Cancer Microenvironment: What Can We Learn from the Stem Cell Niche

. 2015 Oct 12 ; 16 (10) : 24094-110. [epub] 20151012

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid26473842

Epidermal stem cells (ESCs) are crucial for maintenance and self- renewal of skin epithelium and also for regular hair cycling. Their role in wound healing is also indispensable. ESCs reside in a defined outer root sheath portion of hair follicle-also known as the bulge region. ECS are also found between basal cells of the interfollicular epidermis or mucous membranes. The non-epithelial elements such as mesenchymal stem cell-like elements of dermis or surrounding adipose tissue can also contribute to this niche formation. Cancer stem cells (CSCs) participate in formation of common epithelial malignant diseases such as basal cell or squamous cell carcinoma. In this review article, we focus on the role of cancer microenvironment with emphasis on the effect of cancer-associated fibroblasts (CAFs). This model reflects various biological aspects of interaction between cancer cell and CAFs with multiple parallels to interaction of normal epidermal stem cells and their niche. The complexity of intercellular interactions within tumor stroma is depicted on example of malignant melanoma, where keratinocytes also contribute the microenvironmental landscape during early phase of tumor progression. Interactions seen in normal bulge region can therefore be an important source of information for proper understanding to melanoma. The therapeutic consequences of targeting of microenvironment in anticancer therapy and for improved wound healing are included to article.

Zobrazit více v PubMed

Weisdorf D., Chao N., Waselenko J.K., Dainiak N., Armitage J.O., McNiece I., Confer D. Acute radiation injury: Contingency planning for triage, supportive care, and transplantation. Biol. Blood Marrow Transplant. 2006;12:672–682. PubMed

Abbasalizadeh S., Baharvand H. Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnol. Adv. 2013;31:1600–1623. doi: 10.1016/j.biotechadv.2013.08.009. PubMed DOI

Healy L., Young L., Stacey G.N. Stem cell banks: Preserving cell lines, maintaining genetic integrity, and advancing research. Methods Mol. Biol. 2011;767:15–27. PubMed

Bravery C.A., French A. Reference materials for cellular therapeutics. Cytotherapy. 2014;16:1187–1196. doi: 10.1016/j.jcyt.2014.05.024. PubMed DOI

Grasset N., Barrandon Y. Clinical application of autologous epithelial stem cells in disorders of squamous epithelia in translational stem cell research. In: Hug K., Hermén G., editors. Issues beyond the Debate on the Moral Status of the Human Embryo. Springer Science & Business Media; New York, NY, USA: 2010. pp. 45–53.

Rheinwald J.G., Green H. Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells. Cell. 1975;63:331–343. doi: 10.1016/S0092-8674(75)80001-8. PubMed DOI

Green H., Rheinwald J.G., Sun T.T. Properties of an epithelial cell type in culture: The epidermal keratinocyte and its dependence on products of the fibroblast. Prog. Clin. Biol. Res. 1977;17:493–500. PubMed

Dvoránková B., Smetana K., Jr., Königová R., Singerová H., Vacík J., Jelínková M., Kapounková Z., Zahradník M. Cultivation and grafting of human keratinocytes on a poly(hydroxyethyl methacrylate) support to the wound bed: A clinical study. Biomaterials. 1998;19:141–146. doi: 10.1016/S0142-9612(97)00176-2. PubMed DOI

Dvoránková B., Holíková Z., Vacík J., Königová R., Kapounková Z., Michálek J., Prádný M., Smetana K., Jr. Reconstruction of epidermis by grafting of keratinocytes cultured on polymer support-clinical study. Int. J. Dermatol. 2003;42:219–223. doi: 10.1046/j.1365-4362.2003.01792.x. PubMed DOI

Labský J., Dvoránková B., Smetana K., Jr., Holíková Z., Broz L., Gabius H.-J. Mannosides as crucial part of bioactive supports for cultivation of human epidermal keratinocytes without feeder cells. Biomaterials. 2003;24:863–872. doi: 10.1016/S0142-9612(02)00419-2. PubMed DOI

Vacík J., Dvoránková B., Michálek J., Prádný M., Krumbholcová E., Fenclová T., Smetana K., Jr. Cultivation of human keratinocytes without feeder cells on polymer carriers containing ethoxyethyl methacrylate: In vitro study. J. Mater. Sci. Mater. Med. 2008;19:883–888. doi: 10.1007/s10856-007-3225-0. PubMed DOI

Mcheik J.N., Barrault C., Levard G., Morel F., Bernard F.X., Lecron J.C. Epidermal healing in burns: Autologous keratinocyte transplantation as a standard procedure: Update and perspective. Plast. Reconstr. Surg. Glob. Open. 2014;2:e218. doi: 10.1097/GOX.0000000000000176. PubMed DOI PMC

Bickenbach J.R. Identification and behavior of label-retaining cells in oral mucosa and skin. J. Dent. Res. 1981;60:611–620. doi: 10.1177/002203458106000311011. PubMed DOI

Williams S.E., Beronja S., Pasolli H.A., Fuchs E. Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature. 2011;470:53–58. doi: 10.1038/nature09793. PubMed DOI PMC

Tumbar T., Guasch G., Greco V., Blanpain C., Lowry W.E., Rendl M., Fuchs E. Defining the epithelial stem cell niche in skin. Science. 2004;303:359–363. doi: 10.1126/science.1092436. PubMed DOI PMC

Watt F.M. Mammalian skin cell biology: At the interface between laboratory and clinic. Science. 2014;346:937–940. doi: 10.1126/science.1253734. PubMed DOI

Alcolea M.P., Jones P.H. Lineage analysis of epidermal stem cells. Cold Spring Harb. Perspect. Med. 2014;4:a015206. doi: 10.1101/cshperspect.a015206. PubMed DOI PMC

Blanpain C., Fuchs E. Epidermal stem cells of the skin. Annu. Rev. Cell Dev. Biol. 2006;22:339–373. doi: 10.1146/annurev.cellbio.22.010305.104357. PubMed DOI PMC

Purba T.S., Haslam I.S., Poblet E., Jiménez F., Gandarillas A., Izeta A., Paus R. Human epithelial hair follicle stem cells and their progeny: Current state of knowledge, the widening gap in translational research and future challenges. Bioessays. 2014;36:513–525. doi: 10.1002/bies.201300166. PubMed DOI

Sieber-Blum M., Grim M. The adult hair follicle: Cradle for pluripotent neural crest stem cells. Birth Defects Res. C Embryo Today Rev. 2004;72:162–172. doi: 10.1002/bdrc.20008. PubMed DOI

Krejčí E., Grim M. Isolation and characterization of neural crest stem cells from adult human hair follicles. Folia Biol. 2010;56:149–157. PubMed

Tanimura S., Tadokoro Y., Inomata K., Binh N.T., Nishie W., Yamazaki S., Nakauchi H., Tanaka Y., McMillan J.R., Sawamura D., et al. Hair follicle stem cells provide a functional niche for melanocyte stem cells. Cell Stem Cell. 2011;8:177–187. PubMed

Chang C.Y., Pasolli H.A., Giannopoulou E.G., Guasch G., Gronostajski R.M., Elemento O., Fuchs E. NFIB is a governor of epithelial-melanocyte stem cell behaviour in a shared niche. Nature. 2013;495:98–102. doi: 10.1038/nature11847. PubMed DOI PMC

Goldstein J., Horsley V. Home sweet home: Skin stem cell niches. Cell. Mol. Life Sci. 2012;69:2573–2582. doi: 10.1007/s00018-012-0943-3. PubMed DOI PMC

Rompolas P., Greco V. Stem cell dynamics in the hair follicle niche. Semin. Cell Dev. Biol. 2014;25–26:34–42. doi: 10.1016/j.semcdb.2013.12.005. PubMed DOI PMC

Alonso L., Okada H., Pasolli H.A., Wakeham A., You-Ten A.I., Mak T.W., Fuchs E. Sgk3 links growth factor signaling to maintenance of progenitor cells in the hair follicle. J. Cell Biol. 2005;170:559–570. doi: 10.1083/jcb.200504131. PubMed DOI PMC

Folgueras A.R., Guo X., Pasolli H.A., Stokes N., Polak L., Zheng D., Fuchs E. Architectural niche organization by LHX2 is linked to hair follicle stem cell function. Cell Stem Cell. 2013;133:314–327. doi: 10.1016/j.stem.2013.06.018. PubMed DOI PMC

Fuchs E. Finding one’s niche in the skin. Cell Stem Cell. 2009;4:499–502. doi: 10.1016/j.stem.2009.05.001. PubMed DOI PMC

Harries M.J., Meyer K., Chaudhry I.E., Kloepper J., Poblet E., Griffiths C.E., Paus R. Lichen planopilaris is characterized by immune privilege collapse of the hair follicle’s epithelial stem cell niche. J. Pathol. 2013;231:236–247. doi: 10.1002/path.4233. PubMed DOI

Bagutti C., Hutter C., Chiquet-Ehrismann R., Fässler R., Watt F.M. Dermal fibroblast-derived growth factors restore the ability of β1integrin-deficient embryonal stem cells to differentiate into keratinocytes. Dev. Biol. 2001;231:321–333. doi: 10.1006/dbio.2000.0149. PubMed DOI

Rendl M., Lewis L., Fuchs E. Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol. 2005;311:e331. doi: 10.1371/journal.pbio.0030331. PubMed DOI PMC

Sellheyer K., Krahl D. Skin mesenchymal stem cells: Prospects for clinical dermatology. J. Am. Acad. Dermatol. 2010;63:859–865. doi: 10.1016/j.jaad.2009.09.022. PubMed DOI

Yang C.C., Cotsarelis G. Review of hair follicle dermal cells. J. Dermatol. Sci. 2010;57:2–11. doi: 10.1016/j.jdermsci.2009.11.005. PubMed DOI PMC

Tucker R.P., Ferralli J., Schittny J.C., Chiquet-Ehrismann R. Tenascin-C and tenascin-W in whisker follicle stem cell niches: Possible roles in regulating stem cell proliferation and migration. J. Cell Sci. 2013;126:5111–5115. doi: 10.1242/jcs.134650. PubMed DOI

Festa E., Fretz J., Berry R., Schmidt B., Rodeheffer M., Horowitz M., Horsley V. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell. 2011;146:761–771. doi: 10.1016/j.cell.2011.07.019. PubMed DOI PMC

Solanas G., Benitah S.A. Regenerating the skin: A task for the heterogeneous stem cell pool and surrounding niche. Nat. Rev. Mol. Cell Biol. 2013;14:737–748. doi: 10.1038/nrm3675. PubMed DOI

Sottocornola R., Lo Celso C. Dormancy in the stem cell niche. Stem Cell Res. Ther. 2012;3:10. doi: 10.1186/scrt101. PubMed DOI PMC

Rawles M.E. Tissue interactions in scale and feather development as studied in dermal-epidermal recombinations. J. Embryol. Exp. Morphol. 1963;11:765–789. PubMed

Ferraris C., Chevalier G., Favier B., Jahoda C.A., Dhouailly D. Adult corneal epithelium basal cells possess the capacity to activate epidermal, pilosebaceous and sweat gland genetic programs in response to embryonic dermal stimuli. Development. 2000;127:5487–5495. PubMed

Blazejewska E.A., Schlötzer-Schrehardt U., Zenkel M., Bachmann B., Chankiewitz E., Jacobi C., Kruse F.E. Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells. Stem Cells. 2009;27:642–652. doi: 10.1634/stemcells.2008-0721. PubMed DOI PMC

Discher D.E., Mooney D.J., Zandstra P.W. Growth factors, matrices, and forces combine and control stem cells. Science. 2009;324:1673–1677. doi: 10.1126/science.1171643. PubMed DOI PMC

Das R.K., Zouani O.F. A review of the effects of the cell environment physicochemical nanoarchitecture on stem cell commitment. Biomaterials. 2014;35:5278–5293. doi: 10.1016/j.biomaterials.2014.03.044. PubMed DOI

Reinke J.M., Sorg H. Wound repair and regeneration. Eur. Surg. Res. 2012;49:35–43. doi: 10.1159/000339613. PubMed DOI

Morasso M.I., Tomic-Canic M. Epidermal stem cells: The cradle of epidermal determination, differentiation and wound healing. Biol. Cell. 2005;97:173–183. doi: 10.1042/BC20040098. PubMed DOI PMC

Bickenbach J.R., Stern M.M., Grinnell K.L., Manuel A., Chinnathambi S. Epidermal stem cells have the potential to assist in healing damaged tissues. J. Investig. Dermatol. Symp. Proc. 2006;11:118–123. doi: 10.1038/sj.jidsymp.5650009. PubMed DOI

Guo R., Chai L., Chen L., Chen W., Ge L., Li X., Li H., Li S., Cao C. Stromal cell-derived factor 1 (SDF-1) accelerated skin wound healing by promoting the migration and proliferation of epidermal stem cells. In Vitro Cell. Dev. Biol. Anim. 2015;51:5768–5785. doi: 10.1007/s11626-014-9862-y. PubMed DOI

Ghahary A., Ghaffari A. Role of keratinocyte-fibroblast cross-talk in development of hypertrophic scar. Wound Repair Regen. 2007;15:46–53. doi: 10.1111/j.1524-475X.2007.00225.x. PubMed DOI

Pastar I., Stojadinovic O., Yin N.C., Ramirez H., Nusbaum A.G., Sawaya A., Patel S.B., Khalid L., Isseroff R.R., Tomic-Canic M. Epithelialization in wound healing: A comprehensive review. Adv. Wound Care. 2014;3:445–464. doi: 10.1089/wound.2013.0473. PubMed DOI PMC

Laverdet B., Micallef L., Lebreton C., Mollard J., Lataillade J.J., Coulomb B., Desmoulière A. Use of mesenchymal stem cells for cutaneous repair and skin substitute elaboration. Pathol. Biol. 2014;62:108–117. doi: 10.1016/j.patbio.2014.01.002. PubMed DOI

Stojadinovic O., Pastar I., Nusbaum A.G., Vukelic S., Krzyzanowska A., Tomic-Canic M. Deregulation of epidermal stem cell niche contributes to pathogenesis of nonhealing venous ulcers. Wound Repair Regen. 2014;22:220–227. doi: 10.1111/wrr.12142. PubMed DOI PMC

Huang S.M., Wu C.S., Chao D., Wu C.H., Li C.C., Chen G.S., Lan C.C. High-glucose cultivated peripheral blood mononuclear cells impaired keratinocyte function via reduced IL-22 expression: Implications on impaired diabetic wound healing. Exp. Dermatol. 2015;24:639–641. doi: 10.1111/exd.12733. PubMed DOI

Dvořánková B., Szabo P., Lacina L., Gal P., Uhrova J., Zima T., Kaltner H., André S., Gabius H.-J., Sykova E., et al. Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: Potential application in tissue engineering and wound repair. Cells Tissues Organs. 2011;194:469–480. doi: 10.1159/000324864. PubMed DOI

Mifková A., Kodet O., Szabo P., Kučera J., Dvořánková B., André S., Koripelly G., Gabius H.-J., Lehn J.-M., Smetana K., Jr. Synthetic polyamine BPA-C8 inhibits TGF-β1-mediated conversion of human dermal fibroblast to myofibroblasts and establishment of galectin-1-rich extracellular matrix in vitro. ChemBioChem. 2014;15:1465–1470. doi: 10.1002/cbic.201402087. PubMed DOI

Van De Water L., Varney S., Tomasek J.J. Mechanoregulation of the myofibroblast in wound contraction, scarring, and fibrosis: Opportunities for new therapeutic intervention. Adv. Wound Care. 2013;2:122–141. doi: 10.1089/wound.2012.0393. PubMed DOI PMC

Ramachandran P., Iredale J.P., Fallowfield J.A. Resolution of liver fibrosis: Basic mechanisms and clinical relevance. Semin. Liver Dis. 2015;35:119–131. doi: 10.1055/s-0035-1550057. PubMed DOI

Kolář M., Szabo P., Dvořánková B., Lacina L., Gabius H.-J., Strnad H., Sáchová J., Vlček C., Plzák J., Chovanec M., et al. Upregulation of IL-6, IL-8 and CXCL-1 production in dermal fibroblasts by normal/malignant epithelial cells in vitro: Immunohistochemical and transcriptomic analyses. Biol. Cell. 2012;104:738–751. doi: 10.1111/boc.201200018. PubMed DOI

Ng Y.Z., Pourreyron C., Salas-Alanis J.C., Dayal J.H., Cepeda-Valdes R., Yan W., Wright S., Chen M., Fine J.D., Hogg F.J., et al. Fibroblast-derived dermal matrix drives development of aggressive cutaneous squamous cell carcinoma in patients with recessive dystrophic epidermolysis bullosa. Cancer Res. 2012;72:3522–3534. doi: 10.1158/0008-5472.CAN-11-2996. PubMed DOI

Rybinski B., Franco-Barraza J., Cukierman E. The wound healing, chronic fibrosis, and cancer progression triad. Physiol. Genom. 2014;46:223–244. doi: 10.1152/physiolgenomics.00158.2013. PubMed DOI PMC

Hamburger A.W., Salmon S.E. Primary bioassay of human tumor stem cells. Science. 1977;197:461–463. doi: 10.1126/science.560061. PubMed DOI

Motlík J., Klíma J., Dvoránková B., Smetana K., Jr. Porcine epidermal stem cells as a biomedical model for wound healing and normal/malignant epithelial cell propagation. Theriogenology. 2007;67:105–111. doi: 10.1016/j.theriogenology.2006.09.018. PubMed DOI

Perez-Losada J., Balmain A. Stem-cell hierarchy in skin cancer. Nat. Rev. Cancer. 2003;3:434–443. doi: 10.1038/nrc1095. PubMed DOI

Song I.Y., Balmain A. Cellular reprogramming in skin cancer. Semin. Cancer Biol. 2015;32:32–39. doi: 10.1016/j.semcancer.2014.03.006. PubMed DOI PMC

Wakabayashi Y., Mao J.H., Brown K., Girardi M., Balmain A. Promotion of Hras-induced squamous carcinomas by a polymorphic variant of the Patched gene in FVB mice. Nature. 2007;445:761–765. doi: 10.1038/nature05489. PubMed DOI

Varjosalo M., Taipale J. Hedgehog: Functions and mechanisms. Genes Dev. 2008;22:2454–2472. doi: 10.1101/gad.1693608. PubMed DOI

Richardson G.D., Bazzi H., Fantauzzo K.A., Waters J.M., Crawford H., Hynd P., Christiano A.M., Jahoda C.A. KGF and EGF signalling block hair follicle induction and promote interfollicular epidermal fate in developing mouse skin. Development. 2009;136:2153–2164. doi: 10.1242/dev.031427. PubMed DOI PMC

Nitzki F., Becker M., Frommhold A., Schulz-Schaeffer W., Hahn H. Patched knockout mouse models of Basal cell carcinoma. J. Skin Cancer. 2012;2012:907543. doi: 10.1155/2012/907543. PubMed DOI PMC

Tomasetti C., Vogelstein B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science. 2015;347:78–81. doi: 10.1126/science.1260825. PubMed DOI PMC

Lombard D.B., Chua K.F., Mostoslavsky R., Franco S., Gostissa M., Alt F.W. DNA repair, genome stability, and aging. Cell. 2005;120:497–512. doi: 10.1016/j.cell.2005.01.028. PubMed DOI

Sharpless N.E., DePinho R.A. How stem cells age and why this makes us grow old. Nat. Rev. Mol. Cell Biol. 2007;8:703–713. doi: 10.1038/nrm2241. PubMed DOI

Zouboulis C.C., Adjaye J., Akamatsu H., Moe-Behrens G., Niemann C. Human skin stem cells and the ageing process. Exp. Gerontol. 2008;43:986–997. doi: 10.1016/j.exger.2008.09.001. PubMed DOI

Mackenbach J.P. Political conditions and life expectancy in Europe, 1900–2008. Soc. Sci. Med. 2013;82:134–146. doi: 10.1016/j.socscimed.2012.12.022. PubMed DOI

Smetana K., Jr., Dvořánková B., Lacina L. Phylogeny, regeneration, ageing and cancer: Role of microenvironment and possibility of its therapeutic manipulation. Folia Biol. 2013;59:207–216. PubMed

Egeblad M., Nakasone E.S., Werb Z. Tumors as organs: Complex tissues that interface with the entire organism. Dev. Cell. 2010;18:884–901. doi: 10.1016/j.devcel.2010.05.012. PubMed DOI PMC

Plaks V., Kong N., Werb Z. The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015;16:225–238. doi: 10.1016/j.stem.2015.02.015. PubMed DOI PMC

Dvorak H.F. Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 1986;315:1650–1659. PubMed

Plzák J., Lacina L., Chovanec M., Dvoránková B., Szabo P., Cada Z., Smetana K., Jr. Epithelial-stromal interaction in squamous cell epithelium-derived tumors: An important new player in the control of tumor biological properties. Anticancer Res. 2010;30:455–462. PubMed

Karagiannis G.S., Petraki C., Prassas I., Saraon P., Musrap N., Dimitromanolakis A., Diamandis E.P. Proteomic signatures of the desmoplastic invasion front reveal collagen type XII as a marker of myofibroblastic differentiation during colorectal cancer metastasis. Oncotarget. 2012;3:267–285. doi: 10.18632/oncotarget.451. PubMed DOI PMC

Medler T.R., Coussens L.M. Duality of the immune response in cancer: Lessons learned from skin. J. Investig. Dermatol. 2014;134:23–28. doi: 10.1038/skinbio.2014.5. PubMed DOI PMC

Yu Y., Champer J., Beynet D., Kim J., Friedman A.J. The role of the cutaneous microbiome in skin cancer: Lessons learned from the gut. J. Drugs Dermatol. 2015;14:461–465. PubMed

Muranushi C., Olsen C.M., Pandeya N., Green A.C. Aspirin and nonsteroidal anti-inflammatory drugs can prevent cutaneous squamous cell carcinoma: A systematic review and meta-analysis. J. Investig. Dermatol. 2015;135:975–983. doi: 10.1038/jid.2014.531. PubMed DOI

Etrych T., Subr V., Strohalm J., Sírová M., Ríhová B., Ulbrich K. HPMA copolymer-doxorubicin conjugates: The effects of molecular weight and architecture on biodistribution and in vivo activity. J. Control. Release. 2012;164:346–354. doi: 10.1016/j.jconrel.2012.06.029. PubMed DOI

Polyak K., Haviv I., Campbell I.G. Co-evolution of tumor cells and their microenvironment. Trends Genet. 2009;25:30–38. doi: 10.1016/j.tig.2008.10.012. PubMed DOI

De Wever O., Demetter P., Mareel M., Bracke M. Stromal myofibroblasts are drivers of invasive cancer growth. Int. J. Cancer. 2008;123:2229–2238. doi: 10.1002/ijc.23925. PubMed DOI

Petersen O.W., Nielsen H.L., Gudjonsson T., Villadsen R., Rank F., Niebuhr E., Bissell M.J., Rønnov-Jessen L. Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am. J. Pathol. 2003;162:391–402. doi: 10.1016/S0002-9440(10)63834-5. PubMed DOI PMC

Smetana K., Jr., Dvoránková B., Lacina L., Cada Z., Vonka V. Human hair follicle and interfollicular keratinocyte reactivity to mouse HPV16-transformed cells: An in vitro study. Oncol. Rep. 2008;20:75–80. doi: 10.3892/or.20.1.75. PubMed DOI

Dvořánková B., Smetana K., Jr., Říhová B., Kučera J., Mateu R., Szabo P. Cancer-associated fibroblasts are not formed from cancer cells by epithelial-to-mesenchymal transition in nu/nu mice. Histochem. Cell Biol. 2015;143:463–469. doi: 10.1007/s00418-014-1293-z. PubMed DOI

Qiu W., Hu M., Sridhar A., Opeskin K., Fox S., Shipitsin M., Trivett M., Thompson E.R., Ramakrishna M., Gorringe K.L., et al. No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nat. Genet. 2008;40:650–655. doi: 10.1038/ng.117. PubMed DOI PMC

Rhim A.D., Oberstein P.E., Thomas D.H., Mirek E.T., Palermo C.F., Sastra S.A., Dekleva E.N., Saunders T., Becerra C.P., Tattersall I.W., et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014;25:735–747. doi: 10.1016/j.ccr.2014.04.021. PubMed DOI PMC

Lacina L., Dvoránkova B., Smetana K., Jr., Chovanec M., Plzák J., Tachezy R., Kideryová L., Kucerová L., Cada Z., Boucek J., et al. Marker profiling of normal keratinocytes identifies the stroma from squamous cell carcinoma of the oral cavity as a modulatory microenvironment in co-culture. Int. J. Radiat. Biol. 2007;83:837–848. doi: 10.1080/09553000701694343. PubMed DOI

Lacina L., Smetana K., Jr., Dvoránková B., Pytlík R., Kideryová L., Kucerová L., Plzáková Z., Stork J., Gabius H.-J., André S. Stromal fibroblasts from basal cell carcinoma affect phenotype of normal keratinocytes. Br. J. Dermatol. 2007;156:819–829. doi: 10.1111/j.1365-2133.2006.07728.x. PubMed DOI

Kideryová L., Lacina L., Dvoránková B., Stork J., Cada Z., Szabo P., André S., Kaltner H., Gabius H.-J., Smetana K., Jr. Phenotypic characterization of human keratinocytes in coculture reveals differential effects of fibroblasts from benign fibrous histiocytoma (dermatofibroma) as compared to cells from its malignant form and to normal fibroblasts. J. Dermatol. Sci. 2009;55:18–26. doi: 10.1016/j.jdermsci.2009.03.009. PubMed DOI

Thiery J.P., Acloque H., Huang R.Y., Nieto M.A. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–890. doi: 10.1016/j.cell.2009.11.007. PubMed DOI

Strnad H., Lacina L., Kolár M., Cada Z., Vlcek C., Dvoránková B., Betka J., Plzák J., Chovanec M., Sáchová J., et al. Head and neck squamous cancer stromal fibroblasts produce growth factors influencing phenotype of normal human keratinocytes. Histochem. Cell Biol. 2010;133:201–211. doi: 10.1007/s00418-009-0661-6. PubMed DOI

Jarkovska K., Dvorankova B., Halada P., Kodet O., Szabo P., Gadher S.J., Motlik J., Kovarova H., Smetana K., Jr. Revelation of fibroblast protein commonalities and differences and their possible roles in wound healing and tumourigenesis using co-culture models of cells. Biol. Cell. 2014;106:203–218. doi: 10.1111/boc.201400014. PubMed DOI

Szabo P., Valach J., Smetana K., Jr., Dvořánková B. Comparative analysis of IL-8 and CXCL-1 production by normal and cancer stromal fibroblasts. Folia Biol. 2013;59:134–137. PubMed

Jiang L., Gonda T.A., Gamble M.V., Salas M., Seshan V., Tu S., Twaddell W.S., Hegyi P., Lazar G., Steele I., et al. Global hypomethylation of genomic DNA in cancer-associated myofibroblasts. Cancer Res. 2008;68:9900–9908. doi: 10.1158/0008-5472.CAN-08-1319. PubMed DOI PMC

Wenner C.E., Yan S. Biphasic role of TGF-beta1 in signal transduction and crosstalk. J. Cell. Physiol. 2003;196:42–50. doi: 10.1002/jcp.10243. PubMed DOI

Bierie B., Stover D.G., Abel T.W., Chytil A., Gorska A.E., Aakre M., Forrester E., Yang L., Wagner K.U., Moses H.L. Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment. Cancer Res. 2008;68:1809–1819. doi: 10.1158/0008-5472.CAN-07-5597. PubMed DOI

Smetana K., Jr., Dvořánková B., Lacina L., Strnad H., Kolář M., Chovanec M., Plzák J., Čada Z., Vlček Č., Szabo P., et al. Combination of Antibodies or Their Fab Fragmennts for Use as Therapeutics and Pharmaceutic Tool Containing These Antibodies or their Fab Fragments. No. 303227. Czech Patent. 2012 Apr 22;

Karnoub A.E., Dash A.B., Vo A.P., Sullivan A., Brooks M.W., Bell G.W., Richardson A.L., Polyak K., Tubo R., Weinberg R.A. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449:557–563. doi: 10.1038/nature06188. PubMed DOI

Tsukuda K., Tsuji H., Kunitomo T., Aokage K., Miyake T., Nakahara S., Masuda H. Breast cancer with cartilaginous and/or osseous metaplasia diagnosed by lymph nodal metastasis: A case report. Acta Med. Okayama. 2009;63:367–371. PubMed

Szabo P., Kolář M., Dvořánková B., Lacina L., Štork J., Vlček Č., Strnad H., Tvrdek M., Smetana K., Jr. Mouse 3T3 fibroblasts under the influence of fibroblasts isolated from stroma of human basal cell carcinoma acquire properties of multipotent stem cells. Biol. Cell. 2011;103:233–248. doi: 10.1042/BC20100113. PubMed DOI

Bonnans C., Chou J., Werb Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 2014;15:786–801. doi: 10.1038/nrm3904. PubMed DOI PMC

Berndt A., Richter P., Kosmehl H., Franz M. Tenascin-C and carcinoma cell invasion in oral and urinary bladder cancer. Cell Adhes. Migr. 2015;9:105–111. doi: 10.1080/19336918.2015.1005463. PubMed DOI PMC

Nishi Y., Sano H., Kawashima T., Okada T., Kuroda T., Kikkawa K., Kawashima S., Tanabe M., Goto T., Matsuzawa Y., et al. Role of galectin-3 in human pulmonary fibrosis. Allergol. Int. 2007;56:57–65. doi: 10.2332/allergolint.O-06-449. PubMed DOI

Valach J., Fík Z., Strnad H., Chovanec M., Plzák J., Cada Z., Szabo P., Sáchová J., Hroudová M., Urbanová M., et al. Smooth muscle actin-expressing stromal fibroblasts in head and neck squamous cell carcinoma: Increased expression of galectin-1 and induction of poor prognosis factors. Int. J. Cancer. 2012;131:2499–2508. doi: 10.1002/ijc.27550. PubMed DOI

Peržeľová V., Varinská L., Dvořánková B., Szabo P., Spurný P., Valach J., Mojžiš J., André S., Gabius H.-J., Smetana K., Jr., et al. Extracellular matrix of galectin-1-exposed dermal and tumor-associated fibroblasts favors growth of human umbilical vein endothelial cells in vitro: A short report. Anticancer Res. 2014;34:3991–3996. PubMed

Smetana K., Jr., Szabo P., Gal P., André S., Gabius H.-J., Kodet O., Dvořánková B. Emerging role of tissue lectins as microenvironmental effectors in tumors and wounds. Histol. Histopathol. 2015;30:293–309. PubMed

Díez-Torre A., Andrade R., Eguizábal C., López E., Arluzea J., Silió M., Aréchaga J. Reprogramming of melanoma cells by embryonic microenvironments. Int. J. Dev. Biol. 2009;53:1563–1568. doi: 10.1387/ijdb.093021ad. PubMed DOI

Haass N.K., Ripperger D., Wladykowski E., Dawson P., Gimotty P.A., Blome C., Fischer F., Schmage P., Moll I., Brandner J.M. Melanoma progression exhibits a significant impact on connexin expression patterns in the epidermal tumor microenvironment. Histochem. Cell Biol. 2010;133:113–124. doi: 10.1007/s00418-009-0654-5. PubMed DOI

Kodet O., Lacina L., Krejčí E., Dvořánková B., Grim M., Štork J., Kodetová D., Vlček Č., Šáchová J., Kolář M., et al. Melanoma cells influence the differentiation pattern of human epidermal keratinocytes. Mol. Cancer. 2015;14:1. doi: 10.1186/1476-4598-14-1. PubMed DOI PMC

Chung H., Suh E.K., Han I.O., Oh E.S. Keratinocyte-derived laminin-332 promotes adhesion and migration in melanocytes and melanoma. J. Biol. Chem. 2011;286:13438–13447. doi: 10.1074/jbc.M110.166751. PubMed DOI PMC

Dvořánková B., Szabo P., Lacina L., Kodet O., Matoušková E., Smetana K., Jr. Fibroblasts prepared from different types of malignant tumors stimulate expression of luminal marker keratin 8 in the EM-G3 breast cancer cell line. Histochem. Cell Biol. 2012;137:679–685. doi: 10.1007/s00418-012-0918-3. PubMed DOI

Kodet O., Dvořánková B., Krejčí E., Szabo P., Dvořák P., Štork J., Krajsová I., Dundr P., Smetana K., Jr., Lacina L. Cultivation-dependent plasticity of melanoma phenotype. Tumor Biol. 2013;34:3345–3355. doi: 10.1007/s13277-013-0905-x. PubMed DOI

Kučera J., Dvořánková B., Smetana K., Jr., Szabo P., Kodet O. Fibroblasts isolated from the malignant melanoma influence phenotype of normal human keratinocytes. J. Appl. Biomed. 2015;13:195–198. doi: 10.1016/j.jab.2015.03.002. DOI

Trylcova J., Busek P., Smetana K., Jr., Balaziova E., Dvorankova B., Mifkova A., Sedo A. Effect of cancer-associated fibroblasts on the migration of glioma cells in vitro. Tumor Biol. 2015;36:5873–5879. doi: 10.1007/s13277-015-3259-8. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Exosomes produced by melanoma cells significantly influence the biological properties of normal and cancer-associated fibroblasts

. 2022 Feb ; 157 (2) : 153-172. [epub] 20211127

Cancer-Associated Fibroblasts Influence the Biological Properties of Malignant Tumours via Paracrine Secretion and Exosome Production

. 2022 Jan 16 ; 23 (2) : . [epub] 20220116

IL-6 in the Ecosystem of Head and Neck Cancer: Possible Therapeutic Perspectives

. 2021 Oct 13 ; 22 (20) : . [epub] 20211013

Sensitivity to Cisplatin in Head and Neck Cancer Cells Is Significantly Affected by Patient-Derived Cancer-Associated Fibroblasts

. 2021 Feb 15 ; 22 (4) : . [epub] 20210215

Single-Cell RNA Sequencing Unravels Heterogeneity of the Stromal Niche in Cutaneous Melanoma Heterogeneous Spheroids

. 2020 Nov 10 ; 12 (11) : . [epub] 20201110

Cutaneous melanoma dissemination is dependent on the malignant cell properties and factors of intercellular crosstalk in the cancer microenvironment (Review)

. 2020 Sep ; 57 (3) : 619-630. [epub] 20200626

Serum proteomic analysis of melanoma patients with immunohistochemical profiling of primary melanomas and cultured cells: Pilot study

. 2019 Nov ; 42 (5) : 1793-1804. [epub] 20190917

The Head and Neck Squamous Cell Carcinoma Microenvironment as a Potential Target for Cancer Therapy

. 2019 Mar 28 ; 11 (4) : . [epub] 20190328

Fibroblasts potentiate melanoma cells in vitro invasiveness induced by UV-irradiated keratinocytes

. 2018 May ; 149 (5) : 503-516. [epub] 20180212

Advances in Proteomic Techniques for Cytokine Analysis: Focus on Melanoma Research

. 2017 Dec 13 ; 18 (12) : . [epub] 20171213

Analysis of dermal fibroblasts isolated from neonatal and child cleft lip and adult skin: Developmental implications on reconstructive surgery

. 2017 Nov ; 40 (5) : 1323-1334. [epub] 20170907

How Signaling Molecules Regulate Tumor Microenvironment: Parallels to Wound Repair

. 2017 Oct 26 ; 22 (11) : . [epub] 20171026

Intercellular crosstalk in human malignant melanoma

. 2017 May ; 254 (3) : 1143-1150. [epub] 20161103

Functional differences between neonatal and adult fibroblasts and keratinocytes: Donor age affects epithelial-mesenchymal crosstalk in vitro

. 2016 Oct ; 38 (4) : 1063-74. [epub] 20160811

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...