Fibroblasts potentiate melanoma cells in vitro invasiveness induced by UV-irradiated keratinocytes
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
No. 16-05534S
Grantová Agentura České Republiky
16-29032A
Ministerstvo Zdravotnictví Ceské Republiky
UNCE 23014
Univerzita Karlova v Praze
Progress-28
Univerzita Karlova v Praze
Project BIOCEV-FAR reg. No. LQ1604
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/1.1.00/02.0109
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/2.1.00/19.0400
RDIOP
PubMed
29435761
DOI
10.1007/s00418-018-1650-4
PII: 10.1007/s00418-018-1650-4
Knihovny.cz E-zdroje
- Klíčová slova
- Cancer microenvironment, Cancer-associated fibroblasts, Chemokine, Cytokine, Keratinocytes, Melanoma,
- MeSH
- fibroblasty cytologie patologie MeSH
- imunohistochemie MeSH
- invazivní růst nádoru * MeSH
- keratinocyty patologie účinky záření MeSH
- kokultivační techniky MeSH
- kultivované buňky MeSH
- lidé MeSH
- melanom patologie MeSH
- ultrafialové záření * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Melanoma represents a malignant disease with steadily increasing incidence. UV-irradiation is a recognized key factor in melanoma initiation. Therefore, the efficient prevention of UV tissue damage bears a critical potential for melanoma prevention. In this study, we tested the effect of UV irradiation of normal keratinocytes and their consequent interaction with normal and cancer-associated fibroblasts isolated from melanoma, respectively. Using this model of UV influenced microenvironment, we measured melanoma cell migration in 3-D collagen gels. These interactions were studied using DNA microarray technology, immunofluorescence staining, single cell electrophoresis assay, viability (dead/life) cell detection methods, and migration analysis. We observed that three 10 mJ/cm2 fractions at equal intervals over 72 h applied on keratinocytes lead to a 50% increase (p < 0.05) in in vitro invasion of melanoma cells. The introduction cancer-associated fibroblasts to such model further significantly stimulated melanoma cells in vitro invasiveness to a higher extent than normal fibroblasts. A panel of candidate gene products responsible for facilitation of melanoma cells invasion was defined with emphasis on IL-6, IL-8, and CXCL-1. In conclusion, this study demonstrates a synergistic effect between cancer microenvironment and UV irradiation in melanoma invasiveness under in vitro condition.
Zobrazit více v PubMed
Expert Rev Dermatol. 2011 Feb 1;6(1):97-108 PubMed
J Invest Dermatol. 2016 Sep;136(9):1751-2 PubMed
Folia Biol (Praha). 2013;59(6):207-16 PubMed
Photochem Photobiol. 2003 Jul;78(1):43-8 PubMed
Exp Dermatol. 2003 Oct;12(5):662-72 PubMed
J Investig Dermatol Symp Proc. 1997 Aug;2(1):99-105 PubMed
Mol Cell. 2015 Aug 20;59(4):664-76 PubMed
Br J Dermatol. 2005 Oct;153(4):733-9 PubMed
Oncogene. 2011 May 19;30(20):2307-18 PubMed
Int J Mol Sci. 2013 Jun 07;14(6):12222-48 PubMed
Nat Med. 2015 Dec;21(12):1424-35 PubMed
In Vivo. 2014 Nov-Dec;28(6):1005-11 PubMed
Nat Med. 2013 Jul;19(7):924-9 PubMed
Prog Biophys Mol Biol. 2011 Dec;107(3):386-8 PubMed
Biol Cell. 2012 Dec;104(12):738-51 PubMed
Nature. 1996 Jan 25;379(6563):335-9 PubMed
J Investig Dermatol Symp Proc. 2009 Aug;14(1):20-4 PubMed
Lab Invest. 2017 Jun;97(6):630-635 PubMed
Clin Cancer Res. 2014 Aug 15;20(16):4390-9 PubMed
Arch Dermatol Res. 2013 Aug;305(6):519-28 PubMed
Nat Methods. 2012 Jul;9(7):671-5 PubMed
Genome Biol. 2004;5(10):R80 PubMed
J Carcinog. 2007 Jan 29;6:2 PubMed
Redox Biol. 2014 Jan 09;2:457-65 PubMed
Photochem Photobiol. 2015 Jan-Feb;91(1):15-26 PubMed
J Clin Invest. 2000 Sep;106(5):663-70 PubMed
Stat Appl Genet Mol Biol. 2004;3:Article3 PubMed
Stem Cell Rev. 2012 Dec;8(4):1282-5 PubMed
Environ Mol Mutagen. 2000;35(3):206-21 PubMed
Wound Repair Regen. 1994 Oct;2(4):270-6 PubMed
J Invest Dermatol. 2011 Aug;131(8):1720-6 PubMed
Tumour Biol. 2015 Aug;36(8):5873-9 PubMed
Cancer Res. 2009 Feb 1;69(3):828-35 PubMed
Cell Commun Signal. 2017 May 4;15(1):17 PubMed
Oncogene. 2014 Feb 27;33(9):1093-100 PubMed
Oncotarget. 2014 Apr 15;5(7):1926-41 PubMed
Int J Mol Med. 2016 Oct;38(4):1063-74 PubMed
J Cell Commun Signal. 2016 Sep;10 (3):191-196 PubMed
Science. 2014 Nov 21;346(6212):945-9 PubMed
J Control Release. 2013 Mar 10;166(2):124-9 PubMed
PLoS One. 2017 Mar 16;12 (3):e0173740 PubMed
Protoplasma. 2017 May;254(3):1143-1150 PubMed
Melanoma Res. 2011 Apr;21(2):91-8 PubMed
Oncol Lett. 2014 Sep;8(3):1133-1138 PubMed
Anticancer Res. 2016 Oct;36(10 ):5009-5017 PubMed
Photochem Photobiol. 2004 Jun;79(6):540-4 PubMed
Int J Mol Sci. 2015 Oct 12;16(10):24094-110 PubMed
FASEB J. 2015 Feb;29(2):662-70 PubMed
J Dermatol Sci. 2014 Feb;73(2):152-60 PubMed
Physiol Res. 2015;64(4):561-9 PubMed
J Leukoc Biol. 2007 Feb;81(2):383-92 PubMed
Histochem Cell Biol. 2012 May;137(5):679-85 PubMed
Oral Oncol. 2010 Apr;46(4):e19-24 PubMed
Cancer Res. 2005 Jan 15;65(2):448-56 PubMed
J Clin Invest. 2014 Jan;124(1):425-36 PubMed
Tumour Biol. 2013 Dec;34(6):3345-55 PubMed
Mol Cancer. 2015 Jan 05;14:1 PubMed
Nature. 2009 Oct 22;461(7267):1071-8 PubMed
Wound Repair Regen. 2008 Sep-Oct;16(5):585-601 PubMed
Cytokine. 2015 May;73(1):144-55 PubMed
Histochem Cell Biol. 2016 Aug;146(2):205-17 PubMed
J Invest Dermatol. 2016 Nov;136(11):2133-2139 PubMed
Biochem J. 2007 May 1;403(3):553-63 PubMed
The Abscopal Effect in the Era of Checkpoint Inhibitors
Interleukin-6: Molecule in the Intersection of Cancer, Ageing and COVID-19
The Head and Neck Squamous Cell Carcinoma Microenvironment as a Potential Target for Cancer Therapy