Effect of cancer-associated fibroblasts on the migration of glioma cells in vitro
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25712375
DOI
10.1007/s13277-015-3259-8
PII: 10.1007/s13277-015-3259-8
Knihovny.cz E-zdroje
- MeSH
- aktiny biosyntéza MeSH
- fibroblasty patologie MeSH
- glioblastom genetika patologie MeSH
- kultivační média speciální * MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádorové mikroprostředí genetika MeSH
- pohyb buněk * MeSH
- proliferace buněk genetika MeSH
- regulace genové exprese u nádorů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ACTA2 protein, human MeSH Prohlížeč
- aktiny MeSH
- kultivační média speciální * MeSH
Cancer-associated fibroblasts (CAFs) significantly influence biological properties of many tumors. The role of these mesenchymal cells is also anticipated in human gliomas. To evaluate the putative role of CAFs in glioblastoma, we tested the effect of CAF conditioned media on the proliferation and chemotaxis of glioma cells. The proliferation of glioma cells was stimulated to similar extent by both the normal fibroblasts (NFs) and CAF-conditioned media. Nevertheless, CAF-conditioned media enhanced the chemotactic migration of glioma cells significantly more potently than the media from normal fibroblasts. In order to determine whether CAF-like cells are present in human glioblastomas, immunofluorescence staining was performed on tissue samples from 20 patients using markers typical for CAFs. This analysis revealed regular presence of mesenchymal cells expressing characteristic CAF markers α-smooth muscle actin and TE-7 in human glioblastomas. These observations indicate the potential role of CAF-like cells in glioblastoma biology.
Zobrazit více v PubMed
Am J Cancer Res. 2011;1(4):482-97 PubMed
Chembiochem. 2014 Jul 7;15(10):1465-70 PubMed
Int J Biochem Cell Biol. 2012 May;44(5):738-47 PubMed
J Neuropathol Exp Neurol. 1995 May;54(3):304-10 PubMed
J Cell Biochem. 2007 Jul 1;101(4):805-15 PubMed
J Pathol. 2014 May;233(1):74-88 PubMed
J Proteome Res. 2007 Sep;6(9):3796-807 PubMed
Biochim Biophys Acta. 2013 Feb;1830(2):2496-508 PubMed
Biol Cell. 2012 Dec;104(12):738-51 PubMed
Biochem Pharmacol. 2013 Mar 1;85(5):612-22 PubMed
Mol Neurobiol. 2014 Jun;49(3):1212-44 PubMed
J Histochem Cytochem. 2008 Apr;56(4):347-58 PubMed
Science. 2011 Jul 8;333(6039):238-42 PubMed
Glia. 2012 Mar;60(3):502-14 PubMed
J Neuropathol Exp Neurol. 2002 Jul;61(7):585-96 PubMed
Int J Cancer. 2008 Nov 15;123(10):2229-38 PubMed
PLoS One. 2012;7(4):e35150 PubMed
J Exp Med. 1984 Apr 1;159(4):1149-68 PubMed
Cell Cycle. 2009 Feb 15;8(4):589-95 PubMed
Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6028-32 PubMed
Cells Tissues Organs. 2011;194(6):469-80 PubMed
J Neurooncol. 2012 Feb;106(3):493-504 PubMed
Histochem Cell Biol. 2012 May;137(5):679-85 PubMed
Histochem Cell Biol. 2010 Feb;133(2):201-11 PubMed
Int J Cancer. 2012 Dec 1;131(11):2499-508 PubMed
J Neurooncol. 2011 Oct;105(1):57-65 PubMed
Trends Genet. 2009 Jan;25(1):30-8 PubMed
Clin Dev Immunol. 2013;2013:264124 PubMed
Stem Cells. 2014 May;32(5):1110-23 PubMed
Fibroblast Activation Protein Expressing Mesenchymal Cells Promote Glioblastoma Angiogenesis
Interleukin-6: Molecule in the Intersection of Cancer, Ageing and COVID-19
The Head and Neck Squamous Cell Carcinoma Microenvironment as a Potential Target for Cancer Therapy
Fibroblasts potentiate melanoma cells in vitro invasiveness induced by UV-irradiated keratinocytes
Intercellular crosstalk in human malignant melanoma
Cancer Microenvironment: What Can We Learn from the Stem Cell Niche