Advances in Proteomic Techniques for Cytokine Analysis: Focus on Melanoma Research
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
29236046
PubMed Central
PMC5751298
DOI
10.3390/ijms18122697
PII: ijms18122697
Knihovny.cz E-zdroje
- Klíčová slova
- T-cell, biomarker, cancer, cytokine, immunoassay, mass spectrometry, melanoma, proteomics, secretome, ultrasensitive,
- MeSH
- čipová analýza proteinů MeSH
- cytokiny analýza MeSH
- hmotnostní spektrometrie MeSH
- imunoanalýza MeSH
- imunoterapie MeSH
- lidé MeSH
- melanom diagnóza metabolismus terapie MeSH
- nádorové mikroprostředí MeSH
- nádory kůže diagnóza metabolismus terapie MeSH
- proteomika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cytokiny MeSH
Melanoma is a skin cancer with permanently increasing incidence and resistance to therapies in advanced stages. Reports of spontaneous regression and tumour infiltration with T-lymphocytes makes melanoma candidate for immunotherapies. Cytokines are key factors regulating immune response and intercellular communication in tumour microenvironment. Cytokines may be used in therapy of melanoma to modulate immune response. Cytokines also possess diagnostic and prognostic potential and cytokine production may reflect effects of immunotherapies. The purpose of this review is to give an overview of recent advances in proteomic techniques for the detection and quantification of cytokines in melanoma research. Approaches covered span from mass spectrometry to immunoassays for single molecule detection (ELISA, western blot), multiplex assays (chemiluminescent, bead-based (Luminex) and planar antibody arrays), ultrasensitive techniques (Singulex, Simoa, immuno-PCR, proximity ligation/extension assay, immunomagnetic reduction assay), to analyses of single cells producing cytokines (ELISpot, flow cytometry, mass cytometry and emerging techniques for single cell secretomics). Although this review is focused mainly on cancer and particularly melanoma, the discussed techniques are in general applicable to broad research field of biology and medicine, including stem cells, development, aging, immunology and intercellular communication.
Zobrazit více v PubMed
Ferlay J., Steliarova-Foucher E., Lortet-Tieulent J., Rosso S., Coebergh J.W.W., Comber H., Forman D., Bray F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur. J. Cancer. 2013;49:1374–1403. doi: 10.1016/j.ejca.2012.12.027. PubMed DOI
Guy G.P., Jr., Thomas C.C., Thompson T., Watson M., Massetti G.M., Richardson L.C. Vital signs: Melanoma incidence and mortality trends and projections—United States, 1982–2030. Morb. Mortal. Wkly. Rep. 2015;64:591–596. PubMed PMC
Dunki-Jacobs E.M., Callender G.G., McMasters K.M. Current management of melanoma. Curr. Probl. Surg. 2013;50:351–382. doi: 10.1067/j.cpsurg.2013.04.001. PubMed DOI
Lo J.A., Fisher D.E. The melanoma revolution: From UV carcinogenesis to a new era in therapeutics. Science. 2014;346:945–949. doi: 10.1126/science.1253735. PubMed DOI PMC
Ali Z., Yousaf N., Larkin J. Melanoma epidemiology, biology and prognosis. EJC Suppl. EJC Off. J. EORTC Eur. Organ. Res. Treat. Cancer Al. 2013;11:81–91. doi: 10.1016/j.ejcsup.2013.07.012. PubMed DOI PMC
Gilchrest B.A., Eller M.S., Geller A.C., Yaar M. The pathogenesis of melanoma induced by ultraviolet radiation. N. Engl. J. Med. 1999;340:1341–1348. doi: 10.1056/NEJM199904293401707. PubMed DOI
Lea C.S., Scotto J.A., Buffler P.A., Fine J., Barnhill R.L., Berwick M. Ambient UVB and melanoma risk in the United States: A case-control analysis. Ann. Epidemiol. 2007;17:447–453. doi: 10.1016/j.annepidem.2007.01.030. PubMed DOI
Rivers J.K. Melanoma. Lancet. 1996;347:803–806. doi: 10.1016/S0140-6736(96)90873-9. PubMed DOI
Beaumont K.A., Mohana-Kumaran N., Haass N.K. Modeling Melanoma In Vitro and In Vivo. Healthcare. 2013;2:27–46. doi: 10.3390/healthcare2010027. PubMed DOI PMC
Kuzu O.F., Nguyen F.D., Noory M.A., Sharma A. Current State of Animal (Mouse) Modeling in Melanoma Research. Cancer Growth Metastasis. 2015;8:81–94. doi: 10.4137/CGM.S21214. PubMed DOI PMC
Van der Weyden L., Patton E.E., Wood G.A., Foote A.K., Brenn T., Arends M.J., Adams D.J. Cross-species models of human melanoma. J. Pathol. 2016;238:152–165. doi: 10.1002/path.4632. PubMed DOI PMC
Bourneuf E. The MeLiM Minipig: An Original Spontaneous Model to Explore Cutaneous Melanoma Genetic Basis. Front. Genet. 2017;8:146. doi: 10.3389/fgene.2017.00146. PubMed DOI PMC
Cole W.H., Everson T.C. Spontaneous regression of cancer: Preliminary report. Ann. Surg. 1956;144:366–383. PubMed PMC
High W.A., Stewart D., Wilbers C.R.H., Cockerell C.J., Hoang M.P., Fitzpatrick J.E. Completely regressed primary cutaneous malignant melanoma with nodal and/or visceral metastases: A report of 5 cases and assessment of the literature and diagnostic criteria. J. Am. Acad. Dermatol. 2005;53:89–100. doi: 10.1016/j.jaad.2005.03.006. PubMed DOI
Blessing K., McLaren K.M. Histological regression in primary cutaneous melanoma: Recognition, prevalence and significance. Histopathology. 1992;20:315–322. doi: 10.1111/j.1365-2559.1992.tb00988.x. PubMed DOI
Haanen J.B.A.G. Immunotherapy of melanoma. EJC Suppl. EJC Off. J. EORTC Eur. Organ. Res. Treat. Cancer Al. 2013;11:97–105. doi: 10.1016/j.ejcsup.2013.07.013. PubMed DOI PMC
Kalialis L.V., Drzewiecki K.T., Klyver H. Spontaneous regression of metastases from melanoma: Review of the literature. Melanoma Res. 2009;19:275–282. doi: 10.1097/CMR.0b013e32832eabd5. PubMed DOI
Aung P.P., Nagarajan P., Prieto V.G. Regression in primary cutaneous melanoma: Etiopathogenesis and clinical significance. Lab. Investig. J. Tech. Methods Pathol. 2017 doi: 10.1038/labinvest.2017.8. PubMed DOI
Maio M. Melanoma as a model tumour for immuno-oncology. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2012;23(Suppl. 8):viii10–viii14. doi: 10.1093/annonc/mds257. PubMed DOI
Martín J.M., Pinazo I., Mateo J.F., Escandell I., Jordá E., Monteagudo C. Assessment of regression in successive primary melanomas. Actas Dermosifiliogr. 2014;105:768–773. doi: 10.1016/j.ad.2014.01.006. PubMed DOI
Creagan E.T., Ahmann D.L., Green S.J., Long H.J., Frytak S., O’Fallon J.R., Itri L.M. Phase II study of low-dose recombinant leukocyte A interferon in disseminated malignant melanoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1984;2:1002–1005. doi: 10.1200/JCO.1984.2.9.1002. PubMed DOI
Robinson W.A., Mughal T.I., Thomas M.R., Johnson M., Spiegel R.J. Treatment of metastatic malignant melanoma with recombinant interferon alpha 2. Immunobiology. 1986;172:275–282. doi: 10.1016/S0171-2985(86)80109-7. PubMed DOI
Rosenberg S.A., Lotze M.T., Muul L.M., Chang A.E., Avis F.P., Leitman S., Linehan W.M., Robertson C.N., Lee R.E., Rubin J.T. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N. Engl. J. Med. 1987;316:889–897. doi: 10.1056/NEJM198704093161501. PubMed DOI
Dutcher J.P., Creekmore S., Weiss G.R., Margolin K., Markowitz A.B., Roper M., Parkinson D., Ciobanu N., Fisher R.I., Boldt D.H. A phase II study of interleukin-2 and lymphokine-activated killer cells in patients with metastatic malignant melanoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1989;7:477–485. doi: 10.1200/JCO.1989.7.4.477. PubMed DOI
Maker A.V., Phan G.Q., Attia P., Yang J.C., Sherry R.M., Topalian S.L., Kammula U.S., Royal R.E., Haworth L.R., Levy C., et al. Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: A phase I/II study. Ann. Surg. Oncol. 2005;12:1005–1016. doi: 10.1245/ASO.2005.03.536. PubMed DOI PMC
Aris M., Mordoh J., Barrio M.M. Immunomodulatory Monoclonal Antibodies in Combined Immunotherapy Trials for Cutaneous Melanoma. Front. Immunol. 2017;8:1024. doi: 10.3389/fimmu.2017.01024. PubMed DOI PMC
Ryu S., Youn C., Moon A.R., Howland A., Armstrong C.A., Song P.I. Therapeutic Inhibitors against Mutated BRAF and MEK for the Treatment of Metastatic Melanoma. Chonnam Med. J. 2017;53:173–177. doi: 10.4068/cmj.2017.53.3.173. PubMed DOI PMC
Dudley M.E., Wunderlich J.R., Robbins P.F., Yang J.C., Hwu P., Schwartzentruber D.J., Topalian S.L., Sherry R., Restifo N.P., Hubicki A.M., et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298:850–854. doi: 10.1126/science.1076514. PubMed DOI PMC
Atkins M.B., Hsu J., Lee S., Cohen G.I., Flaherty L.E., Sosman J.A., Sondak V.K., Kirkwood J.M., Eastern Cooperative Oncology Group Phase III trial comparing concurrent biochemotherapy with cisplatin, vinblastine, dacarbazine, interleukin-2 and interferon alfa-2b with cisplatin, vinblastine and dacarbazine alone in patients with metastatic malignant melanoma (E3695): A trial coordinated by the Eastern Cooperative Oncology Group. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2008;26:5748–5754. doi: 10.1200/JCO.2008.17.5448. PubMed DOI PMC
Seung S.K., Curti B.D., Crittenden M., Walker E., Coffey T., Siebert J.C., Miller W., Payne R., Glenn L., Bageac A., et al. Phase 1 study of stereotactic body radiotherapy and interleukin-2—Tumor and immunological responses. Sci. Transl. Med. 2012;4:137ra74. doi: 10.1126/scitranslmed.3003649. PubMed DOI
Sosman J.A., Carrillo C., Urba W.J., Flaherty L., Atkins M.B., Clark J.I., Dutcher J., Margolin K.A., Mier J., Gollob J., et al. Three phase II cytokine working group trials of gp100 (210M) peptide plus high-dose interleukin-2 in patients with HLA-A2-positive advanced melanoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2008;26:2292–2298. doi: 10.1200/JCO.2007.13.3165. PubMed DOI PMC
Schwartzentruber D.J., Lawson D.H., Richards J.M., Conry R.M., Miller D.M., Treisman J., Gailani F., Riley L., Conlon K., Pockaj B., et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N. Engl. J. Med. 2011;364:2119–2127. doi: 10.1056/NEJMoa1012863. PubMed DOI PMC
Luke J.J., Flaherty K.T., Ribas A., Long G.V. Targeted agents and immunotherapies: Optimizing outcomes in melanoma. Nat. Rev. Clin. Oncol. 2017;14:463–482. doi: 10.1038/nrclinonc.2017.43. PubMed DOI
Dvořánková B., Szabo P., Kodet O., Strnad H., Kolář M., Lacina L., Krejčí E., Naňka O., Šedo A., Smetana K. Intercellular crosstalk in human malignant melanoma. Protoplasma. 2017;254:1143–1150. doi: 10.1007/s00709-016-1038-z. PubMed DOI
Lacina L., Kodet O., Dvořánková B., Szabo P., Smetana K. Ecology of melanoma cell. Histol. Histopathol. 2018:247–254. doi: 10.14670/HH-11-926. PubMed DOI
Lacina L., Plzak J., Kodet O., Szabo P., Chovanec M., Dvorankova B., Smetana K. Cancer Microenvironment: What Can We Learn from the Stem Cell Niche. Int. J. Mol. Sci. 2015;16:24094–24110. doi: 10.3390/ijms161024094. PubMed DOI PMC
Paulitschke V., Kunstfeld R., Mohr T., Slany A., Micksche M., Drach J., Zielinski C., Pehamberger H., Gerner C. Entering a new era of rational biomarker discovery for early detection of melanoma metastases: Secretome analysis of associated stroma cells. J. Proteome Res. 2009;8:2501–2510. doi: 10.1021/pr8010827. PubMed DOI
D’Orazio J., Jarrett S., Amaro-Ortiz A., Scott T. UV radiation and the skin. Int. J. Mol. Sci. 2013;14:12222–12248. doi: 10.3390/ijms140612222. PubMed DOI PMC
Kodet O., Lacina L., Krejčí E., Dvořánková B., Grim M., Štork J., Kodetová D., Vlček Č., Šáchová J., Kolář M., et al. Melanoma cells influence the differentiation pattern of human epidermal keratinocytes. Mol. Cancer. 2015;14:1. doi: 10.1186/1476-4598-14-1. PubMed DOI PMC
Wang Y., Viennet C., Robin S., Berthon J.-Y., He L., Humbert P. Precise role of dermal fibroblasts on melanocyte pigmentation. J. Dermatol. Sci. 2017;88:159–166. doi: 10.1016/j.jdermsci.2017.06.018. PubMed DOI
Kolář M., Szabo P., Dvořánková B., Lacina L., Gabius H.-J., Strnad H., Sáchová J., Vlček C., Plzák J., Chovanec M., et al. Upregulation of IL-6, IL-8 and CXCL-1 production in dermal fibroblasts by normal/malignant epithelial cells in vitro: Immunohistochemical and transcriptomic analyses. Biol. Cell. 2012;104:738–751. doi: 10.1111/boc.201200018. PubMed DOI
Jobe N.P., Rösel D., Dvořánková B., Kodet O., Lacina L., Mateu R., Smetana K., Brábek J. Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. Histochem. Cell Biol. 2016;146:205–217. doi: 10.1007/s00418-016-1433-8. PubMed DOI
Hoejberg L., Bastholt L., Schmidt H. Interleukin-6 and melanoma. Melanoma Res. 2012;22:327–333. doi: 10.1097/CMR.0b013e3283543d72. PubMed DOI
Singh S., Singh A.P., Sharma B., Owen L.B., Singh R.K. CXCL8 and its cognate receptors in melanoma progression and metastasis. Future Oncol. 2010;6:111–116. doi: 10.2217/fon.09.128. PubMed DOI PMC
Kučera J., Dvořánková B., Smetana K., Szabo P., Kodet O. Fibroblasts isolated from the malignant melanoma influence phenotype of normal human keratinocytes. J. Appl. Biomed. 2015;13:195–198. doi: 10.1016/j.jab.2015.03.002. DOI
Gasser S., Lim L.H.K., Cheung F.S.G. The role of the tumour microenvironment in immunotherapy. Endocr. Relat. Cancer. 2017;24:T283–T295. doi: 10.1530/ERC-17-0146. PubMed DOI
Fløe A., Løppke C., Hilberg O., Wejse C., Brix L., Jacobsen K. Development of an epitope panel for consistent identification of antigen-specific T-cells in humans. Immunology. 2017;152:298–307. doi: 10.1111/imm.12769. PubMed DOI PMC
Zikich D., Schachter J., Besser M.J. Predictors of tumor-infiltrating lymphocyte efficacy in melanoma. Immunotherapy. 2016;8:35–43. doi: 10.2217/imt.15.99. PubMed DOI
Ouyang Z., Wu H., Li L., Luo Y., Li X., Huang G. Regulatory T cells in the immunotherapy of melanoma. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2016;37:77–85. doi: 10.1007/s13277-015-4315-0. PubMed DOI
Fujimura T., Kakizaki A., Furudate S., Kambayashi Y., Aiba S. Tumor-associated macrophages in skin: How to treat their heterogeneity and plasticity. J. Dermatol. Sci. 2016;83:167–173. doi: 10.1016/j.jdermsci.2016.05.015. PubMed DOI
Mignogna C., Scali E., Camastra C., Presta I., Zeppa P., Barni T., Donato G., Bottoni U., Di Vito A. Innate immunity in cutaneous melanoma. Clin. Exp. Dermatol. 2017;42:243–250. doi: 10.1111/ced.13023. PubMed DOI
Tarazona R., Duran E., Solana R. Natural Killer Cell Recognition of Melanoma: New Clues for a More Effective Immunotherapy. Front. Immunol. 2015;6:649. doi: 10.3389/fimmu.2015.00649. PubMed DOI PMC
Saadeh D., Kurban M., Abbas O. Plasmacytoid dendritic cell role in cutaneous malignancies. J. Dermatol. Sci. 2016;83:3–9. doi: 10.1016/j.jdermsci.2016.05.008. PubMed DOI
Chiaruttini G., Mele S., Opzoomer J., Crescioli S., Ilieva K.M., Lacy K.E., Karagiannis S.N. B cells and the humoral response in melanoma: The overlooked players of the tumor microenvironment. Oncoimmunology. 2017;6:e1294296. doi: 10.1080/2162402X.2017.1294296. PubMed DOI PMC
Weidle U.H., Birzele F., Kollmorgen G., Rüger R. The Multiple Roles of Exosomes in Metastasis. Cancer Genom. Proteom. 2017;14:1–15. doi: 10.21873/cgp.20015. PubMed DOI PMC
O’Loghlen A. Role for extracellular vesicles in the tumour microenvironment. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018;373 doi: 10.1098/rstb.2016.0488. PubMed DOI PMC
Romano G., Kwong L.N. miRNAs, Melanoma and Microenvironment: An Intricate Network. Int. J. Mol. Sci. 2017;18 doi: 10.3390/ijms18112354. PubMed DOI PMC
Ratnikov B.I., Scott D.A., Osterman A.L., Smith J.W., Ronai Z.A. Metabolic rewiring in melanoma. Oncogene. 2017;36:147–157. doi: 10.1038/onc.2016.198. PubMed DOI PMC
Stenken J.A., Poschenrieder A.J. Bioanalytical chemistry of cytokines—A review. Anal. Chim. Acta. 2015;853:95–115. doi: 10.1016/j.aca.2014.10.009. PubMed DOI PMC
Yao M., Brummer G., Acevedo D., Cheng N. Cytokine Regulation of Metastasis and Tumorigenicity. Adv. Cancer Res. 2016;132:265–367. doi: 10.1016/bs.acr.2016.05.005. PubMed DOI
Atretkhany K.-S.N., Drutskaya M.S., Nedospasov S.A., Grivennikov S.I., Kuprash D.V. Chemokines, cytokines and exosomes help tumors to shape inflammatory microenvironment. Pharmacol. Ther. 2016;168:98–112. doi: 10.1016/j.pharmthera.2016.09.011. PubMed DOI
Herraiz C., Jiménez-Cervantes C., Sánchez-Laorden B., García-Borrón J.C. Functional interplay between secreted ligands and receptors in melanoma. Semin. Cell Dev. Biol. 2017 doi: 10.1016/j.semcdb.2017.06.021. PubMed DOI
Liu Q., Li A., Tian Y., Wu J.D., Liu Y., Li T., Chen Y., Han X., Wu K. The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev. 2016;31:61–71. doi: 10.1016/j.cytogfr.2016.08.002. PubMed DOI PMC
Sanmamed M.F., Carranza-Rua O., Alfaro C., Oñate C., Martín-Algarra S., Perez G., Landazuri S.F., Gonzalez A., Gross S., Rodriguez I., et al. Serum interleukin-8 reflects tumor burden and treatment response across malignancies of multiple tissue origins. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014;20:5697–5707. doi: 10.1158/1078-0432.CCR-13-3203. PubMed DOI
Alegre E., Sammamed M., Fernandez-Landazuri S., Zubiri L., Gonzalez A. Advances in Clinical Chemistry. Volume 69. Elsevier; Amsterdam, The Netherlands: 2015. Circulating Biomarkers in Malignant Melanoma; pp. 47–89. PubMed
Filitis D.C., Rauh J., Mahalingam M. The HGF-cMET signaling pathway in conferring stromal-induced BRAF-inhibitor resistance in melanoma. Melanoma Res. 2015;25:470–478. doi: 10.1097/CMR.0000000000000194. PubMed DOI
Matsumoto K., Umitsu M., De Silva D.M., Roy A., Bottaro D.P. Hepatocyte growth factor/MET in cancer progression and biomarker discovery. Cancer Sci. 2017;108:296–307. doi: 10.1111/cas.13156. PubMed DOI PMC
Lok E., Chung A.S., Swanson K.D., Wong E.T. Melanoma brain metastasis globally reconfigures chemokine and cytokine profiles in patient cerebrospinal fluid. Melanoma Res. 2014;24:120–130. doi: 10.1097/CMR.0000000000000045. PubMed DOI PMC
Najjar Y.G., Ding F., Lin Y., VanderWeele R., Butterfield L.H., Tarhini A.A. Melanoma antigen-specific effector T cell cytokine secretion patterns in patients treated with ipilimumab. J. Transl. Med. 2017;15:39. doi: 10.1186/s12967-017-1140-9. PubMed DOI PMC
Xu D.H., Zhu Z., Xiao H., Wakefield M.R., Bai Q., Nicholl M.B., Ding V.A., Fang Y. Unveil the mysterious mask of cytokine-based immunotherapy for melanoma. Cancer Lett. 2017;394:43–51. doi: 10.1016/j.canlet.2017.02.022. PubMed DOI
Jiang T., Zhou C., Ren S. Role of IL-2 in cancer immunotherapy. Oncoimmunology. 2016;5:e1163462. doi: 10.1080/2162402X.2016.1163462. PubMed DOI PMC
Ives N.J., Suciu S., Eggermont A.M.M., Kirkwood J., Lorigan P., Markovic S.N., Garbe C., Wheatley K., International Melanoma Meta-Analysis Collaborative Group (IMMCG) Adjuvant interferon-α for the treatment of high-risk melanoma: An individual patient data meta-analysis. Eur. J. Cancer. 2017;82:171–183. doi: 10.1016/j.ejca.2017.06.006. PubMed DOI
Hoeller C., Michielin O., Ascierto P.A., Szabo Z., Blank C.U. Systematic review of the use of granulocyte-macrophage colony-stimulating factor in patients with advanced melanoma. Cancer Immunol. Immunother. 2016;65:1015–1034. doi: 10.1007/s00262-016-1860-3. PubMed DOI PMC
Liu G., Qi M., Hutchinson M.R., Yang G., Goldys E.M. Recent advances in cytokine detection by immunosensing. Biosens. Bioelectron. 2016;79:810–821. doi: 10.1016/j.bios.2016.01.020. PubMed DOI
Kulbe H., Chakravarty P., Leinster D.A., Charles K.A., Kwong J., Thompson R.G., Coward J.I., Schioppa T., Robinson S.C., Gallagher W.M., et al. A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Res. 2012;72:66–75. doi: 10.1158/0008-5472.CAN-11-2178. PubMed DOI PMC
Nilsson T., Mann M., Aebersold R., Yates J.R., Bairoch A., Bergeron J.J.M. Mass spectrometry in high-throughput proteomics: Ready for the big time. Nat. Methods. 2010;7:681–685. doi: 10.1038/nmeth0910-681. PubMed DOI
Anderson N.L., Anderson N.G. The human plasma proteome: History, character and diagnostic prospects. Mol. Cell. Proteom. 2002;1:845–867. doi: 10.1074/mcp.R200007-MCP200. PubMed DOI
Rocco M., Malorni L., Cozzolino R., Palmieri G., Rozzo C., Manca A., Parente A., Chambery A. Proteomic profiling of human melanoma metastatic cell line secretomes. J. Proteome Res. 2011;10:4703–4714. doi: 10.1021/pr200511f. PubMed DOI
Alečković M., Wei Y., LeRoy G., Sidoli S., Liu D.D., Garcia B.A., Kang Y. Identification of Nidogen 1 as a lung metastasis protein through secretome analysis. Genes Dev. 2017;31:1439–1455. doi: 10.1101/gad.301937.117. PubMed DOI PMC
Boyle G.M., Pedley J., Martyn A.C., Banducci K.J., Strutton G.M., Brown D.A., Breit S.N., Parsons P.G. Macrophage inhibitory cytokine-1 is overexpressed in malignant melanoma and is associated with tumorigenicity. J. Investig. Dermatol. 2009;129:383–391. doi: 10.1038/jid.2008.270. PubMed DOI
Rosenberger G., Koh C.C., Guo T., Röst H.L., Kouvonen P., Collins B.C., Heusel M., Liu Y., Caron E., Vichalkovski A., et al. A repository of assays to quantify 10,000 human proteins by SWATH-MS. Sci. Data. 2014;1:140031. doi: 10.1038/sdata.2014.31. PubMed DOI PMC
Collins B.C., Hunter C.L., Liu Y., Schilling B., Rosenberger G., Bader S.L., Chan D.W., Gibson B.W., Gingras A.-C., Held J.M., et al. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat. Commun. 2017;8:291. doi: 10.1038/s41467-017-00249-5. PubMed DOI PMC
Anjo S.I., Santa C., Manadas B. SWATH-MS as a tool for biomarker discovery: From basic research to clinical applications. Proteomics. 2017;17 doi: 10.1002/pmic.201600278. PubMed DOI
Lin Q., Lim H.S.R., Lin H.L., Tan H.T., Lim T.K., Cheong W.K., Cheah P.Y., Tang C.L., Chow P.K.H., Chung M.C.M. Analysis of colorectal cancer glyco-secretome identifies laminin β-1 (LAMB1) as a potential serological biomarker for colorectal cancer. Proteomics. 2015;15:3905–3920. doi: 10.1002/pmic.201500236. PubMed DOI
Manfredi M., Martinotti S., Gosetti F., Ranzato E., Marengo E. The secretome signature of malignant mesothelioma cell lines. J. Proteom. 2016;145:3–10. doi: 10.1016/j.jprot.2016.02.021. PubMed DOI
Addona T.A., Abbatiello S.E., Schilling B., Skates S.J., Mani D.R., Bunk D.M., Spiegelman C.H., Zimmerman L.J., Ham A.-J.L., Keshishian H., et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat. Biotechnol. 2009;27:633–641. doi: 10.1038/nbt.1546. PubMed DOI PMC
Percy A.J., Chambers A.G., Yang J., Hardie D.B., Borchers C.H. Advances in multiplexed MRM-based protein biomarker quantitation toward clinical utility. Biochim. Biophys. Acta. 2014;1844:917–926. doi: 10.1016/j.bbapap.2013.06.008. PubMed DOI
Parker C.E., Borchers C.H. Mass spectrometry based biomarker discovery, verification and validation—Quality assurance and control of protein biomarker assays. Mol. Oncol. 2014;8:840–858. doi: 10.1016/j.molonc.2014.03.006. PubMed DOI PMC
Bredehöft M., Schänzer W., Thevis M. Quantification of human insulin-like growth factor-1 and qualitative detection of its analogues in plasma using liquid chromatography/electrospray ionisation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2008;22:477–485. doi: 10.1002/rcm.3388. PubMed DOI
Anderson N.L., Anderson N.G., Haines L.R., Hardie D.B., Olafson R.W., Pearson T.W. Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA) J. Proteome Res. 2004;3:235–244. doi: 10.1021/pr034086h. PubMed DOI
Kuhn E., Whiteaker J.R., Mani D.R., Jackson A.M., Zhao L., Pope M.E., Smith D., Rivera K.D., Anderson N.L., Skates S.J., et al. Interlaboratory evaluation of automated, multiplexed peptide immunoaffinity enrichment coupled to multiple reaction monitoring mass spectrometry for quantifying proteins in plasma. Mol. Cell. Proteom. 2012;11:M111.013854. doi: 10.1074/mcp.M111.013854. PubMed DOI PMC
Sherma N.D., Borges C.R., Trenchevska O., Jarvis J.W., Rehder D.S., Oran P.E., Nelson R.W., Nedelkov D. Mass Spectrometric Immunoassay for the qualitative and quantitative analysis of the cytokine Macrophage Migration Inhibitory Factor (MIF) Proteome Sci. 2014;12:52. doi: 10.1186/s12953-014-0052-3. PubMed DOI PMC
Pompach P., Benada O., Rosůlek M., Darebná P., Hausner J., Růžička V., Volný M., Novák P. Protein Chips Compatible with MALDI Mass Spectrometry Prepared by Ambient Ion Landing. Anal. Chem. 2016;88:8526–8534. doi: 10.1021/acs.analchem.6b01366. PubMed DOI
Pompach P., Nováková J., Kavan D., Benada O., Růžička V., Volný M., Novák P. Planar Functionalized Surfaces for Direct Immunoaffinity Desorption/Ionization Mass Spectrometry. Clin. Chem. 2016;62:270–278. doi: 10.1373/clinchem.2015.244004. PubMed DOI
Engvall E., Jonsson K., Perlmann P. Enzyme-linked immunosorbent assay. II. Quantitative assay of protein antigen, immunoglobulin G, by means of enzyme-labelled antigen and antibody-coated tubes. Biochim. Biophys. Acta. 1971;251:427–434. doi: 10.1016/0005-2795(71)90132-2. PubMed DOI
Van Weemen B.K., Schuurs A.H.W.M. Immunoassay using antigen-enzyme conjugates. FEBS Lett. 1971;15:232–236. doi: 10.1016/0014-5793(71)80319-8. PubMed DOI
Shah K., Maghsoudlou P. Enzyme-linked immunosorbent assay (ELISA): The basics. Br. J. Hosp. Med. 2016;77:C98–C101. doi: 10.12968/hmed.2016.77.7.C98. PubMed DOI
Whiteside T.L. Cytokine assays. BioTechniques. 2002;10:S4–S15. PubMed
Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA. 1979;76:4350–4354. doi: 10.1073/pnas.76.9.4350. PubMed DOI PMC
Apte R.N., Dotan S., Elkabets M., White M.R., Reich E., Carmi Y., Song X., Dvozkin T., Krelin Y., Voronov E. The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev. 2006;25:387–408. doi: 10.1007/s10555-006-9004-4. PubMed DOI
Schneider K.S., Thomas C.J., Groß O. Inflammasome activation and inhibition in primary murine bone marrow-derived cells and assays for IL-1α, IL-1β and caspase-1. Methods Mol. Biol. 2013;1040:117–135. doi: 10.1007/978-1-62703-523-1_10. PubMed DOI
Guey B., Petrilli V. Assessing Caspase-1 Activation. Methods Mol. Biol. 2016;1417:197–206. doi: 10.1007/978-1-4939-3566-6_13. PubMed DOI
Logan P., Burnier J., Burnier M.N. Vascular endothelial growth factor expression and inhibition in uveal melanoma cell lines. Ecancermedicalscience. 2013;7:336. doi: 10.3332/ecancer.2013.336. PubMed DOI PMC
Gatla H.R., Singha B., Persaud V., Vancurova I. Evaluating cytoplasmic and nuclear levels of inflammatory cytokines in cancer cells by western blotting. Methods Mol. Biol. 2014;1172:271–283. doi: 10.1007/978-1-4939-0928-5_25. PubMed DOI
Miskolci V., Hodgson L., Cox D., Vancurova I. Western analysis of intracellular interleukin-8 in human mononuclear leukocytes. Methods Mol. Biol. 2014;1172:285–293. doi: 10.1007/978-1-4939-0928-5_26. PubMed DOI PMC
Wessendorf J.H., Garfinkel S., Zhan X., Brown S., Maciag T. Identification of a nuclear localization sequence within the structure of the human interleukin-1 alpha precursor. J. Biol. Chem. 1993;268:22100–22104. PubMed
Boraschi D., Lucchesi D., Hainzl S., Leitner M., Maier E., Mangelberger D., Oostingh G.J., Pfaller T., Pixner C., Posselt G., et al. IL-37: A new anti-inflammatory cytokine of the IL-1 family. Eur. Cytokine Netw. 2011;22:127–147. doi: 10.1684/ecn.2011.0288. PubMed DOI
Ross R., Grimmel J., Goedicke S., Möbus A.M., Bulau A.-M., Bufler P., Ali S., Martin M.U. Analysis of nuclear localization of interleukin-1 family cytokines by flow cytometry. J. Immunol. Methods. 2013;387:219–227. doi: 10.1016/j.jim.2012.10.017. PubMed DOI
Bertheloot D., Latz E. HMGB1, IL-1α, IL-33 and S100 proteins: Dual-function alarmins. Cell. Mol. Immunol. 2017;14:43–64. doi: 10.1038/cmi.2016.34. PubMed DOI PMC
Miskolci V., Ghosh C.C., Rollins J., Romero C., Vu H.-Y., Robinson S., Davidson D., Vancurova I. TNFalpha release from peripheral blood leukocytes depends on a CRM1-mediated nuclear export. Biochem. Biophys. Res. Commun. 2006;351:354–360. doi: 10.1016/j.bbrc.2006.10.045. PubMed DOI
Richter M.M. Electrochemiluminescence (ECL) Chem. Rev. 2004;104:3003–3036. doi: 10.1021/cr020373d. PubMed DOI
Rhyne P.W., Wong O.T., Zhang Y.J., Weiner R.S. Electrochemiluminescence in bioanalysis. Bioanalysis. 2009;1:919–935. doi: 10.4155/bio.09.80. PubMed DOI
Wei H., Wang E. Electrochemiluminescence of tris(2,2′-bipyridyl)ruthenium and its applications in bioanalysis: A review. Lumin. J. Biol. Chem. Lumin. 2011;26:77–85. doi: 10.1002/bio.1279. PubMed DOI
Obenauer-Kutner L.J., Jacobs S.J., Kolz K., Tobias L.M., Bordens R.W. A highly sensitive electrochemiluminescence immunoassay for interferon alfa-2b in human serum. J. Immunol. Methods. 1997;206:25–33. doi: 10.1016/S0022-1759(97)00081-1. PubMed DOI
Hercules D.M., Lytle F.E. Chemiluminescence from Reduction Reactions. J. Am. Chem. Soc. 1966;88:4745–4746. doi: 10.1021/ja00972a052. DOI
Chowdhury F., Williams A., Johnson P. Validation and comparison of two multiplex technologies, Luminex and Mesoscale Discovery, for human cytokine profiling. J. Immunol. Methods. 2009;340:55–64. doi: 10.1016/j.jim.2008.10.002. PubMed DOI
Fu Q., Zhu J., Van Eyk J.E. Comparison of multiplex immunoassay platforms. Clin. Chem. 2010;56:314–318. doi: 10.1373/clinchem.2009.135087. PubMed DOI PMC
Dabitao D., Margolick J.B., Lopez J., Bream J.H. Multiplex measurement of proinflammatory cytokines in human serum: Comparison of the Meso Scale Discovery electrochemiluminescence assay and the Cytometric Bead Array. J. Immunol. Methods. 2011;372:71–77. doi: 10.1016/j.jim.2011.06.033. PubMed DOI PMC
Ryan B.M., Pine S.R., Chaturvedi A.K., Caporaso N., Harris C.C. A combined prognostic serum interleukin-8 and interleukin-6 classifier for stage 1 lung cancer in the prostate, lung, colorectal and ovarian cancer screening trial. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer. 2014;9:1494–1503. doi: 10.1097/JTO.0000000000000278. PubMed DOI PMC
Block M.S., Maurer M.J., Goergen K., Kalli K.R., Erskine C.L., Behrens M.D., Oberg A.L., Knutson K.L. Plasma immune analytes in patients with epithelial ovarian cancer. Cytokine. 2015;73:108–113. doi: 10.1016/j.cyto.2015.01.035. PubMed DOI PMC
Pan Y.W., Zhou Z.G., Wang M., Dong J.Q., Du K.P., Li S., Liu Y.L., Lv P.J., Gao J.B. Combination of IL-6, IL-10 and MCP-1 with traditional serum tumor markers in lung cancer diagnosis and prognosis. Genet. Mol. Res. 2016;15 doi: 10.4238/gmr15048949. PubMed DOI
Shimizu Y., Furuya H., Bryant Greenwood P., Chan O., Dai Y., Thornquist M.D., Goodison S., Rosser C.J. A multiplex immunoassay for the non-invasive detection of bladder cancer. J. Transl. Med. 2016;14:31. doi: 10.1186/s12967-016-0783-2. PubMed DOI PMC
Wilson J.J., Burgess R., Mao Y.-Q., Luo S., Tang H., Jones V.S., Weisheng B., Huang R.-Y., Chen X., Huang R.-P. Antibody arrays in biomarker discovery. Adv. Clin. Chem. 2015;69:255–324. doi: 10.1016/bs.acc.2015.01.002. PubMed DOI
Valekova I., Skalnikova H.K., Jarkovska K., Motlik J., Kovarova H. Multiplex immunoassays for quantification of cytokines, growth factors and other proteins in stem cell communication. Methods Mol. Biol. 2015;1212:39–63. doi: 10.1007/7651_2014_94. PubMed DOI
Faresjö M. A useful guide for analysis of immune markers by fluorochrome (Luminex) technique. Methods Mol. Biol. 2014;1172:87–96. doi: 10.1007/978-1-4939-0928-5_7. PubMed DOI
Valekova I., Jarkovska K., Kotrcova E., Bucci J., Ellederova Z., Juhas S., Motlik J., Gadher S.J., Kovarova H. Revelation of the IFNα, IL-10, IL-8 and IL-1β as promising biomarkers reflecting immuno-pathological mechanisms in porcine Huntington’s disease model. J. Neuroimmunol. 2016;293:71–81. doi: 10.1016/j.jneuroim.2016.02.012. PubMed DOI
Rosenberg-Hasson Y., Hansmann L., Liedtke M., Herschmann I., Maecker H.T. Effects of serum and plasma matrices on multiplex immunoassays. Immunol. Res. 2014;58:224–233. doi: 10.1007/s12026-014-8491-6. PubMed DOI PMC
Tarhini A.A., Lin Y., Zahoor H., Shuai Y., Butterfield L.H., Ringquist S., Gogas H., Sander C., Lee S., Agarwala S.S., et al. Pro-Inflammatory Cytokines Predict Relapse-Free Survival after One Month of Interferon-α but Not Observation in Intermediate Risk Melanoma Patients. PLoS ONE. 2015;10:e0132745. doi: 10.1371/journal.pone.0132745. PubMed DOI PMC
Shetty G., Beasley G.M., Sparks S., Barfield M., Masoud M., Mosca P.J., Pruitt S.K., Salama A.K.S., Chan C., Tyler D.S., et al. Plasma cytokine analysis in patients with advanced extremity melanoma undergoing isolated limb infusion. Ann. Surg. Oncol. 2013;20:1128–1135. doi: 10.1245/s10434-012-2785-5. PubMed DOI PMC
Triozzi P.L., Aldrich W., Crabb J.W., Singh A.D. Spontaneous cellular and humoral tumor antigen responses in patients with uveal melanoma. Melanoma Res. 2015;25:510–518. doi: 10.1097/CMR.0000000000000207. PubMed DOI
Ly L.V., Bronkhorst I.H.G., van Beelen E., Vrolijk J., Taylor A.W., Versluis M., Luyten G.P.M., Jager M.J. Inflammatory cytokines in eyes with uveal melanoma and relation with macrophage infiltration. Investig. Ophthalmol. Vis. Sci. 2010;51:5445–5451. doi: 10.1167/iovs.10-5526. PubMed DOI PMC
Sanz H., Aponte J.J., Harezlak J., Dong Y., Ayestaran A., Nhabomba A., Mpina M., Maurin O.R., Díez-Padrisa N., Aguilar R., et al. drLumi: An open-source package to manage data, calibrate and conduct quality control of multiplex bead-based immunoassays data analysis. PLoS ONE. 2017;12:e0187901. doi: 10.1371/journal.pone.0187901. PubMed DOI PMC
Chang T.W. Binding of cells to matrixes of distinct antibodies coated on solid surface. J. Immunol. Methods. 1983;65:217–223. doi: 10.1016/0022-1759(83)90318-6. PubMed DOI
Antibody Arrays for Protein Detection. [(accessed on 27 November 2017)]; Available online: https://www.raybiotech.com/antibody-array.
Kopf E., Zharhary D. Antibody arrays—An emerging tool in cancer proteomics. Int. J. Biochem. Cell Biol. 2007;39:1305–1317. doi: 10.1016/j.biocel.2007.04.029. PubMed DOI
Sanchez-Carbayo M. Antibody array-based technologies for cancer protein profiling and functional proteomic analyses using serum and tissue specimens. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2010;31:103–112. doi: 10.1007/s13277-009-0014-z. PubMed DOI
Gál P., Varinská L., Fáber L., Novák Š., Szabo P., Mitrengová P., Mirossay A., Mučaji P., Smetana K. How Signaling Molecules Regulate Tumor Microenvironment: Parallels to Wound Repair. Molecules. 2017;22 doi: 10.3390/molecules22111818. PubMed DOI PMC
Rissin D.M., Kan C.W., Campbell T.G., Howes S.C., Fournier D.R., Song L., Piech T., Patel P.P., Chang L., Rivnak A.J., et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 2010;28:595–599. doi: 10.1038/nbt.1641. PubMed DOI PMC
Fischer S.K., Joyce A., Spengler M., Yang T.-Y., Zhuang Y., Fjording M.S., Mikulskis A. Emerging technologies to increase ligand binding assay sensitivity. AAPS J. 2015;17:93–101. doi: 10.1208/s12248-014-9682-8. PubMed DOI PMC
Andreasson U., Blennow K., Zetterberg H. Update on ultrasensitive technologies to facilitate research on blood biomarkers for central nervous system disorders. Alzheimers Dement. Amst. Neth. 2016;3:98–102. doi: 10.1016/j.dadm.2016.05.005. PubMed DOI PMC
Smith J.G., Gerszten R.E. Emerging Affinity-Based Proteomic Technologies for Large-Scale Plasma Profiling in Cardiovascular Disease. Circulation. 2017;135:1651–1664. doi: 10.1161/CIRCULATIONAHA.116.025446. PubMed DOI PMC
Simon S., Ezan E. Ultrasensitive bioanalysis: Current status and future trends. Bioanalysis. 2017;9:753–764. doi: 10.4155/bio-2017-0018. PubMed DOI
Singh M., Truong J., Reeves W.B., Hahm J.-I. Emerging Cytokine Biosensors with Optical Detection Modalities and Nanomaterial-Enabled Signal Enhancement. Sensors. 2017;17 doi: 10.3390/s17020428. PubMed DOI PMC
Rodríguez-Frade J.M., Martínez-Muñoz L., Villares R., Cascio G., Lucas P., Gomariz R.P., Mellado M. Chemokine Detection Using Receptors Immobilized on an SPR Sensor Surface. Methods Enzymol. 2016;570:1–18. doi: 10.1016/bs.mie.2015.09.013. PubMed DOI
Zhou Q., Son K., Liu Y., Revzin A. Biosensors for Cell Analysis. Annu. Rev. Biomed. Eng. 2015;17:165–190. doi: 10.1146/annurev-bioeng-071114-040525. PubMed DOI
Chen P., Huang N.-T., Chung M.-T., Cornell T.T., Kurabayashi K. Label-free cytokine micro- and nano-biosensing towards personalized medicine of systemic inflammatory disorders. Adv. Drug Deliv. Rev. 2015;95:90–103. doi: 10.1016/j.addr.2015.09.005. PubMed DOI PMC
Yang X., Tang Y., Alt R.R., Xie X., Li F. Emerging techniques for ultrasensitive protein analysis. Analyst. 2016;141:3473–3481. doi: 10.1039/C6AN00059B. PubMed DOI
Cretich M., Daaboul G.G., Sola L., Ünlü M.S., Chiari M. Digital detection of biomarkers assisted by nanoparticles: Application to diagnostics. Trends Biotechnol. 2015;33:343–351. doi: 10.1016/j.tibtech.2015.03.002. PubMed DOI
Zhang Y., Noji H. Digital Bioassays: Theory, Applications and Perspectives. Anal. Chem. 2017;89:92–101. doi: 10.1021/acs.analchem.6b04290. PubMed DOI
Ahn S., Zhang P., Yu H., Lee S., Kang S.H. Ultrasensitive Detection of α-Fetoprotein by Total Internal Reflection Scattering-Based Super-Resolution Microscopy for Superlocalization of Nano-Immunoplasmonics. Anal. Chem. 2016;88:11070–11076. doi: 10.1021/acs.analchem.6b03069. PubMed DOI
Wu A.H.B., Fukushima N., Puskas R., Todd J., Goix P. Development and preliminary clinical validation of a high sensitivity assay for cardiac troponin using a capillary flow (single molecule) fluorescence detector. Clin. Chem. 2006;52:2157–2159. doi: 10.1373/clinchem.2006.073163. PubMed DOI
Todd J., Freese B., Lu A., Held D., Morey J., Livingston R., Goix P. Ultrasensitive flow-based immunoassays using single-molecule counting. Clin. Chem. 2007;53:1990–1995. doi: 10.1373/clinchem.2007.091181. PubMed DOI
Gilbert M., Livingston R., Felberg J., Bishop J.J. Multiplex single molecule counting technology used to generate interleukin 4, interleukin 6 and interleukin 10 reference limits. Anal. Biochem. 2016;503:11–20. doi: 10.1016/j.ab.2016.03.008. PubMed DOI
Wu D., Milutinovic M.D., Walt D.R. Single molecule array (Simoa) assay with optimal antibody pairs for cytokine detection in human serum samples. Analyst. 2015;140:6277–6282. doi: 10.1039/C5AN01238D. PubMed DOI
Rissin D.M., Kan C.W., Song L., Rivnak A.J., Fishburn M.W., Shao Q., Piech T., Ferrell E.P., Meyer R.E., Campbell T.G., et al. Multiplexed single molecule immunoassays. Lab. Chip. 2013;13:2902–2911. doi: 10.1039/c3lc50416f. PubMed DOI PMC
Rivnak A.J., Rissin D.M., Kan C.W., Song L., Fishburn M.W., Piech T., Campbell T.G., DuPont D.R., Gardel M., Sullivan S., et al. A fully-automated, six-plex single molecule immunoassay for measuring cytokines in blood. J. Immunol. Methods. 2015;424:20–27. doi: 10.1016/j.jim.2015.04.017. PubMed DOI PMC
Sano T., Smith C.L., Cantor C.R. Immuno-PCR: Very sensitive antigen detection by means of specific antibody-DNA conjugates. Science. 1992;258:120–122. doi: 10.1126/science.1439758. PubMed DOI
Adler M., Spengler M. Novel Strategies and Tools for Enhanced Sensitivity in Routine Biomolecule Analytics. Curr. Pharm. Anal. 2009;5:390–407. doi: 10.2174/157341209789649104. DOI
Ryazantsev D.Y., Voronina D.V., Zavriev S.K. Immuno-PCR: Achievements and Perspectives. Biochem. Biokhimiia. 2016;81:1754–1770. doi: 10.1134/S0006297916130113. PubMed DOI
Chang L., Li J., Wang L. Immuno-PCR: An ultrasensitive immunoassay for biomolecular detection. Anal. Chim. Acta. 2016;910:12–24. doi: 10.1016/j.aca.2015.12.039. PubMed DOI
Niemeyer C.M., Adler M., Wacker R. Detecting antigens by quantitative immuno-PCR. Nat. Protoc. 2007;2:1918–1930. doi: 10.1038/nprot.2007.267. PubMed DOI
Khan A.H., Sadroddiny E. Application of immuno-PCR for the detection of early stage cancer. Mol. Cell. Probes. 2016;30:106–112. doi: 10.1016/j.mcp.2016.01.010. PubMed DOI
Assumpção A.L.F.V., da Silva R.C. Immuno-PCR in cancer and non-cancer related diseases: A review. Vet. Q. 2016;36:63–70. doi: 10.1080/01652176.2016.1164912. PubMed DOI
Fredriksson S., Gullberg M., Jarvius J., Olsson C., Pietras K., Gústafsdóttir S.M., Ostman A., Landegren U. Protein detection using proximity-dependent DNA ligation assays. Nat. Biotechnol. 2002;20:473–477. doi: 10.1038/nbt0502-473. PubMed DOI
Greenwood C., Ruff D., Kirvell S., Johnson G., Dhillon H.S., Bustin S.A. Proximity assays for sensitive quantification of proteins. Biomol. Detect. Quantif. 2015;4:10–16. doi: 10.1016/j.bdq.2015.04.002. PubMed DOI PMC
Hong C.-Y., Wu C.C., Chiu Y.C., Yang S.Y., Horng H.E., Yang H.C. Magnetic susceptibility reduction method for magnetically labeled immunoassay. Appl. Phys. Lett. 2006;88:212512. doi: 10.1063/1.2206557. DOI
Yang S.-Y., Chiu M.-J., Chen T.-F., Horng H.-E. Detection of Plasma Biomarkers Using Immunomagnetic Reduction: A Promising Method for the Early Diagnosis of Alzheimer’s Disease. Neurol. Ther. 2017;6:37–56. doi: 10.1007/s40120-017-0075-7. PubMed DOI PMC
Lue L.-F., Sabbagh M.N., Chiu M.-J., Jing N., Snyder N.L., Schmitz C., Guerra A., Belden C.M., Chen T.-F., Yang C.-C., et al. Plasma Levels of Aβ42 and Tau Identified Probable Alzheimer’s Dementia: Findings in Two Cohorts. Front. Aging Neurosci. 2017;9:226. doi: 10.3389/fnagi.2017.00226. PubMed DOI PMC
Huang K.W., Yang S.Y., Yu C.Y., Chieh J.J., Yang C.-C., Horng H.-E., Hong C.-Y., Yang H.-C., Wu C.-C. Exploration of the relationship between the tumor burden and the concentration of vascular endothelial growth factor in liver-cancer-bearing animals using immunomagnetic reduction assay. J. Biomed. Nanotechnol. 2011;7:535–541. doi: 10.1166/jbn.2011.1321. PubMed DOI
Yang C.-C., Yang S.-Y., Ho C.-S., Chang J.-F., Liu B.-H., Huang K.-W. Development of antibody functionalized magnetic nanoparticles for the immunoassay of carcinoembryonic antigen: A feasibility study for clinical use. J. Nanobiotechnol. 2014;12:44. doi: 10.1186/s12951-014-0044-6. PubMed DOI PMC
Chieh J.-J., Huang K.W., Chuang C.P., Wei W.C., Dong J.J., Lee Y.Y. Immunomagnetic Reduction Assay on Des-Gamma-Carboxy Prothrombin for Screening of Hepatocellular Carcinoma. IEEE Trans. Biomed. Eng. 2016;63:1681–1686. doi: 10.1109/TBME.2015.2478845. PubMed DOI
Product-IMR Reagent | MagQu. [(accessed on 27 November 2017)]; Available online: http://www.magqu.com/product/IMR%20Reagent?shs_term_node_tid_depth=39.
Yeung D., Ciotti S., Purushothama S., Gharakhani E., Kuesters G., Schlain B., Shen C., Donaldson D., Mikulskis A. Evaluation of highly sensitive immunoassay technologies for quantitative measurements of sub-pg/mL levels of cytokines in human serum. J. Immunol. Methods. 2016;437:53–63. doi: 10.1016/j.jim.2016.08.003. PubMed DOI
Fichorova R.N., Richardson-Harman N., Alfano M., Belec L., Carbonneil C., Chen S., Cosentino L., Curtis K., Dezzutti C.S., Donoval B., et al. Biological and technical variables affecting immunoassay recovery of cytokines from human serum and simulated vaginal fluid: A multicenter study. Anal. Chem. 2008;80:4741–4751. doi: 10.1021/ac702628q. PubMed DOI PMC
Chattopadhyay P.K., Gierahn T.M., Roederer M., Love J.C. Single-cell technologies for monitoring immune systems. Nat. Immunol. 2014;15:128–135. doi: 10.1038/ni.2796. PubMed DOI PMC
Czerkinsky C.C., Nilsson L.A., Nygren H., Ouchterlony O., Tarkowski A. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J. Immunol. Methods. 1983;65:109–121. doi: 10.1016/0022-1759(83)90308-3. PubMed DOI
Czerkinsky C., Andersson G., Ekre H.P., Nilsson L.A., Klareskog L., Ouchterlony O. Reverse ELISPOT assay for clonal analysis of cytokine production. I. Enumeration of gamma-interferon-secreting cells. J. Immunol. Methods. 1988;110:29–36. doi: 10.1016/0022-1759(88)90079-8. PubMed DOI
Slota M., Lim J.-B., Dang Y., Disis M.L. ELISpot for measuring human immune responses to vaccines. Expert Rev. Vaccines. 2011;10:299–306. doi: 10.1586/erv.10.169. PubMed DOI PMC
Hauer A.C., Bajaj-Elliott M. Interleukin Protocols. Springer; Totowa, NJ, USA: 2001. Elispot Technique for Assaying Interleukins; pp. 17–28. Methods in Molecular MedicineTM.
Faresjö M. The challenge of measuring elusive immune markers by enzyme-linked immuno-spot (ELISPOT) technique. Methods Mol. Biol. 2014;1172:3–12. doi: 10.1007/978-1-4939-0928-5_1. PubMed DOI
Morse M.A., Osada T., Hobeika A., Patel S., Lyerly H.K. Biomarkers and correlative endpoints for immunotherapy trials. Am. Soc. Clin. Oncol. Educ. Book Am. Soc. Clin. Oncol. Meet. 2013 doi: 10.1200/EdBook_AM.2013.33.e287. PubMed DOI
Kamentsky L.A., Melamed M.R., Derman H. Spectrophotometer: New instrument for ultrarapid cell analysis. Science. 1965;150:630–631. doi: 10.1126/science.150.3696.630. PubMed DOI
Fulwyler M.J. Electronic separation of biological cells by volume. Science. 1965;150:910–911. doi: 10.1126/science.150.3698.910. PubMed DOI
Yin Y., Mitson-Salazar A., Prussin C. Detection of Intracellular Cytokines by Flow Cytometry. Curr. Protoc. Immunol. 2015;110:6.24.1–6.24.18. doi: 10.1002/0471142735.im0624s110. PubMed DOI
Freer G. Intracellular staining and detection of cytokines by fluorescence-activated flow cytometry. Methods Mol. Biol. 2014;1172:221–234. doi: 10.1007/978-1-4939-0928-5_20. PubMed DOI
Schuerwegh A.J., Stevens W.J., Bridts C.H., De Clerck L.S. Evaluation of monensin and brefeldin A for flow cytometric determination of interleukin-1 beta, interleukin-6 and tumor necrosis factor-alpha in monocytes. Cytometry. 2001;46:172–176. doi: 10.1002/cyto.1102. PubMed DOI
Sander B., Andersson J., Andersson U. Assessment of cytokines by immunofluorescence and the paraformaldehyde-saponin procedure. Immunol. Rev. 1991;119:65–93. doi: 10.1111/j.1600-065X.1991.tb00578.x. PubMed DOI
Jung T., Schauer U., Heusser C., Neumann C., Rieger C. Detection of intracellular cytokines by flow cytometry. J. Immunol. Methods. 1993;159:197–207. doi: 10.1016/0022-1759(93)90158-4. PubMed DOI
Prussin C., Metcalfe D.D. Detection of intracytoplasmic cytokine using flow cytometry and directly conjugated anti-cytokine antibodies. J. Immunol. Methods. 1995;188:117–128. doi: 10.1016/0022-1759(95)00209-X. PubMed DOI
Foster B., Prussin C., Liu F., Whitmire J.K., Whitton J.L. Detection of intracellular cytokines by flow cytometry. Curr. Protoc. Immunol. 2007 doi: 10.1002/0471142735.im0624s78. PubMed DOI
Mukai K., Gaudenzio N., Gupta S., Vivanco N., Bendall S.C., Maecker H.T., Chinthrajah R.S., Tsai M., Nadeau K.C., Galli S.J. Assessing basophil activation by using flow cytometry and mass cytometry in blood stored 24 hours before analysis. J. Allergy Clin. Immunol. 2017;139:889–899. doi: 10.1016/j.jaci.2016.04.060. PubMed DOI PMC
Schmidt C.S., Aranda Lopez P., Dopheide J.F., Schmidt F., Theobald M., Schild H., Lauinger-Lörsch E., Nolte F., Radsak M.P. Phenotypic and functional characterization of neutrophils and monocytes from patients with myelodysplastic syndrome by flow cytometry. Cell. Immunol. 2016;308:19–26. doi: 10.1016/j.cellimm.2016.07.005. PubMed DOI
Manfredi A.A., Rovere-Querini P., D’Angelo A., Maugeri N. Low molecular weight heparins prevent the induction of autophagy of activated neutrophils and the formation of neutrophil extracellular traps. Pharmacol. Res. 2017;123:146–156. doi: 10.1016/j.phrs.2016.08.008. PubMed DOI
Misale M.S., Witek Janusek L., Tell D., Mathews H.L. Chromatin organization as an indicator of glucocorticoid induced natural killer cell dysfunction. Brain. Behav. Immun. 2018;67:279–289. doi: 10.1016/j.bbi.2017.09.004. PubMed DOI PMC
Yin Y., Bai Y., Olivera A., Desai A., Metcalfe D.D. An optimized protocol for the generation and functional analysis of human mast cells from CD34(+) enriched cell populations. J. Immunol. Methods. 2017;448:105–111. doi: 10.1016/j.jim.2017.06.003. PubMed DOI PMC
Daud A.I., Loo K., Pauli M.L., Sanchez-Rodriguez R., Sandoval P.M., Taravati K., Tsai K., Nosrati A., Nardo L., Alvarado M.D., et al. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J. Clin. Investig. 2016;126:3447–3452. doi: 10.1172/JCI87324. PubMed DOI PMC
Ribas A., Shin D.S., Zaretsky J., Frederiksen J., Cornish A., Avramis E., Seja E., Kivork C., Siebert J., Kaplan-Lefko P., et al. PD-1 Blockade Expands Intratumoral Memory T Cells. Cancer Immunol. Res. 2016;4:194–203. doi: 10.1158/2326-6066.CIR-15-0210. PubMed DOI PMC
Tietze J.K., Angelova D., Heppt M.V., Reinholz M., Murphy W.J., Spannagl M., Ruzicka T., Berking C. The proportion of circulating CD45RO(+)CD8(+) memory T cells is correlated with clinical response in melanoma patients treated with ipilimumab. Eur. J. Cancer. 2017;75:268–279. doi: 10.1016/j.ejca.2016.12.031. PubMed DOI
Kitano S., Tsuji T., Liu C., Hirschhorn-Cymerman D., Kyi C., Mu Z., Allison J.P., Gnjatic S., Yuan J.D., Wolchok J.D. Enhancement of tumor-reactive cytotoxic CD4+ T cell responses after ipilimumab treatment in four advanced melanoma patients. Cancer Immunol. Res. 2013;1:235–244. doi: 10.1158/2326-6066.CIR-13-0068. PubMed DOI PMC
De Coaña Y.P., Wolodarski M., Poschke I., Yoshimoto Y., Yang Y., Nyström M., Edbäck U., Brage S.E., Lundqvist A., Masucci G.V., et al. Ipilimumab treatment decreases monocytic MDSCs and increases CD8 effector memory T cells in long-term survivors with advanced melanoma. Oncotarget. 2017;8:21539–21553. doi: 10.18632/oncotarget.15368. PubMed DOI PMC
Wistuba-Hamprecht K., Martens A., Heubach F., Romano E., Geukes Foppen M., Yuan J., Postow M., Wong P., Mallardo D., Schilling B., et al. Peripheral CD8 effector-memory type 1 T-cells correlate with outcome in ipilimumab-treated stage IV melanoma patients. Eur. J. Cancer. 2017;73:61–70. doi: 10.1016/j.ejca.2016.12.011. PubMed DOI PMC
Diller M.L., Kudchadkar R.R., Delman K.A., Lawson D.H., Ford M.L. Complete response to high-dose IL-2 and enhanced IFNγ+Th17 : TREG ratio in a melanoma patient. Melanoma Res. 2016;26:535–539. doi: 10.1097/CMR.0000000000000283. PubMed DOI PMC
Diller M.L., Kudchadkar R.R., Delman K.A., Lawson D.H., Ford M.L. Exogenous IL-2 Induces FoxP3+ Th17 Cells In Vivo in Melanoma Patients. J. Immunother. 2016;39:355–366. doi: 10.1097/CJI.0000000000000139. PubMed DOI PMC
Zelba H., Weide B., Martens A., Derhovanessian E., Bailur J.K., Kyzirakos C., Pflugfelder A., Eigentler T.K., Di Giacomo A.M., Maio M., et al. Circulating CD4+ T cells that produce IL4 or IL17 when stimulated by melan-A but not by NY-ESO-1 have negative impacts on survival of patients with stage IV melanoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014;20:4390–4399. doi: 10.1158/1078-0432.CCR-14-1015. PubMed DOI
Zelba H., Weide B., Martens A., Bailur J.K., Garbe C., Pawelec G. The prognostic impact of specific CD4 T-cell responses is critically dependent on the target antigen in melanoma. Oncoimmunology. 2015;4:e955683. doi: 10.4161/21624011.2014.955683. PubMed DOI PMC
Borchers S., Maβlo C., Müller C.A., Tahedl A., Volkind J., Nowak Y., Umansky V., Esterlechner J., Frank M.H., Ganss C., et al. Detection of ABCB5 tumour antigen-specific CD8(+) T cells in melanoma patients and implications for immunotherapy. Clin. Exp. Immunol. 2017 doi: 10.1111/cei.13053. PubMed DOI PMC
Bandura D.R., Baranov V.I., Ornatsky O.I., Antonov A., Kinach R., Lou X., Pavlov S., Vorobiev S., Dick J.E., Tanner S.D. Mass cytometry: Technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 2009;81:6813–6822. doi: 10.1021/ac901049w. PubMed DOI
Cosma A., Nolan G., Gaudilliere B. Mass cytometry: The time to settle down. Cytom. Part J. Int. Soc. Anal. Cytol. 2017;91:12–13. doi: 10.1002/cyto.a.23032. PubMed DOI PMC
Bendall S.C., Simonds E.F., Qiu P., Amir E.D., Krutzik P.O., Finck R., Bruggner R.V., Melamed R., Trejo A., Ornatsky O.I., et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science. 2011;332:687–696. doi: 10.1126/science.1198704. PubMed DOI PMC
O’Gorman W.E., Kong D.S., Balboni I.M., Rudra P., Bolen C.R., Ghosh D., Davis M.M., Nolan G.P., Hsieh E.W.Y. Mass cytometry identifies a distinct monocyte cytokine signature shared by clinically heterogeneous pediatric SLE patients. J. Autoimmun. 2017 doi: 10.1016/j.jaut.2017.03.010. PubMed DOI PMC
Fisher D.A.C., Miner C.A., Engle E.K., Brost T.M., Malkova O., Oh S.T. Mass Cytometry Analysis of Dysregulated Cytokine Production and Intracellular Signaling in Myelofibrosis. Blood. 2016;128:4277.
Newell E.W., Lin W. High-dimensional analysis of human CD8(+) T cell phenotype, function and antigen specificity. Curr. Top. Microbiol. Immunol. 2014;377:61–84. doi: 10.1007/82_2013_354. PubMed DOI
Bradshaw E.M., Kent S.C., Tripuraneni V., Orban T., Ploegh H.L., Hafler D.A., Love J.C. Concurrent detection of secreted products from human lymphocytes by microengraving: Cytokines and antigen-reactive antibodies. Clin. Immunol. 2008;129:10–18. doi: 10.1016/j.clim.2008.06.009. PubMed DOI PMC
Zhu H., Stybayeva G., Silangcruz J., Yan J., Ramanculov E., Dandekar S., George M.D., Revzin A. Detecting cytokine release from single T-cells. Anal. Chem. 2009;81:8150–8156. doi: 10.1021/ac901390j. PubMed DOI PMC
Han Q., Bagheri N., Bradshaw E.M., Hafler D.A., Lauffenburger D.A., Love J.C. Polyfunctional responses by human T cells result from sequential release of cytokines. Proc. Natl. Acad. Sci. USA. 2012;109:1607–1612. doi: 10.1073/pnas.1117194109. PubMed DOI PMC
Lu Y., Chen J.J., Mu L., Xue Q., Wu Y., Wu P.-H., Li J., Vortmeyer A.O., Miller-Jensen K., Wirtz D., et al. High-throughput secretomic analysis of single cells to assess functional cellular heterogeneity. Anal. Chem. 2013;85:2548–2556. doi: 10.1021/ac400082e. PubMed DOI PMC
Lu Y., Xue Q., Eisele M.R., Sulistijo E.S., Brower K., Han L., Amir E.-A.D., Pe’er D., Miller-Jensen K., Fan R. Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands. Proc. Natl. Acad. Sci. USA. 2015;112:E607–E615. doi: 10.1073/pnas.1416756112. PubMed DOI PMC
Ma C., Fan R., Ahmad H., Shi Q., Comin-Anduix B., Chodon T., Koya R.C., Liu C.-C., Kwong G.A., Radu C.G., et al. A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat. Med. 2011;17:738–743. doi: 10.1038/nm.2375. PubMed DOI PMC
McWhorter F.Y., Smith T.D., Luu T.U., Rahim M.K., Haun J.B., Liu W.F. Macrophage secretion heterogeneity in engineered microenvironments revealed using a microwell platform. Integr. Biol. Quant. Biosci. Nano Macro. 2016;8:751–760. doi: 10.1039/C6IB00053C. PubMed DOI
An X., Sendra V.G., Liadi I., Ramesh B., Romain G., Haymaker C., Martinez-Paniagua M., Lu Y., Radvanyi L.G., Roysam B., et al. Single-cell profiling of dynamic cytokine secretion and the phenotype of immune cells. PLoS ONE. 2017;12:e0181904. doi: 10.1371/journal.pone.0181904. PubMed DOI PMC
Chalaris A., Garbers C., Rabe B., Rose-John S., Scheller J. The soluble Interleukin 6 receptor: Generation and role in inflammation and cancer. Eur. J. Cell Biol. 2011;90:484–494. doi: 10.1016/j.ejcb.2010.10.007. PubMed DOI
Meager A. Measurement of cytokines by bioassays: Theory and application. Methods. 2006;38:237–252. doi: 10.1016/j.ymeth.2005.11.005. PubMed DOI
Kovarik P., Ebner F., Sedlyarov V. Posttranscriptional regulation of cytokine expression. Cytokine. 2017;89:21–26. doi: 10.1016/j.cyto.2015.11.007. PubMed DOI