Melanoma cells influence the differentiation pattern of human epidermal keratinocytes
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25560632
PubMed Central
PMC4325966
DOI
10.1186/1476-4598-14-1
PII: 1476-4598-14-1
Knihovny.cz E-zdroje
- MeSH
- buněčná diferenciace * genetika MeSH
- chemokin CXCL1 farmakologie MeSH
- dospělí MeSH
- epidermální buňky * MeSH
- epidermis patologie MeSH
- fibroblastový růstový faktor 2 farmakologie MeSH
- interleukin-8 farmakologie MeSH
- keratin-10 metabolismus MeSH
- keratin-14 metabolismus MeSH
- keratinocyty cytologie účinky léků metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- melanocyty metabolismus MeSH
- melanom metabolismus patologie MeSH
- metastázy nádorů MeSH
- mezibuněčná komunikace * MeSH
- nádorové buněčné linie MeSH
- proteiny S100 metabolismus MeSH
- senioři MeSH
- stanovení celkové genové exprese MeSH
- vaskulární endoteliální růstový faktor A farmakologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemokin CXCL1 MeSH
- fibroblastový růstový faktor 2 MeSH
- interleukin-8 MeSH
- keratin-10 MeSH
- keratin-14 MeSH
- proteiny S100 MeSH
- vaskulární endoteliální růstový faktor A MeSH
BACKGROUND: Nodular melanoma is one of the most life threatening tumors with still poor therapeutic outcome. Similarly to other tumors, permissive microenvironment is essential for melanoma progression. Features of this microenvironment are arising from molecular crosstalk between the melanoma cells (MC) and the surrounding cell populations in the context of skin tissue. Here, we study the effect of melanoma cells on human primary keratinocytes (HPK). Presence of MC is as an important modulator of the tumor microenvironment and we compare it to the effect of nonmalignant lowly differentiated cells also originating from neural crest (NCSC). METHODS: Comparative morphometrical and immunohistochemical analysis of epidermis surrounding nodular melanoma (n = 100) was performed. Data were compared to results of transcriptome profiling of in vitro models, in which HPK were co-cultured with MC, normal human melanocytes, and NCSC, respectively. Differentially expressed candidate genes were verified by RT-qPCR. Biological activity of candidate proteins was assessed on cultured HPK. RESULTS: Epidermis surrounding nodular melanoma exhibits hyperplastic features in 90% of cases. This hyperplastic region exhibits aberrant suprabasal expression of keratin 14 accompanied by loss of keratin 10. We observe that MC and NCSC are able to increase expression of keratins 8, 14, 19, and vimentin in the co-cultured HPK. This in vitro finding partially correlates with pseudoepitheliomatous hyperplasia observed in melanoma biopsies. We provide evidence of FGF-2, CXCL-1, IL-8, and VEGF-A participation in the activity of melanoma cells on keratinocytes. CONCLUSION: We conclude that the MC are able to influence locally the differentiation pattern of keratinocytes in vivo as well as in vitro. This interaction further highlights the role of intercellular interactions in melanoma. The reciprocal role of activated keratinocytes on biology of melanoma cells shall be verified in the future.
Zobrazit více v PubMed
Kulesa PM, Kasemeier-Kulesa JC, Teddy JM, Margaryan NV, Seftor EA, Seftor RE, et al. Reprogramming metastatic melanoma cells to assume a neural crest cell-like phenotype in an embryonic microenvironment. Proc Natl Acad Sci U S A. 2006;103:3752–3757. doi: 10.1073/pnas.0506977103. PubMed DOI PMC
Hendrix MJ, Seftor EA, Seftor RE, Kasemeier-Kulesa J, Kulesa PM, Postovit LM. Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer. 2007;7:246–255. doi: 10.1038/nrc2108. PubMed DOI
Plzak J, Lacina L, Chovanec M, Dvorankova B, Szabo P, Cada Z, et al. Epithelial-stromal interaction in squamous cell epithelium-derived tumors: an important new player in the control of tumor biological properties. Anticancer Res. 2010;30:455–462. PubMed
Lacina L, Dvorankova B, Smetana K, Jr, Chovanec M, Plzak J, Tachezy R, et al. Marker profiling of normal keratinocytes identifies the stroma from squamous cell carcinoma of the oral cavity as a modulatory microenvironment in co-culture. Int J Radiat Biol. 2007;83:837–848. doi: 10.1080/09553000701694343. PubMed DOI
Strnad H, Lacina L, Kolar M, Cada Z, Vlcek C, Dvorankova B, et al. Head and neck squamous cancer stromal fibroblasts produce growth factors influencing phenotype of normal human keratinocytes. Histochem Cell Biol. 2010;133:201–211. doi: 10.1007/s00418-009-0661-6. PubMed DOI
Li L, Dragulev B, Zigrino P, Mauch C, Fox JW. The invasive potential of human melanoma cell lines correlates with their ability to alter fibroblast gene expression in vitro and the stromal microenvironment in vivo. Int J Cancer. 2009;125:1796–1804. doi: 10.1002/ijc.24463. PubMed DOI
Jager MJ, Ly LV, El Filali M, Madigan MC. Macrophages in uveal melanoma and in experimental ocular tumor models: Friends or foes? Prog Retin Eye Res. 2011;30:129–146. doi: 10.1016/j.preteyeres.2010.11.004. PubMed DOI
Sieber-Blum M, Grim M, Hu YF, Szeder V. Pluripotent neural crest stem cells in the adult hair follicle. Dev Dyn. 2004;231:258–269. doi: 10.1002/dvdy.20129. PubMed DOI
Haass NK, Ripperger D, Wladykowski E, Dawson P, Gimotty PA, Blome C, et al. Melanoma progression exhibits a significant impact on connexin expression patterns in the epidermal tumor microenvironment. Histochem Cell Biol. 2010;133:113–124. doi: 10.1007/s00418-009-0654-5. PubMed DOI
Brandner JM, Haass NK. Melanoma’s connections to the tumour microenvironment. Pathology. 2013;45:443–452. doi: 10.1097/PAT.0b013e328363b3bd. PubMed DOI
Krejci E, Grim M. Isolation and characterization of neural crest stem cells from adult human hair follicles. Folia Biol. 2010;56:149–157. PubMed
Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol. 1988;106:761–771. doi: 10.1083/jcb.106.3.761. PubMed DOI PMC
Dvorankova B, Holikova Z, Vacik J, Konigova R, Kapounkova Z, Michalek J, et al. Reconstruction of epidermis by grafting of keratinocytes cultured on polymer support–clinical study. Int J Dermatol. 2003;42:219–223. doi: 10.1046/j.1365-4362.2003.01792.x. PubMed DOI
Holubcova Z, Matula P, Sedlackova M, Vinarsky V, Dolezalova D, Barta T, et al. Human embryonic stem cells suffer from centrosomal amplification. Stem Cells. 2011;29:46–56. doi: 10.1002/stem.549. PubMed DOI
Kolar M, Szabo P, Dvorankova B, Lacina L, Gabius HJ, Strnad H, et al. Upregulation of IL-6, IL-8 and CXCL-1 production in dermal fibroblasts by normal/malignant epithelial cells in vitro: Immunohistochemical and transcriptomic analyses. Biol Cell. 2012;104:738–751. doi: 10.1111/boc.201200018. PubMed DOI
Smyth GK. Stat Appl Genet Mol Biol. 2004. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. PubMed
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5:16. doi: 10.1186/gb-2004-5-10-r80. PubMed DOI PMC
Valach J, Fik Z, Strnad H, Chovanec M, Plzak J, Cada Z, et al. Smooth muscle actin-expressing stromal fibroblasts in head and neck squamous cell carcinoma: increased expression of galectin-1 and induction of poor prognosis factors. Int J Cancer. 2012;131:2499–2508. doi: 10.1002/ijc.27550. PubMed DOI
Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003;100:9440–9445. doi: 10.1073/pnas.1530509100. PubMed DOI PMC
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Genome Biol. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. PubMed PMC
Drunkenmolle E, Marsch W, Lubbe D, Helmbold P. Paratumoral epidermal hyperplasia: a novel prognostic factor in thick primary melanoma of the skin? Am J Dermatopathol. 2005;27:482–488. doi: 10.1097/01.dad.0000181106.01168.58. PubMed DOI
McCarty MF, Bielenberga DR, Nilssona MB, Gershenwaldb JE, Barnhillc RL, Ahearne P, et al. Epidermal hyperplasia overlying human melanoma correlates with tumour depth and angiogenesis. Melanoma Res. 2003;13:379–387. doi: 10.1097/00008390-200308000-00007. PubMed DOI
Haass NK, Wladykowski E, Kief S, Moll I, Brandner JM. Differential induction of connexins 26 and 30 in skin tumors and their adjacent epidermis. J Histochem Cytochem. 2006;54:171–482. doi: 10.1369/jhc.5A6719.2005. PubMed DOI
Lane EB, McLean WH. Keratins and skin disorders. J Pathol. 2004;204:355–366. doi: 10.1002/path.1643. PubMed DOI
Fik Z, Valach J, Chovanec M, Mazanek J, Kodet R, Kodet O, et al. Loss of adhesion/growth-regulatory galectin-9 from squamous cell epithelium in head and neck carcinomas. J Oral Pathol Med. 2013;42:166–173. doi: 10.1111/j.1600-0714.2012.01185.x. PubMed DOI
Michel M, Torok N, Godbout MJ, Lussier M, Gaudreau P, Royal A, et al. Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro: keratin 19 expressing cells are differentially localized in function of anatomic sites, and their number varies with donor age and culture stage. J Cell Sci. 1996;109(Pt 5):1017–1028. PubMed
Gires O, Mack B, Rauch J, Matthias C. CK8 correlates with malignancy in leukoplakia and carcinomas of the head and neck. Biochem Biophys Res Commun. 2006;343:252–259. doi: 10.1016/j.bbrc.2006.02.139. PubMed DOI
Reed JA, McNutt NS, Albino AP. Differential expression of basic fibroblast growth factor (bFGF) in melanocytic lesions demonstrated by in situ hybridization. Am J Pathol. 1994;144:329–336. PubMed PMC
Sun X, Fu X, Han W, Zhao Y, Liu H, Sheng Z. Dedifferentiation of human terminally differentiating keratinocytes into their precursor cells induced by basic fibroblast growth factor. Biol Pharmaceut Bulletin. 2011;34:1037–1045. doi: 10.1248/bpb.34.1037. PubMed DOI
Sogabe Y, Abe M, Yokoyama Y, Ishikawa O. Basic fibroblast growth factor stimulates human keratinocyte motility by Rac activation. Wound Repair Regen. 2006;14:457–462. doi: 10.1111/j.1743-6109.2006.00143.x. PubMed DOI
Dhawan P, Richmond A. Role of CXCL1 in tumorigenesis of melanoma. J Leukoc Biol. 2002;72:9–18. PubMed PMC
Payne AS, Cornelius LA. The role of chemokines in melanoma tumor growth and metastasis. J Investigative Dermatol. 2002;118:915–922. doi: 10.1046/j.1523-1747.2002.01725.x. PubMed DOI
Mangahas CR, dela Cruz GV, Friedman-Jimenez G, Jamal S. Endothelin-1 induces CXCL1 and CXCL8 secretion in human melanoma cells. J Investigative Dermatol. 2005;125:307–311. PubMed
Mashiah J, Wohl Y, Barnea Y, Schneebaum S, Gat A, Misonzhnik-Bedny F, et al. Immunohistochemical expression of platelet growth factor and vascular endothelial growth factor in patients with melanoma with and without redness (Brenner sign) Arch Dermatol. 2007;143:1001–1004. doi: 10.1001/archderm.143.8.1001. PubMed DOI
Man XY, Yang XH, Cai SQ, Yao YG, Zheng M. Immunolocalization and expression of vascular endothelial growth factor receptors (VEGFRs) and neuropilins (NRPs) on keratinocytes in human epidermis. Mol Med. 2006;12:127–136. doi: 10.2119/2006-00024.Man. PubMed DOI PMC
Kideryova L, Pytlik R, Benesova K, Vesela R, Karban J, Rychtrmocova H, et al. Endothelial cells (EC) and endothelial precursor cells (EPC) kinetics in hematological patients undergoing chemotherapy or autologous stem cell transplantation (ASCT) Hematol Oncol. 2010;28:192–201. doi: 10.1002/hon.941. PubMed DOI
Fibroblasts potentiate melanoma cells in vitro invasiveness induced by UV-irradiated keratinocytes
Advances in Proteomic Techniques for Cytokine Analysis: Focus on Melanoma Research
Intercellular crosstalk in human malignant melanoma
Cancer Microenvironment: What Can We Learn from the Stem Cell Niche