. J. Immunol. Methods. 2015;424:20–27. doi: 10.1016/j.jim.2015.04.017. PubMed DOI PMC

Sano T., Smith C.L., Cantor C.R. Immuno-PCR: Very sensitive antigen detection by means of specific antibody-DNA conjugates. Science. 1992;258:120–122. doi: 10.1126/science.1439758. PubMed DOI

Adler M., Spengler M. Novel Strategies and Tools for Enhanced Sensitivity in Routine Biomolecule Analytics. Curr. Pharm. Anal. 2009;5:390–407. doi: 10.2174/157341209789649104. DOI

Ryazantsev D.Y., Voronina D.V., Zavriev S.K. Immuno-PCR: Achievements and Perspectives. Biochem. Biokhimiia. 2016;81:1754–1770. doi: 10.1134/S0006297916130113. PubMed DOI

Chang L., Li J., Wang L. Immuno-PCR: An ultrasensitive immunoassay for biomolecular detection. Anal. Chim. Acta. 2016;910:12–24. doi: 10.1016/j.aca.2015.12.039. PubMed DOI

Niemeyer C.M., Adler M., Wacker R. Detecting antigens by quantitative immuno-PCR. Nat. Protoc. 2007;2:1918–1930. doi: 10.1038/nprot.2007.267. PubMed DOI

Khan A.H., Sadroddiny E. Application of immuno-PCR for the detection of early stage cancer. Mol. Cell. Probes. 2016;30:106–112. doi: 10.1016/j.mcp.2016.01.010. PubMed DOI

Assumpção A.L.F.V., da Silva R.C. Immuno-PCR in cancer and non-cancer related diseases: A review. Vet. Q. 2016;36:63–70. doi: 10.1080/01652176.2016.1164912. PubMed DOI

Fredriksson S., Gullberg M., Jarvius J., Olsson C., Pietras K., Gústafsdóttir S.M., Ostman A., Landegren U. Protein detection using proximity-dependent DNA ligation assays. Nat. Biotechnol. 2002;20:473–477. doi: 10.1038/nbt0502-473. PubMed DOI

Greenwood C., Ruff D., Kirvell S., Johnson G., Dhillon H.S., Bustin S.A. Proximity assays for sensitive quantification of proteins. Biomol. Detect. Quantif. 2015;4:10–16. doi: 10.1016/j.bdq.2015.04.002. PubMed DOI PMC

Hong C.-Y., Wu C.C., Chiu Y.C., Yang S.Y., Horng H.E., Yang H.C. Magnetic susceptibility reduction method for magnetically labeled immunoassay. Appl. Phys. Lett. 2006;88:212512. doi: 10.1063/1.2206557. DOI

Yang S.-Y., Chiu M.-J., Chen T.-F., Horng H.-E. Detection of Plasma Biomarkers Using Immunomagnetic Reduction: A Promising Method for the Early Diagnosis of Alzheimer’s Disease. Neurol. Ther. 2017;6:37–56. doi: 10.1007/s40120-017-0075-7. PubMed DOI PMC

Lue L.-F., Sabbagh M.N., Chiu M.-J., Jing N., Snyder N.L., Schmitz C., Guerra A., Belden C.M., Chen T.-F., Yang C.-C., et al. Plasma Levels of Aβ42 and Tau Identified Probable Alzheimer’s Dementia: Findings in Two Cohorts. Front. Aging Neurosci. 2017;9:226. doi: 10.3389/fnagi.2017.00226. PubMed DOI PMC

Huang K.W., Yang S.Y., Yu C.Y., Chieh J.J., Yang C.-C., Horng H.-E., Hong C.-Y., Yang H.-C., Wu C.-C. Exploration of the relationship between the tumor burden and the concentration of vascular endothelial growth factor in liver-cancer-bearing animals using immunomagnetic reduction assay. J. Biomed. Nanotechnol. 2011;7:535–541. doi: 10.1166/jbn.2011.1321. PubMed DOI

Yang C.-C., Yang S.-Y., Ho C.-S., Chang J.-F., Liu B.-H., Huang K.-W. Development of antibody functionalized magnetic nanoparticles for the immunoassay of carcinoembryonic antigen: A feasibility study for clinical use. J. Nanobiotechnol. 2014;12:44. doi: 10.1186/s12951-014-0044-6. PubMed DOI PMC

Chieh J.-J., Huang K.W., Chuang C.P., Wei W.C., Dong J.J., Lee Y.Y. Immunomagnetic Reduction Assay on Des-Gamma-Carboxy Prothrombin for Screening of Hepatocellular Carcinoma. IEEE Trans. Biomed. Eng. 2016;63:1681–1686. doi: 10.1109/TBME.2015.2478845. PubMed DOI

Product-IMR Reagent | MagQu. [(accessed on 27 November 2017)]; Available online: http://www.magqu.com/product/IMR%20Reagent?shs_term_node_tid_depth=39.

Yeung D., Ciotti S., Purushothama S., Gharakhani E., Kuesters G., Schlain B., Shen C., Donaldson D., Mikulskis A. Evaluation of highly sensitive immunoassay technologies for quantitative measurements of sub-pg/mL levels of cytokines in human serum. J. Immunol. Methods. 2016;437:53–63. doi: 10.1016/j.jim.2016.08.003. PubMed DOI

Fichorova R.N., Richardson-Harman N., Alfano M., Belec L., Carbonneil C., Chen S., Cosentino L., Curtis K., Dezzutti C.S., Donoval B., et al. Biological and technical variables affecting immunoassay recovery of cytokines from human serum and simulated vaginal fluid: A multicenter study. Anal. Chem. 2008;80:4741–4751. doi: 10.1021/ac702628q. PubMed DOI PMC

Chattopadhyay P.K., Gierahn T.M., Roederer M., Love J.C. Single-cell technologies for monitoring immune systems. Nat. Immunol. 2014;15:128–135. doi: 10.1038/ni.2796. PubMed DOI PMC

Czerkinsky C.C., Nilsson L.A., Nygren H., Ouchterlony O., Tarkowski A. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J. Immunol. Methods. 1983;65:109–121. doi: 10.1016/0022-1759(83)90308-3. PubMed DOI

Czerkinsky C., Andersson G., Ekre H.P., Nilsson L.A., Klareskog L., Ouchterlony O. Reverse ELISPOT assay for clonal analysis of cytokine production. I. Enumeration of gamma-interferon-secreting cells. J. Immunol. Methods. 1988;110:29–36. doi: 10.1016/0022-1759(88)90079-8. PubMed DOI

Slota M., Lim J.-B., Dang Y., Disis M.L. ELISpot for measuring human immune responses to vaccines. Expert Rev. Vaccines. 2011;10:299–306. doi: 10.1586/erv.10.169. PubMed DOI PMC

Hauer A.C., Bajaj-Elliott M. Interleukin Protocols. Springer; Totowa, NJ, USA: 2001. Elispot Technique for Assaying Interleukins; pp. 17–28. Methods in Molecular MedicineTM.

Faresjö M. The challenge of measuring elusive immune markers by enzyme-linked immuno-spot (ELISPOT) technique. Methods Mol. Biol. 2014;1172:3–12. doi: 10.1007/978-1-4939-0928-5_1. PubMed DOI

Morse M.A., Osada T., Hobeika A., Patel S., Lyerly H.K. Biomarkers and correlative endpoints for immunotherapy trials. Am. Soc. Clin. Oncol. Educ. Book Am. Soc. Clin. Oncol. Meet. 2013 doi: 10.1200/EdBook_AM.2013.33.e287. PubMed DOI

Kamentsky L.A., Melamed M.R., Derman H. Spectrophotometer: New instrument for ultrarapid cell analysis. Science. 1965;150:630–631. doi: 10.1126/science.150.3696.630. PubMed DOI

Fulwyler M.J. Electronic separation of biological cells by volume. Science. 1965;150:910–911. doi: 10.1126/science.150.3698.910. PubMed DOI

Yin Y., Mitson-Salazar A., Prussin C. Detection of Intracellular Cytokines by Flow Cytometry. Curr. Protoc. Immunol. 2015;110:6.24.1–6.24.18. doi: 10.1002/0471142735.im0624s110. PubMed DOI

Freer G. Intracellular staining and detection of cytokines by fluorescence-activated flow cytometry. Methods Mol. Biol. 2014;1172:221–234. doi: 10.1007/978-1-4939-0928-5_20. PubMed DOI

Schuerwegh A.J., Stevens W.J., Bridts C.H., De Clerck L.S. Evaluation of monensin and brefeldin A for flow cytometric determination of interleukin-1 beta, interleukin-6 and tumor necrosis factor-alpha in monocytes. Cytometry. 2001;46:172–176. doi: 10.1002/cyto.1102. PubMed DOI

Sander B., Andersson J., Andersson U. Assessment of cytokines by immunofluorescence and the paraformaldehyde-saponin procedure. Immunol. Rev. 1991;119:65–93. doi: 10.1111/j.1600-065X.1991.tb00578.x. PubMed DOI

Jung T., Schauer U., Heusser C., Neumann C., Rieger C. Detection of intracellular cytokines by flow cytometry. J. Immunol. Methods. 1993;159:197–207. doi: 10.1016/0022-1759(93)90158-4. PubMed DOI

Prussin C., Metcalfe D.D. Detection of intracytoplasmic cytokine using flow cytometry and directly conjugated anti-cytokine antibodies. J. Immunol. Methods. 1995;188:117–128. doi: 10.1016/0022-1759(95)00209-X. PubMed DOI

Foster B., Prussin C., Liu F., Whitmire J.K., Whitton J.L. Detection of intracellular cytokines by flow cytometry. Curr. Protoc. Immunol. 2007 doi: 10.1002/0471142735.im0624s78. PubMed DOI

Mukai K., Gaudenzio N., Gupta S., Vivanco N., Bendall S.C., Maecker H.T., Chinthrajah R.S., Tsai M., Nadeau K.C., Galli S.J. Assessing basophil activation by using flow cytometry and mass cytometry in blood stored 24 hours before analysis. J. Allergy Clin. Immunol. 2017;139:889–899. doi: 10.1016/j.jaci.2016.04.060. PubMed DOI PMC

Schmidt C.S., Aranda Lopez P., Dopheide J.F., Schmidt F., Theobald M., Schild H., Lauinger-Lörsch E., Nolte F., Radsak M.P. Phenotypic and functional characterization of neutrophils and monocytes from patients with myelodysplastic syndrome by flow cytometry. Cell. Immunol. 2016;308:19–26. doi: 10.1016/j.cellimm.2016.07.005. PubMed DOI

Manfredi A.A., Rovere-Querini P., D’Angelo A., Maugeri N. Low molecular weight heparins prevent the induction of autophagy of activated neutrophils and the formation of neutrophil extracellular traps. Pharmacol. Res. 2017;123:146–156. doi: 10.1016/j.phrs.2016.08.008. PubMed DOI

Misale M.S., Witek Janusek L., Tell D., Mathews H.L. Chromatin organization as an indicator of glucocorticoid induced natural killer cell dysfunction. Brain. Behav. Immun. 2018;67:279–289. doi: 10.1016/j.bbi.2017.09.004. PubMed DOI PMC

Yin Y., Bai Y., Olivera A., Desai A., Metcalfe D.D. An optimized protocol for the generation and functional analysis of human mast cells from CD34(+) enriched cell populations. J. Immunol. Methods. 2017;448:105–111. doi: 10.1016/j.jim.2017.06.003. PubMed DOI PMC

Daud A.I., Loo K., Pauli M.L., Sanchez-Rodriguez R., Sandoval P.M., Taravati K., Tsai K., Nosrati A., Nardo L., Alvarado M.D., et al. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J. Clin. Investig. 2016;126:3447–3452. doi: 10.1172/JCI87324. PubMed DOI PMC

Ribas A., Shin D.S., Zaretsky J., Frederiksen J., Cornish A., Avramis E., Seja E., Kivork C., Siebert J., Kaplan-Lefko P., et al. PD-1 Blockade Expands Intratumoral Memory T Cells. Cancer Immunol. Res. 2016;4:194–203. doi: 10.1158/2326-6066.CIR-15-0210. PubMed DOI PMC

Tietze J.K., Angelova D., Heppt M.V., Reinholz M., Murphy W.J., Spannagl M., Ruzicka T., Berking C. The proportion of circulating CD45RO(+)CD8(+) memory T cells is correlated with clinical response in melanoma patients treated with ipilimumab. Eur. J. Cancer. 2017;75:268–279. doi: 10.1016/j.ejca.2016.12.031. PubMed DOI

Kitano S., Tsuji T., Liu C., Hirschhorn-Cymerman D., Kyi C., Mu Z., Allison J.P., Gnjatic S., Yuan J.D., Wolchok J.D. Enhancement of tumor-reactive cytotoxic CD4+ T cell responses after ipilimumab treatment in four advanced melanoma patients. Cancer Immunol. Res. 2013;1:235–244. doi: 10.1158/2326-6066.CIR-13-0068. PubMed DOI PMC

De Coaña Y.P., Wolodarski M., Poschke I., Yoshimoto Y., Yang Y., Nyström M., Edbäck U., Brage S.E., Lundqvist A., Masucci G.V., et al. Ipilimumab treatment decreases monocytic MDSCs and increases CD8 effector memory T cells in long-term survivors with advanced melanoma. Oncotarget. 2017;8:21539–21553. doi: 10.18632/oncotarget.15368. PubMed DOI PMC

Wistuba-Hamprecht K., Martens A., Heubach F., Romano E., Geukes Foppen M., Yuan J., Postow M., Wong P., Mallardo D., Schilling B., et al. Peripheral CD8 effector-memory type 1 T-cells correlate with outcome in ipilimumab-treated stage IV melanoma patients. Eur. J. Cancer. 2017;73:61–70. doi: 10.1016/j.ejca.2016.12.011. PubMed DOI PMC

Diller M.L., Kudchadkar R.R., Delman K.A., Lawson D.H., Ford M.L. Complete response to high-dose IL-2 and enhanced IFNγ+Th17 :  TREG ratio in a melanoma patient. Melanoma Res. 2016;26:535–539. doi: 10.1097/CMR.0000000000000283. PubMed DOI PMC

Diller M.L., Kudchadkar R.R., Delman K.A., Lawson D.H., Ford M.L. Exogenous IL-2 Induces FoxP3+ Th17 Cells In Vivo in Melanoma Patients. J. Immunother. 2016;39:355–366. doi: 10.1097/CJI.0000000000000139. PubMed DOI PMC

Zelba H., Weide B., Martens A., Derhovanessian E., Bailur J.K., Kyzirakos C., Pflugfelder A., Eigentler T.K., Di Giacomo A.M., Maio M., et al. Circulating CD4+ T cells that produce IL4 or IL17 when stimulated by melan-A but not by NY-ESO-1 have negative impacts on survival of patients with stage IV melanoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014;20:4390–4399. doi: 10.1158/1078-0432.CCR-14-1015. PubMed DOI

Zelba H., Weide B., Martens A., Bailur J.K., Garbe C., Pawelec G. The prognostic impact of specific CD4 T-cell responses is critically dependent on the target antigen in melanoma. Oncoimmunology. 2015;4:e955683. doi: 10.4161/21624011.2014.955683. PubMed DOI PMC

Borchers S., Maβlo C., Müller C.A., Tahedl A., Volkind J., Nowak Y., Umansky V., Esterlechner J., Frank M.H., Ganss C., et al. Detection of ABCB5 tumour antigen-specific CD8(+) T cells in melanoma patients and implications for immunotherapy. Clin. Exp. Immunol. 2017 doi: 10.1111/cei.13053. PubMed DOI PMC

Bandura D.R., Baranov V.I., Ornatsky O.I., Antonov A., Kinach R., Lou X., Pavlov S., Vorobiev S., Dick J.E., Tanner S.D. Mass cytometry: Technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 2009;81:6813–6822. doi: 10.1021/ac901049w. PubMed DOI

Cosma A., Nolan G., Gaudilliere B. Mass cytometry: The time to settle down. Cytom. Part J. Int. Soc. Anal. Cytol. 2017;91:12–13. doi: 10.1002/cyto.a.23032. PubMed DOI PMC

Bendall S.C., Simonds E.F., Qiu P., Amir E.D., Krutzik P.O., Finck R., Bruggner R.V., Melamed R., Trejo A., Ornatsky O.I., et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science. 2011;332:687–696. doi: 10.1126/science.1198704. PubMed DOI PMC

O’Gorman W.E., Kong D.S., Balboni I.M., Rudra P., Bolen C.R., Ghosh D., Davis M.M., Nolan G.P., Hsieh E.W.Y. Mass cytometry identifies a distinct monocyte cytokine signature shared by clinically heterogeneous pediatric SLE patients. J. Autoimmun. 2017 doi: 10.1016/j.jaut.2017.03.010. PubMed DOI PMC

Fisher D.A.C., Miner C.A., Engle E.K., Brost T.M., Malkova O., Oh S.T. Mass Cytometry Analysis of Dysregulated Cytokine Production and Intracellular Signaling in Myelofibrosis. Blood. 2016;128:4277.

Newell E.W., Lin W. High-dimensional analysis of human CD8(+) T cell phenotype, function and antigen specificity. Curr. Top. Microbiol. Immunol. 2014;377:61–84. doi: 10.1007/82_2013_354. PubMed DOI

Bradshaw E.M., Kent S.C., Tripuraneni V., Orban T., Ploegh H.L., Hafler D.A., Love J.C. Concurrent detection of secreted products from human lymphocytes by microengraving: Cytokines and antigen-reactive antibodies. Clin. Immunol. 2008;129:10–18. doi: 10.1016/j.clim.2008.06.009. PubMed DOI PMC

Zhu H., Stybayeva G., Silangcruz J., Yan J., Ramanculov E., Dandekar S., George M.D., Revzin A. Detecting cytokine release from single T-cells. Anal. Chem. 2009;81:8150–8156. doi: 10.1021/ac901390j. PubMed DOI PMC

Han Q., Bagheri N., Bradshaw E.M., Hafler D.A., Lauffenburger D.A., Love J.C. Polyfunctional responses by human T cells result from sequential release of cytokines. Proc. Natl. Acad. Sci. USA. 2012;109:1607–1612. doi: 10.1073/pnas.1117194109. PubMed DOI PMC

Lu Y., Chen J.J., Mu L., Xue Q., Wu Y., Wu P.-H., Li J., Vortmeyer A.O., Miller-Jensen K., Wirtz D., et al. High-throughput secretomic analysis of single cells to assess functional cellular heterogeneity. Anal. Chem. 2013;85:2548–2556. doi: 10.1021/ac400082e. PubMed DOI PMC

Lu Y., Xue Q., Eisele M.R., Sulistijo E.S., Brower K., Han L., Amir E.-A.D., Pe’er D., Miller-Jensen K., Fan R. Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands. Proc. Natl. Acad. Sci. USA. 2015;112:E607–E615. doi: 10.1073/pnas.1416756112. PubMed DOI PMC

Ma C., Fan R., Ahmad H., Shi Q., Comin-Anduix B., Chodon T., Koya R.C., Liu C.-C., Kwong G.A., Radu C.G., et al. A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat. Med. 2011;17:738–743. doi: 10.1038/nm.2375. PubMed DOI PMC

McWhorter F.Y., Smith T.D., Luu T.U., Rahim M.K., Haun J.B., Liu W.F. Macrophage secretion heterogeneity in engineered microenvironments revealed using a microwell platform. Integr. Biol. Quant. Biosci. Nano Macro. 2016;8:751–760. doi: 10.1039/C6IB00053C. PubMed DOI

An X., Sendra V.G., Liadi I., Ramesh B., Romain G., Haymaker C., Martinez-Paniagua M., Lu Y., Radvanyi L.G., Roysam B., et al. Single-cell profiling of dynamic cytokine secretion and the phenotype of immune cells. PLoS ONE. 2017;12:e0181904. doi: 10.1371/journal.pone.0181904. PubMed DOI PMC

Chalaris A., Garbers C., Rabe B., Rose-John S., Scheller J. The soluble Interleukin 6 receptor: Generation and role in inflammation and cancer. Eur. J. Cell Biol. 2011;90:484–494. doi: 10.1016/j.ejcb.2010.10.007. PubMed DOI

Meager A. Measurement of cytokines by bioassays: Theory and application. Methods. 2006;38:237–252. doi: 10.1016/j.ymeth.2005.11.005. PubMed DOI

Kovarik P., Ebner F., Sedlyarov V. Posttranscriptional regulation of cytokine expression. Cytokine. 2017;89:21–26. doi: 10.1016/j.cyto.2015.11.007. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Targeted mass spectrometry for monitoring of neural differentiation

. 2021 Aug 15 ; 10 (8) : . [epub] 20210806

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace