Cancer Microenvironment: What Can We Learn from the Stem Cell Niche
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
26473842
PubMed Central
PMC4632740
DOI
10.3390/ijms161024094
PII: ijms161024094
Knihovny.cz E-zdroje
- Klíčová slova
- cancer microenvironment, cancer-associated fibroblast, niche, stem cell, wound healing,
- MeSH
- epidermální buňky MeSH
- epitelové buňky patologie MeSH
- fibroblasty patologie MeSH
- hojení ran fyziologie MeSH
- keratinocyty patologie MeSH
- lidé MeSH
- melanom patologie MeSH
- mezenchymální kmenové buňky patologie MeSH
- nádorové kmenové buňky patologie MeSH
- nádorové mikroprostředí fyziologie MeSH
- nádory kůže patologie MeSH
- nika kmenových buněk fyziologie MeSH
- vlasový folikul cytologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Epidermal stem cells (ESCs) are crucial for maintenance and self- renewal of skin epithelium and also for regular hair cycling. Their role in wound healing is also indispensable. ESCs reside in a defined outer root sheath portion of hair follicle-also known as the bulge region. ECS are also found between basal cells of the interfollicular epidermis or mucous membranes. The non-epithelial elements such as mesenchymal stem cell-like elements of dermis or surrounding adipose tissue can also contribute to this niche formation. Cancer stem cells (CSCs) participate in formation of common epithelial malignant diseases such as basal cell or squamous cell carcinoma. In this review article, we focus on the role of cancer microenvironment with emphasis on the effect of cancer-associated fibroblasts (CAFs). This model reflects various biological aspects of interaction between cancer cell and CAFs with multiple parallels to interaction of normal epidermal stem cells and their niche. The complexity of intercellular interactions within tumor stroma is depicted on example of malignant melanoma, where keratinocytes also contribute the microenvironmental landscape during early phase of tumor progression. Interactions seen in normal bulge region can therefore be an important source of information for proper understanding to melanoma. The therapeutic consequences of targeting of microenvironment in anticancer therapy and for improved wound healing are included to article.
Zobrazit více v PubMed
Weisdorf D., Chao N., Waselenko J.K., Dainiak N., Armitage J.O., McNiece I., Confer D. Acute radiation injury: Contingency planning for triage, supportive care, and transplantation. Biol. Blood Marrow Transplant. 2006;12:672–682. PubMed
Abbasalizadeh S., Baharvand H. Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnol. Adv. 2013;31:1600–1623. doi: 10.1016/j.biotechadv.2013.08.009. PubMed DOI
Healy L., Young L., Stacey G.N. Stem cell banks: Preserving cell lines, maintaining genetic integrity, and advancing research. Methods Mol. Biol. 2011;767:15–27. PubMed
Bravery C.A., French A. Reference materials for cellular therapeutics. Cytotherapy. 2014;16:1187–1196. doi: 10.1016/j.jcyt.2014.05.024. PubMed DOI
Grasset N., Barrandon Y. Clinical application of autologous epithelial stem cells in disorders of squamous epithelia in translational stem cell research. In: Hug K., Hermén G., editors. Issues beyond the Debate on the Moral Status of the Human Embryo. Springer Science & Business Media; New York, NY, USA: 2010. pp. 45–53.
Rheinwald J.G., Green H. Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells. Cell. 1975;63:331–343. doi: 10.1016/S0092-8674(75)80001-8. PubMed DOI
Green H., Rheinwald J.G., Sun T.T. Properties of an epithelial cell type in culture: The epidermal keratinocyte and its dependence on products of the fibroblast. Prog. Clin. Biol. Res. 1977;17:493–500. PubMed
Dvoránková B., Smetana K., Jr., Königová R., Singerová H., Vacík J., Jelínková M., Kapounková Z., Zahradník M. Cultivation and grafting of human keratinocytes on a poly(hydroxyethyl methacrylate) support to the wound bed: A clinical study. Biomaterials. 1998;19:141–146. doi: 10.1016/S0142-9612(97)00176-2. PubMed DOI
Dvoránková B., Holíková Z., Vacík J., Königová R., Kapounková Z., Michálek J., Prádný M., Smetana K., Jr. Reconstruction of epidermis by grafting of keratinocytes cultured on polymer support-clinical study. Int. J. Dermatol. 2003;42:219–223. doi: 10.1046/j.1365-4362.2003.01792.x. PubMed DOI
Labský J., Dvoránková B., Smetana K., Jr., Holíková Z., Broz L., Gabius H.-J. Mannosides as crucial part of bioactive supports for cultivation of human epidermal keratinocytes without feeder cells. Biomaterials. 2003;24:863–872. doi: 10.1016/S0142-9612(02)00419-2. PubMed DOI
Vacík J., Dvoránková B., Michálek J., Prádný M., Krumbholcová E., Fenclová T., Smetana K., Jr. Cultivation of human keratinocytes without feeder cells on polymer carriers containing ethoxyethyl methacrylate: In vitro study. J. Mater. Sci. Mater. Med. 2008;19:883–888. doi: 10.1007/s10856-007-3225-0. PubMed DOI
Mcheik J.N., Barrault C., Levard G., Morel F., Bernard F.X., Lecron J.C. Epidermal healing in burns: Autologous keratinocyte transplantation as a standard procedure: Update and perspective. Plast. Reconstr. Surg. Glob. Open. 2014;2:e218. doi: 10.1097/GOX.0000000000000176. PubMed DOI PMC
Bickenbach J.R. Identification and behavior of label-retaining cells in oral mucosa and skin. J. Dent. Res. 1981;60:611–620. doi: 10.1177/002203458106000311011. PubMed DOI
Williams S.E., Beronja S., Pasolli H.A., Fuchs E. Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature. 2011;470:53–58. doi: 10.1038/nature09793. PubMed DOI PMC
Tumbar T., Guasch G., Greco V., Blanpain C., Lowry W.E., Rendl M., Fuchs E. Defining the epithelial stem cell niche in skin. Science. 2004;303:359–363. doi: 10.1126/science.1092436. PubMed DOI PMC
Watt F.M. Mammalian skin cell biology: At the interface between laboratory and clinic. Science. 2014;346:937–940. doi: 10.1126/science.1253734. PubMed DOI
Alcolea M.P., Jones P.H. Lineage analysis of epidermal stem cells. Cold Spring Harb. Perspect. Med. 2014;4:a015206. doi: 10.1101/cshperspect.a015206. PubMed DOI PMC
Blanpain C., Fuchs E. Epidermal stem cells of the skin. Annu. Rev. Cell Dev. Biol. 2006;22:339–373. doi: 10.1146/annurev.cellbio.22.010305.104357. PubMed DOI PMC
Purba T.S., Haslam I.S., Poblet E., Jiménez F., Gandarillas A., Izeta A., Paus R. Human epithelial hair follicle stem cells and their progeny: Current state of knowledge, the widening gap in translational research and future challenges. Bioessays. 2014;36:513–525. doi: 10.1002/bies.201300166. PubMed DOI
Sieber-Blum M., Grim M. The adult hair follicle: Cradle for pluripotent neural crest stem cells. Birth Defects Res. C Embryo Today Rev. 2004;72:162–172. doi: 10.1002/bdrc.20008. PubMed DOI
Krejčí E., Grim M. Isolation and characterization of neural crest stem cells from adult human hair follicles. Folia Biol. 2010;56:149–157. PubMed
Tanimura S., Tadokoro Y., Inomata K., Binh N.T., Nishie W., Yamazaki S., Nakauchi H., Tanaka Y., McMillan J.R., Sawamura D., et al. Hair follicle stem cells provide a functional niche for melanocyte stem cells. Cell Stem Cell. 2011;8:177–187. PubMed
Chang C.Y., Pasolli H.A., Giannopoulou E.G., Guasch G., Gronostajski R.M., Elemento O., Fuchs E. NFIB is a governor of epithelial-melanocyte stem cell behaviour in a shared niche. Nature. 2013;495:98–102. doi: 10.1038/nature11847. PubMed DOI PMC
Goldstein J., Horsley V. Home sweet home: Skin stem cell niches. Cell. Mol. Life Sci. 2012;69:2573–2582. doi: 10.1007/s00018-012-0943-3. PubMed DOI PMC
Rompolas P., Greco V. Stem cell dynamics in the hair follicle niche. Semin. Cell Dev. Biol. 2014;25–26:34–42. doi: 10.1016/j.semcdb.2013.12.005. PubMed DOI PMC
Alonso L., Okada H., Pasolli H.A., Wakeham A., You-Ten A.I., Mak T.W., Fuchs E. Sgk3 links growth factor signaling to maintenance of progenitor cells in the hair follicle. J. Cell Biol. 2005;170:559–570. doi: 10.1083/jcb.200504131. PubMed DOI PMC
Folgueras A.R., Guo X., Pasolli H.A., Stokes N., Polak L., Zheng D., Fuchs E. Architectural niche organization by LHX2 is linked to hair follicle stem cell function. Cell Stem Cell. 2013;133:314–327. doi: 10.1016/j.stem.2013.06.018. PubMed DOI PMC
Fuchs E. Finding one’s niche in the skin. Cell Stem Cell. 2009;4:499–502. doi: 10.1016/j.stem.2009.05.001. PubMed DOI PMC
Harries M.J., Meyer K., Chaudhry I.E., Kloepper J., Poblet E., Griffiths C.E., Paus R. Lichen planopilaris is characterized by immune privilege collapse of the hair follicle’s epithelial stem cell niche. J. Pathol. 2013;231:236–247. doi: 10.1002/path.4233. PubMed DOI
Bagutti C., Hutter C., Chiquet-Ehrismann R., Fässler R., Watt F.M. Dermal fibroblast-derived growth factors restore the ability of β1integrin-deficient embryonal stem cells to differentiate into keratinocytes. Dev. Biol. 2001;231:321–333. doi: 10.1006/dbio.2000.0149. PubMed DOI
Rendl M., Lewis L., Fuchs E. Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol. 2005;311:e331. doi: 10.1371/journal.pbio.0030331. PubMed DOI PMC
Sellheyer K., Krahl D. Skin mesenchymal stem cells: Prospects for clinical dermatology. J. Am. Acad. Dermatol. 2010;63:859–865. doi: 10.1016/j.jaad.2009.09.022. PubMed DOI
Yang C.C., Cotsarelis G. Review of hair follicle dermal cells. J. Dermatol. Sci. 2010;57:2–11. doi: 10.1016/j.jdermsci.2009.11.005. PubMed DOI PMC
Tucker R.P., Ferralli J., Schittny J.C., Chiquet-Ehrismann R. Tenascin-C and tenascin-W in whisker follicle stem cell niches: Possible roles in regulating stem cell proliferation and migration. J. Cell Sci. 2013;126:5111–5115. doi: 10.1242/jcs.134650. PubMed DOI
Festa E., Fretz J., Berry R., Schmidt B., Rodeheffer M., Horowitz M., Horsley V. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell. 2011;146:761–771. doi: 10.1016/j.cell.2011.07.019. PubMed DOI PMC
Solanas G., Benitah S.A. Regenerating the skin: A task for the heterogeneous stem cell pool and surrounding niche. Nat. Rev. Mol. Cell Biol. 2013;14:737–748. doi: 10.1038/nrm3675. PubMed DOI
Sottocornola R., Lo Celso C. Dormancy in the stem cell niche. Stem Cell Res. Ther. 2012;3:10. doi: 10.1186/scrt101. PubMed DOI PMC
Rawles M.E. Tissue interactions in scale and feather development as studied in dermal-epidermal recombinations. J. Embryol. Exp. Morphol. 1963;11:765–789. PubMed
Ferraris C., Chevalier G., Favier B., Jahoda C.A., Dhouailly D. Adult corneal epithelium basal cells possess the capacity to activate epidermal, pilosebaceous and sweat gland genetic programs in response to embryonic dermal stimuli. Development. 2000;127:5487–5495. PubMed
Blazejewska E.A., Schlötzer-Schrehardt U., Zenkel M., Bachmann B., Chankiewitz E., Jacobi C., Kruse F.E. Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells. Stem Cells. 2009;27:642–652. doi: 10.1634/stemcells.2008-0721. PubMed DOI PMC
Discher D.E., Mooney D.J., Zandstra P.W. Growth factors, matrices, and forces combine and control stem cells. Science. 2009;324:1673–1677. doi: 10.1126/science.1171643. PubMed DOI PMC
Das R.K., Zouani O.F. A review of the effects of the cell environment physicochemical nanoarchitecture on stem cell commitment. Biomaterials. 2014;35:5278–5293. doi: 10.1016/j.biomaterials.2014.03.044. PubMed DOI
Reinke J.M., Sorg H. Wound repair and regeneration. Eur. Surg. Res. 2012;49:35–43. doi: 10.1159/000339613. PubMed DOI
Morasso M.I., Tomic-Canic M. Epidermal stem cells: The cradle of epidermal determination, differentiation and wound healing. Biol. Cell. 2005;97:173–183. doi: 10.1042/BC20040098. PubMed DOI PMC
Bickenbach J.R., Stern M.M., Grinnell K.L., Manuel A., Chinnathambi S. Epidermal stem cells have the potential to assist in healing damaged tissues. J. Investig. Dermatol. Symp. Proc. 2006;11:118–123. doi: 10.1038/sj.jidsymp.5650009. PubMed DOI
Guo R., Chai L., Chen L., Chen W., Ge L., Li X., Li H., Li S., Cao C. Stromal cell-derived factor 1 (SDF-1) accelerated skin wound healing by promoting the migration and proliferation of epidermal stem cells. In Vitro Cell. Dev. Biol. Anim. 2015;51:5768–5785. doi: 10.1007/s11626-014-9862-y. PubMed DOI
Ghahary A., Ghaffari A. Role of keratinocyte-fibroblast cross-talk in development of hypertrophic scar. Wound Repair Regen. 2007;15:46–53. doi: 10.1111/j.1524-475X.2007.00225.x. PubMed DOI
Pastar I., Stojadinovic O., Yin N.C., Ramirez H., Nusbaum A.G., Sawaya A., Patel S.B., Khalid L., Isseroff R.R., Tomic-Canic M. Epithelialization in wound healing: A comprehensive review. Adv. Wound Care. 2014;3:445–464. doi: 10.1089/wound.2013.0473. PubMed DOI PMC
Laverdet B., Micallef L., Lebreton C., Mollard J., Lataillade J.J., Coulomb B., Desmoulière A. Use of mesenchymal stem cells for cutaneous repair and skin substitute elaboration. Pathol. Biol. 2014;62:108–117. doi: 10.1016/j.patbio.2014.01.002. PubMed DOI
Stojadinovic O., Pastar I., Nusbaum A.G., Vukelic S., Krzyzanowska A., Tomic-Canic M. Deregulation of epidermal stem cell niche contributes to pathogenesis of nonhealing venous ulcers. Wound Repair Regen. 2014;22:220–227. doi: 10.1111/wrr.12142. PubMed DOI PMC
Huang S.M., Wu C.S., Chao D., Wu C.H., Li C.C., Chen G.S., Lan C.C. High-glucose cultivated peripheral blood mononuclear cells impaired keratinocyte function via reduced IL-22 expression: Implications on impaired diabetic wound healing. Exp. Dermatol. 2015;24:639–641. doi: 10.1111/exd.12733. PubMed DOI
Dvořánková B., Szabo P., Lacina L., Gal P., Uhrova J., Zima T., Kaltner H., André S., Gabius H.-J., Sykova E., et al. Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: Potential application in tissue engineering and wound repair. Cells Tissues Organs. 2011;194:469–480. doi: 10.1159/000324864. PubMed DOI
Mifková A., Kodet O., Szabo P., Kučera J., Dvořánková B., André S., Koripelly G., Gabius H.-J., Lehn J.-M., Smetana K., Jr. Synthetic polyamine BPA-C8 inhibits TGF-β1-mediated conversion of human dermal fibroblast to myofibroblasts and establishment of galectin-1-rich extracellular matrix in vitro. ChemBioChem. 2014;15:1465–1470. doi: 10.1002/cbic.201402087. PubMed DOI
Van De Water L., Varney S., Tomasek J.J. Mechanoregulation of the myofibroblast in wound contraction, scarring, and fibrosis: Opportunities for new therapeutic intervention. Adv. Wound Care. 2013;2:122–141. doi: 10.1089/wound.2012.0393. PubMed DOI PMC
Ramachandran P., Iredale J.P., Fallowfield J.A. Resolution of liver fibrosis: Basic mechanisms and clinical relevance. Semin. Liver Dis. 2015;35:119–131. doi: 10.1055/s-0035-1550057. PubMed DOI
Kolář M., Szabo P., Dvořánková B., Lacina L., Gabius H.-J., Strnad H., Sáchová J., Vlček C., Plzák J., Chovanec M., et al. Upregulation of IL-6, IL-8 and CXCL-1 production in dermal fibroblasts by normal/malignant epithelial cells in vitro: Immunohistochemical and transcriptomic analyses. Biol. Cell. 2012;104:738–751. doi: 10.1111/boc.201200018. PubMed DOI
Ng Y.Z., Pourreyron C., Salas-Alanis J.C., Dayal J.H., Cepeda-Valdes R., Yan W., Wright S., Chen M., Fine J.D., Hogg F.J., et al. Fibroblast-derived dermal matrix drives development of aggressive cutaneous squamous cell carcinoma in patients with recessive dystrophic epidermolysis bullosa. Cancer Res. 2012;72:3522–3534. doi: 10.1158/0008-5472.CAN-11-2996. PubMed DOI
Rybinski B., Franco-Barraza J., Cukierman E. The wound healing, chronic fibrosis, and cancer progression triad. Physiol. Genom. 2014;46:223–244. doi: 10.1152/physiolgenomics.00158.2013. PubMed DOI PMC
Hamburger A.W., Salmon S.E. Primary bioassay of human tumor stem cells. Science. 1977;197:461–463. doi: 10.1126/science.560061. PubMed DOI
Motlík J., Klíma J., Dvoránková B., Smetana K., Jr. Porcine epidermal stem cells as a biomedical model for wound healing and normal/malignant epithelial cell propagation. Theriogenology. 2007;67:105–111. doi: 10.1016/j.theriogenology.2006.09.018. PubMed DOI
Perez-Losada J., Balmain A. Stem-cell hierarchy in skin cancer. Nat. Rev. Cancer. 2003;3:434–443. doi: 10.1038/nrc1095. PubMed DOI
Song I.Y., Balmain A. Cellular reprogramming in skin cancer. Semin. Cancer Biol. 2015;32:32–39. doi: 10.1016/j.semcancer.2014.03.006. PubMed DOI PMC
Wakabayashi Y., Mao J.H., Brown K., Girardi M., Balmain A. Promotion of Hras-induced squamous carcinomas by a polymorphic variant of the Patched gene in FVB mice. Nature. 2007;445:761–765. doi: 10.1038/nature05489. PubMed DOI
Varjosalo M., Taipale J. Hedgehog: Functions and mechanisms. Genes Dev. 2008;22:2454–2472. doi: 10.1101/gad.1693608. PubMed DOI
Richardson G.D., Bazzi H., Fantauzzo K.A., Waters J.M., Crawford H., Hynd P., Christiano A.M., Jahoda C.A. KGF and EGF signalling block hair follicle induction and promote interfollicular epidermal fate in developing mouse skin. Development. 2009;136:2153–2164. doi: 10.1242/dev.031427. PubMed DOI PMC
Nitzki F., Becker M., Frommhold A., Schulz-Schaeffer W., Hahn H. Patched knockout mouse models of Basal cell carcinoma. J. Skin Cancer. 2012;2012:907543. doi: 10.1155/2012/907543. PubMed DOI PMC
Tomasetti C., Vogelstein B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science. 2015;347:78–81. doi: 10.1126/science.1260825. PubMed DOI PMC
Lombard D.B., Chua K.F., Mostoslavsky R., Franco S., Gostissa M., Alt F.W. DNA repair, genome stability, and aging. Cell. 2005;120:497–512. doi: 10.1016/j.cell.2005.01.028. PubMed DOI
Sharpless N.E., DePinho R.A. How stem cells age and why this makes us grow old. Nat. Rev. Mol. Cell Biol. 2007;8:703–713. doi: 10.1038/nrm2241. PubMed DOI
Zouboulis C.C., Adjaye J., Akamatsu H., Moe-Behrens G., Niemann C. Human skin stem cells and the ageing process. Exp. Gerontol. 2008;43:986–997. doi: 10.1016/j.exger.2008.09.001. PubMed DOI
Mackenbach J.P. Political conditions and life expectancy in Europe, 1900–2008. Soc. Sci. Med. 2013;82:134–146. doi: 10.1016/j.socscimed.2012.12.022. PubMed DOI
Smetana K., Jr., Dvořánková B., Lacina L. Phylogeny, regeneration, ageing and cancer: Role of microenvironment and possibility of its therapeutic manipulation. Folia Biol. 2013;59:207–216. PubMed
Egeblad M., Nakasone E.S., Werb Z. Tumors as organs: Complex tissues that interface with the entire organism. Dev. Cell. 2010;18:884–901. doi: 10.1016/j.devcel.2010.05.012. PubMed DOI PMC
Plaks V., Kong N., Werb Z. The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015;16:225–238. doi: 10.1016/j.stem.2015.02.015. PubMed DOI PMC
Dvorak H.F. Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 1986;315:1650–1659. PubMed
Plzák J., Lacina L., Chovanec M., Dvoránková B., Szabo P., Cada Z., Smetana K., Jr. Epithelial-stromal interaction in squamous cell epithelium-derived tumors: An important new player in the control of tumor biological properties. Anticancer Res. 2010;30:455–462. PubMed
Karagiannis G.S., Petraki C., Prassas I., Saraon P., Musrap N., Dimitromanolakis A., Diamandis E.P. Proteomic signatures of the desmoplastic invasion front reveal collagen type XII as a marker of myofibroblastic differentiation during colorectal cancer metastasis. Oncotarget. 2012;3:267–285. doi: 10.18632/oncotarget.451. PubMed DOI PMC
Medler T.R., Coussens L.M. Duality of the immune response in cancer: Lessons learned from skin. J. Investig. Dermatol. 2014;134:23–28. doi: 10.1038/skinbio.2014.5. PubMed DOI PMC
Yu Y., Champer J., Beynet D., Kim J., Friedman A.J. The role of the cutaneous microbiome in skin cancer: Lessons learned from the gut. J. Drugs Dermatol. 2015;14:461–465. PubMed
Muranushi C., Olsen C.M., Pandeya N., Green A.C. Aspirin and nonsteroidal anti-inflammatory drugs can prevent cutaneous squamous cell carcinoma: A systematic review and meta-analysis. J. Investig. Dermatol. 2015;135:975–983. doi: 10.1038/jid.2014.531. PubMed DOI
Etrych T., Subr V., Strohalm J., Sírová M., Ríhová B., Ulbrich K. HPMA copolymer-doxorubicin conjugates: The effects of molecular weight and architecture on biodistribution and in vivo activity. J. Control. Release. 2012;164:346–354. doi: 10.1016/j.jconrel.2012.06.029. PubMed DOI
Polyak K., Haviv I., Campbell I.G. Co-evolution of tumor cells and their microenvironment. Trends Genet. 2009;25:30–38. doi: 10.1016/j.tig.2008.10.012. PubMed DOI
De Wever O., Demetter P., Mareel M., Bracke M. Stromal myofibroblasts are drivers of invasive cancer growth. Int. J. Cancer. 2008;123:2229–2238. doi: 10.1002/ijc.23925. PubMed DOI
Petersen O.W., Nielsen H.L., Gudjonsson T., Villadsen R., Rank F., Niebuhr E., Bissell M.J., Rønnov-Jessen L. Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am. J. Pathol. 2003;162:391–402. doi: 10.1016/S0002-9440(10)63834-5. PubMed DOI PMC
Smetana K., Jr., Dvoránková B., Lacina L., Cada Z., Vonka V. Human hair follicle and interfollicular keratinocyte reactivity to mouse HPV16-transformed cells: An in vitro study. Oncol. Rep. 2008;20:75–80. doi: 10.3892/or.20.1.75. PubMed DOI
Dvořánková B., Smetana K., Jr., Říhová B., Kučera J., Mateu R., Szabo P. Cancer-associated fibroblasts are not formed from cancer cells by epithelial-to-mesenchymal transition in nu/nu mice. Histochem. Cell Biol. 2015;143:463–469. doi: 10.1007/s00418-014-1293-z. PubMed DOI
Qiu W., Hu M., Sridhar A., Opeskin K., Fox S., Shipitsin M., Trivett M., Thompson E.R., Ramakrishna M., Gorringe K.L., et al. No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nat. Genet. 2008;40:650–655. doi: 10.1038/ng.117. PubMed DOI PMC
Rhim A.D., Oberstein P.E., Thomas D.H., Mirek E.T., Palermo C.F., Sastra S.A., Dekleva E.N., Saunders T., Becerra C.P., Tattersall I.W., et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014;25:735–747. doi: 10.1016/j.ccr.2014.04.021. PubMed DOI PMC
Lacina L., Dvoránkova B., Smetana K., Jr., Chovanec M., Plzák J., Tachezy R., Kideryová L., Kucerová L., Cada Z., Boucek J., et al. Marker profiling of normal keratinocytes identifies the stroma from squamous cell carcinoma of the oral cavity as a modulatory microenvironment in co-culture. Int. J. Radiat. Biol. 2007;83:837–848. doi: 10.1080/09553000701694343. PubMed DOI
Lacina L., Smetana K., Jr., Dvoránková B., Pytlík R., Kideryová L., Kucerová L., Plzáková Z., Stork J., Gabius H.-J., André S. Stromal fibroblasts from basal cell carcinoma affect phenotype of normal keratinocytes. Br. J. Dermatol. 2007;156:819–829. doi: 10.1111/j.1365-2133.2006.07728.x. PubMed DOI
Kideryová L., Lacina L., Dvoránková B., Stork J., Cada Z., Szabo P., André S., Kaltner H., Gabius H.-J., Smetana K., Jr. Phenotypic characterization of human keratinocytes in coculture reveals differential effects of fibroblasts from benign fibrous histiocytoma (dermatofibroma) as compared to cells from its malignant form and to normal fibroblasts. J. Dermatol. Sci. 2009;55:18–26. doi: 10.1016/j.jdermsci.2009.03.009. PubMed DOI
Thiery J.P., Acloque H., Huang R.Y., Nieto M.A. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–890. doi: 10.1016/j.cell.2009.11.007. PubMed DOI
Strnad H., Lacina L., Kolár M., Cada Z., Vlcek C., Dvoránková B., Betka J., Plzák J., Chovanec M., Sáchová J., et al. Head and neck squamous cancer stromal fibroblasts produce growth factors influencing phenotype of normal human keratinocytes. Histochem. Cell Biol. 2010;133:201–211. doi: 10.1007/s00418-009-0661-6. PubMed DOI
Jarkovska K., Dvorankova B., Halada P., Kodet O., Szabo P., Gadher S.J., Motlik J., Kovarova H., Smetana K., Jr. Revelation of fibroblast protein commonalities and differences and their possible roles in wound healing and tumourigenesis using co-culture models of cells. Biol. Cell. 2014;106:203–218. doi: 10.1111/boc.201400014. PubMed DOI
Szabo P., Valach J., Smetana K., Jr., Dvořánková B. Comparative analysis of IL-8 and CXCL-1 production by normal and cancer stromal fibroblasts. Folia Biol. 2013;59:134–137. PubMed
Jiang L., Gonda T.A., Gamble M.V., Salas M., Seshan V., Tu S., Twaddell W.S., Hegyi P., Lazar G., Steele I., et al. Global hypomethylation of genomic DNA in cancer-associated myofibroblasts. Cancer Res. 2008;68:9900–9908. doi: 10.1158/0008-5472.CAN-08-1319. PubMed DOI PMC
Wenner C.E., Yan S. Biphasic role of TGF-beta1 in signal transduction and crosstalk. J. Cell. Physiol. 2003;196:42–50. doi: 10.1002/jcp.10243. PubMed DOI
Bierie B., Stover D.G., Abel T.W., Chytil A., Gorska A.E., Aakre M., Forrester E., Yang L., Wagner K.U., Moses H.L. Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment. Cancer Res. 2008;68:1809–1819. doi: 10.1158/0008-5472.CAN-07-5597. PubMed DOI
Smetana K., Jr., Dvořánková B., Lacina L., Strnad H., Kolář M., Chovanec M., Plzák J., Čada Z., Vlček Č., Szabo P., et al. Combination of Antibodies or Their Fab Fragmennts for Use as Therapeutics and Pharmaceutic Tool Containing These Antibodies or their Fab Fragments. No. 303227. Czech Patent. 2012 Apr 22;
Karnoub A.E., Dash A.B., Vo A.P., Sullivan A., Brooks M.W., Bell G.W., Richardson A.L., Polyak K., Tubo R., Weinberg R.A. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449:557–563. doi: 10.1038/nature06188. PubMed DOI
Tsukuda K., Tsuji H., Kunitomo T., Aokage K., Miyake T., Nakahara S., Masuda H. Breast cancer with cartilaginous and/or osseous metaplasia diagnosed by lymph nodal metastasis: A case report. Acta Med. Okayama. 2009;63:367–371. PubMed
Szabo P., Kolář M., Dvořánková B., Lacina L., Štork J., Vlček Č., Strnad H., Tvrdek M., Smetana K., Jr. Mouse 3T3 fibroblasts under the influence of fibroblasts isolated from stroma of human basal cell carcinoma acquire properties of multipotent stem cells. Biol. Cell. 2011;103:233–248. doi: 10.1042/BC20100113. PubMed DOI
Bonnans C., Chou J., Werb Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 2014;15:786–801. doi: 10.1038/nrm3904. PubMed DOI PMC
Berndt A., Richter P., Kosmehl H., Franz M. Tenascin-C and carcinoma cell invasion in oral and urinary bladder cancer. Cell Adhes. Migr. 2015;9:105–111. doi: 10.1080/19336918.2015.1005463. PubMed DOI PMC
Nishi Y., Sano H., Kawashima T., Okada T., Kuroda T., Kikkawa K., Kawashima S., Tanabe M., Goto T., Matsuzawa Y., et al. Role of galectin-3 in human pulmonary fibrosis. Allergol. Int. 2007;56:57–65. doi: 10.2332/allergolint.O-06-449. PubMed DOI
Valach J., Fík Z., Strnad H., Chovanec M., Plzák J., Cada Z., Szabo P., Sáchová J., Hroudová M., Urbanová M., et al. Smooth muscle actin-expressing stromal fibroblasts in head and neck squamous cell carcinoma: Increased expression of galectin-1 and induction of poor prognosis factors. Int. J. Cancer. 2012;131:2499–2508. doi: 10.1002/ijc.27550. PubMed DOI
Peržeľová V., Varinská L., Dvořánková B., Szabo P., Spurný P., Valach J., Mojžiš J., André S., Gabius H.-J., Smetana K., Jr., et al. Extracellular matrix of galectin-1-exposed dermal and tumor-associated fibroblasts favors growth of human umbilical vein endothelial cells in vitro: A short report. Anticancer Res. 2014;34:3991–3996. PubMed
Smetana K., Jr., Szabo P., Gal P., André S., Gabius H.-J., Kodet O., Dvořánková B. Emerging role of tissue lectins as microenvironmental effectors in tumors and wounds. Histol. Histopathol. 2015;30:293–309. PubMed
Díez-Torre A., Andrade R., Eguizábal C., López E., Arluzea J., Silió M., Aréchaga J. Reprogramming of melanoma cells by embryonic microenvironments. Int. J. Dev. Biol. 2009;53:1563–1568. doi: 10.1387/ijdb.093021ad. PubMed DOI
Haass N.K., Ripperger D., Wladykowski E., Dawson P., Gimotty P.A., Blome C., Fischer F., Schmage P., Moll I., Brandner J.M. Melanoma progression exhibits a significant impact on connexin expression patterns in the epidermal tumor microenvironment. Histochem. Cell Biol. 2010;133:113–124. doi: 10.1007/s00418-009-0654-5. PubMed DOI
Kodet O., Lacina L., Krejčí E., Dvořánková B., Grim M., Štork J., Kodetová D., Vlček Č., Šáchová J., Kolář M., et al. Melanoma cells influence the differentiation pattern of human epidermal keratinocytes. Mol. Cancer. 2015;14:1. doi: 10.1186/1476-4598-14-1. PubMed DOI PMC
Chung H., Suh E.K., Han I.O., Oh E.S. Keratinocyte-derived laminin-332 promotes adhesion and migration in melanocytes and melanoma. J. Biol. Chem. 2011;286:13438–13447. doi: 10.1074/jbc.M110.166751. PubMed DOI PMC
Dvořánková B., Szabo P., Lacina L., Kodet O., Matoušková E., Smetana K., Jr. Fibroblasts prepared from different types of malignant tumors stimulate expression of luminal marker keratin 8 in the EM-G3 breast cancer cell line. Histochem. Cell Biol. 2012;137:679–685. doi: 10.1007/s00418-012-0918-3. PubMed DOI
Kodet O., Dvořánková B., Krejčí E., Szabo P., Dvořák P., Štork J., Krajsová I., Dundr P., Smetana K., Jr., Lacina L. Cultivation-dependent plasticity of melanoma phenotype. Tumor Biol. 2013;34:3345–3355. doi: 10.1007/s13277-013-0905-x. PubMed DOI
Kučera J., Dvořánková B., Smetana K., Jr., Szabo P., Kodet O. Fibroblasts isolated from the malignant melanoma influence phenotype of normal human keratinocytes. J. Appl. Biomed. 2015;13:195–198. doi: 10.1016/j.jab.2015.03.002. DOI
Trylcova J., Busek P., Smetana K., Jr., Balaziova E., Dvorankova B., Mifkova A., Sedo A. Effect of cancer-associated fibroblasts on the migration of glioma cells in vitro. Tumor Biol. 2015;36:5873–5879. doi: 10.1007/s13277-015-3259-8. PubMed DOI
IL-6 in the Ecosystem of Head and Neck Cancer: Possible Therapeutic Perspectives
The Head and Neck Squamous Cell Carcinoma Microenvironment as a Potential Target for Cancer Therapy
Fibroblasts potentiate melanoma cells in vitro invasiveness induced by UV-irradiated keratinocytes
Advances in Proteomic Techniques for Cytokine Analysis: Focus on Melanoma Research
How Signaling Molecules Regulate Tumor Microenvironment: Parallels to Wound Repair
Intercellular crosstalk in human malignant melanoma