Identification of microRNAs differentially expressed in glioblastoma stem-like cells and their association with patient survival
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29434344
PubMed Central
PMC5809429
DOI
10.1038/s41598-018-20929-6
PII: 10.1038/s41598-018-20929-6
Knihovny.cz E-zdroje
- MeSH
- analýza přežití MeSH
- glioblastom genetika MeSH
- isocitrátdehydrogenasa genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA genetika MeSH
- mutace MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádorové buňky kultivované MeSH
- nádorové kmenové buňky chemie MeSH
- nádory mozku genetika MeSH
- nestin MeSH
- regulace genové exprese u nádorů MeSH
- senioři MeSH
- stanovení celkové genové exprese metody MeSH
- transkripční faktory SOXB1 genetika MeSH
- transplantace nádorů MeSH
- zvířata MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- senioři MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- IDH1 protein, human MeSH Prohlížeč
- isocitrátdehydrogenasa MeSH
- mikro RNA MeSH
- NES protein, human MeSH Prohlížeč
- nestin MeSH
- SOX2 protein, human MeSH Prohlížeč
- transkripční faktory SOXB1 MeSH
Glioblastoma stem-like cells (GSCs) are critical for the aggressiveness and progression of glioblastoma (GBM) and contribute to its resistance to adjuvant treatment. MicroRNAs (miRNAs) are small, non-coding RNAs controlling gene expression at the post-transcriptional level, which are known to be important regulators of the stem-like features. Moreover, miRNAs have been previously proved to be promising diagnostic biomarkers in several cancers including GBM. Using global expression analysis of miRNAs in 10 paired in-vitro as well as in-vivo characterized primary GSC and non-stem glioblastoma cultures, we identified a miRNA signature associated with the stem-like phenotype in GBM. 51 most deregulated miRNAs classified the cell cultures into GSC and non-stem cell clusters and identified a subgroup of GSC cultures with more pronounced stem-cell characteristics. The importance of the identified miRNA signature was further supported by demonstrating that a Risk Score based on the expression of seven miRNAs overexpressed in GSC predicted overall survival in GBM patients in the TCGA dataset independently of the IDH1 status. In summary, we identified miRNAs differentially expressed in GSCs and described their association with GBM patient survival. We propose that these miRNAs participate on GSC features and could represent helpful prognostic markers and potential therapeutic targets in GBM.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Neurosurgery University Hospital Ostrava Ostrava Czech Republic
Zobrazit více v PubMed
Stupp R, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005;352:987–996. doi: 10.1056/NEJMoa043330. PubMed DOI
Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CLL, Rich JN. Cancer stem cells in glioblastoma. Genes Dev. 2015;29:1203–1217. doi: 10.1101/gad.261982.115. PubMed DOI PMC
Jackson M, Hassiotou F, Nowak A. Glioblastoma stem-like cells: at the root of tumor recurrence and a therapeutic target. Carcinogenesis. 2015;36:177–185. doi: 10.1093/carcin/bgu243. PubMed DOI
Rahman M, et al. Neurosphere and adherent culture conditions are equivalent for malignant glioma stem cell lines. Anat. Cell Biol. 2015;48:25–35. doi: 10.5115/acb.2015.48.1.25. PubMed DOI PMC
Pavon, L. F. et al. In vitro Analysis of Neurospheres Derived from Glioblastoma Primary Culture: A Novel Methodology Paradigm. Front. Neurol. 4 (2014). PubMed PMC
Wakimoto H, et al. Maintenance of primary tumor phenotype and genotype in glioblastoma stem cells. Neuro-Oncol. 2012;14:132–144. doi: 10.1093/neuonc/nor195. PubMed DOI PMC
Iacopino F, et al. Isolation of Cancer Stem Cells from Three Human Glioblastoma Cell Lines: Characterization of Two Selected Clones. PLoS ONE. 2014;9:e105166. doi: 10.1371/journal.pone.0105166. PubMed DOI PMC
Brescia P, et al. CD133 is essential for glioblastoma stem cell maintenance. Stem Cells Dayt. Ohio. 2013;31:857–869. doi: 10.1002/stem.1317. PubMed DOI
Zhang, W., Chen, H., Lv, S. & Yang, H. High CD133 Expression Is Associated with Worse Prognosis in Patients with Glioblastoma. Mol. Neurobiol, 10.1007/s12035-015-9187-1 (2015). PubMed
Dahlrot RH, et al. Clinical value of CD133 and nestin in patients with glioma: a population-based study. Int. J. Clin. Exp. Pathol. 2014;7:3739–3751. PubMed PMC
Miconi G, et al. Immunophenotypic characterization of human glioblastoma stem cells: correlation with clinical outcome. J. Cell. Biochem. 2015;116:864–876. doi: 10.1002/jcb.25043. PubMed DOI
Kong BH, et al. Prognostic value of glioma cancer stem cell isolation in survival of primary glioblastoma patients. Stem Cells Int. 2014;2014:838950. doi: 10.1155/2014/838950. PubMed DOI PMC
Virant-Klun I, Ståhlberg A, Kubista M, Skutella T. MicroRNAs: From Female Fertility, Germ Cells, and Stem Cells to Cancer in Humans. Stem Cells Int. 2016;2016:3984937. PubMed PMC
Besse A, Sana J, Fadrus P, Slaby O. MicroRNAs involved in chemo- and radioresistance of high-grade gliomas. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 2013;34:1969–1978. doi: 10.1007/s13277-013-0772-5. PubMed DOI
Yang HW, Xing H, Johnson MD. A major role for microRNAs in glioblastoma cancer stem-like cells. Arch. Pharm. Res. 2015;38:423–434. doi: 10.1007/s12272-015-0574-y. PubMed DOI
Kleinová R, Slabý O, Šána J. [The Relevance of MicroRNAs in GlioblastomaStem Cells] Klin. Onkol. Cas. Ceské Slov. Onkol. Spolecnosti. 2015;28:338–344. PubMed
Brower JV, Clark PA, Lyon W, Kuo JS. MicroRNAs in cancer: glioblastoma and glioblastoma cancer stem cells. Neurochem. Int. 2014;77:68–77. doi: 10.1016/j.neuint.2014.06.002. PubMed DOI PMC
Aldaz B, et al. Involvement of miRNAs in the differentiation of human glioblastoma multiforme stem-like cells. PloS One. 2013;8:e77098. doi: 10.1371/journal.pone.0077098. PubMed DOI PMC
Fareh M, et al. The miR 302-367 cluster drastically affects self-renewal and infiltration properties of glioma-initiating cells through CXCR4 repression and consequent disruption of the SHH-GLI-NANOG network. Cell Death Differ. 2012;19:232–244. doi: 10.1038/cdd.2011.89. PubMed DOI PMC
Sana J, et al. Risk Score based on microRNA expression signature is independent prognostic classifier of glioblastoma patients. Carcinogenesis. 2014;35:2756–2762. doi: 10.1093/carcin/bgu212. PubMed DOI
Lakomy R, et al. MiR-195, miR-196b, miR-181c, miR-21 expression levels and O-6-methylguanine-DNA methyltransferase methylation status are associated with clinical outcome in glioblastoma patients. Cancer Sci. 2011;102:2186–2190. doi: 10.1111/j.1349-7006.2011.02092.x. PubMed DOI PMC
Therneau T. Modeling Survival Data: Extending the Cox Model. Springer, New York 2000.
Therneau T. A Package for Survival Analysis in S. R Package Version 2.37-6, http://CRAN.R-project.org/package=survival (30 October 2014, date last accessed) 2014.
Aum DJ, et al. Molecular and cellular heterogeneity: the hallmark of glioblastoma. Neurosurg. Focus. 2014;37:E11. doi: 10.3171/2014.9.FOCUS14521. PubMed DOI
Eder K, Kalman B. Molecular heterogeneity of glioblastoma and its clinical relevance. Pathol. Oncol. Res. POR. 2014;20:777–787. doi: 10.1007/s12253-014-9833-3. PubMed DOI
Bayin NS, Modrek AS, Placantonakis DG. Glioblastoma stem cells: Molecular characteristics and therapeutic implications. World J. Stem Cells. 2014;6:230–238. doi: 10.4252/wjsc.v6.i2.230. PubMed DOI PMC
Yin C, Lv S, Chen X, Guo H. The role of glioma stem cells in glioma tumorigenesis. Front. Biosci. Landmark Ed. 2014;19:818–824. doi: 10.2741/4249. PubMed DOI
Bao S, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–760. doi: 10.1038/nature05236. PubMed DOI
Cheng L, et al. L1CAM regulates DNA damage checkpoint response of glioblastoma stem cells through NBS1. EMBO J. 2011;30:800–813. doi: 10.1038/emboj.2011.10. PubMed DOI PMC
Floyd D, Purow B. Micro-masters of glioblastoma biology and therapy: increasingly recognized roles for microRNAs. Neuro-Oncol. 2014;16:622–627. doi: 10.1093/neuonc/nou049. PubMed DOI PMC
Lee J, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006;9:391–403. doi: 10.1016/j.ccr.2006.03.030. PubMed DOI
Gangemi RMR, et al. SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells Dayt. Ohio. 2009;27:40–48. doi: 10.1634/stemcells.2008-0493. PubMed DOI
Yuva-Aydemir Y, Simkin A, Gascon E, Gao F-B. MicroRNA-9: functional evolution of a conserved small regulatory RNA. RNA Biol. 2011;8:557–564. doi: 10.4161/rna.8.4.16019. PubMed DOI PMC
Lagos-Quintana M, et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol. CB. 2002;12:735–739. doi: 10.1016/S0960-9822(02)00809-6. PubMed DOI
Bonev B, Pisco A, Papalopulu N. MicroRNA-9 reveals regional diversity of neural progenitors along the anterior-posterior axis. Dev. Cell. 2011;20:19–32. doi: 10.1016/j.devcel.2010.11.018. PubMed DOI PMC
Bonev B, Stanley P, Papalopulu N. MicroRNA-9 Modulates Hes1 ultradian oscillations by forming a double-negative feedback loop. Cell Rep. 2012;2:10–18. doi: 10.1016/j.celrep.2012.05.017. PubMed DOI PMC
Coolen M, Thieffry D, Drivenes Ø, Becker TS, Bally-Cuif L. miR-9 controls the timing of neurogenesis through the direct inhibition of antagonistic factors. Dev. Cell. 2012;22:1052–1064. doi: 10.1016/j.devcel.2012.03.003. PubMed DOI
Roese-Koerner B, et al. Reciprocal Regulation between Bifunctional miR-9/9(*) and its Transcriptional Modulator Notch in Human Neural Stem Cell Self-Renewal and Differentiation. Stem Cell Rep. 2016;7:207–219. doi: 10.1016/j.stemcr.2016.06.008. PubMed DOI PMC
Tan S-L, Ohtsuka T, González A, Kageyama R. MicroRNA9 regulates neural stem cell differentiation by controlling Hes1 expression dynamics in the developing brain. Genes Cells Devoted Mol. Cell. Mech. 2012;17:952–961. doi: 10.1111/gtc.12009. PubMed DOI
Roese-Koerner B, Stappert L, Koch P, Brüstle O, Borghese L. Pluripotent stem cell-derived somatic stem cells as tool to study the role of microRNAs in early human neural development. Curr. Mol. Med. 2013;13:707–722. doi: 10.2174/1566524011313050003. PubMed DOI
Schraivogel D, et al. CAMTA1 is a novel tumour suppressor regulated by miR-9/9* in glioblastoma stem cells. EMBO J. 2011;30:4309–4322. doi: 10.1038/emboj.2011.301. PubMed DOI PMC
Munoz, J. L., Rodriguez-Cruz, V. & Rameshwar, P. High expression of miR-9 in CD133(+) glioblastoma cells in chemoresistance to temozolomide. J. Cancer Stem Cell Res. 3 (2015). PubMed PMC
Staahl BT, et al. Kinetic analysis of npBAF to nBAF switching reveals exchange of SS18 with CREST and integration with neural developmental pathways. J. Neurosci. Off. J. Soc. Neurosci. 2013;33:10348–10361. doi: 10.1523/JNEUROSCI.1258-13.2013. PubMed DOI PMC
Xue Q, et al. miR-9 and miR-124 synergistically affect regulation of dendritic branching via the AKT/GSK3β pathway by targeting Rap2a. Sci. Rep. 2016;6:26781. doi: 10.1038/srep26781. PubMed DOI PMC
Brett JO, Renault VM, Rafalski VA, Webb AE, Brunet A. The microRNA cluster miR-106b~25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging. 2011;3:108–124. doi: 10.18632/aging.100285. PubMed DOI PMC
Yu D, Shin H-S, Lee YS, Lee YC. miR-106b modulates cancer stem cell characteristics through TGF-β/Smad signaling in CD44-positive gastric cancer cells. Lab. Investig. J. Tech. Methods Pathol. 2014;94:1370–1381. doi: 10.1038/labinvest.2014.125. PubMed DOI
Chang S-J, et al. MicroRNA-34a modulates genes involved in cellular motility and oxidative phosphorylation in neural precursors derived from human umbilical cord mesenchymal stem cells. BMC Med. Genomics. 2011;4:65. doi: 10.1186/1755-8794-4-65. PubMed DOI PMC
Lu Y, et al. Alternative splicing of MBD2 supports self-renewal in human pluripotent stem cells. Cell Stem Cell. 2014;15:92–101. doi: 10.1016/j.stem.2014.04.002. PubMed DOI PMC
Stappert L, et al. MicroRNA-based promotion of human neuronal differentiation and subtype specification. PloS One. 2013;8:e59011. doi: 10.1371/journal.pone.0059011. PubMed DOI PMC
Tezcan G, et al. microRNA expression pattern modulates temozolomide response in GBM tumors with cancer stem cells. Cell. Mol. Neurobiol. 2014;34:679–692. doi: 10.1007/s10571-014-0050-0. PubMed DOI PMC
Melguizo C, et al. MGMT promoter methylation status and MGMT and CD133 immunohistochemical expression as prognostic markers in glioblastoma patients treated with temozolomide plus radiotherapy. J. Transl. Med. 2012;10:250. doi: 10.1186/1479-5876-10-250. PubMed DOI PMC
Kim K-J, et al. The presence of stem cell marker-expressing cells is not prognostically significant in glioblastomas. Neuropathol. Off. J. Jpn. Soc. Neuropathol. 2011;31:494–502. doi: 10.1111/j.1440-1789.2010.01194.x. PubMed DOI
Pallini R, et al. Expression of the stem cell marker CD133 in recurrent glioblastoma and its value for prognosis. Cancer. 2011;117:162–174. doi: 10.1002/cncr.25581. PubMed DOI
Joo KM, et al. Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab. Investig. J. Tech. Methods Pathol. 2008;88:808–815. doi: 10.1038/labinvest.2008.57. PubMed DOI
Li L, Bhatia R. Stem cell quiescence. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011;17:4936–4941. doi: 10.1158/1078-0432.CCR-10-1499. PubMed DOI PMC
Fael Al-Mayhani TM, et al. An efficient method for derivation and propagation of glioblastoma cell lines that conserves the molecular profile of their original tumours. J. Neurosci. Methods. 2009;176:192–199. doi: 10.1016/j.jneumeth.2008.07.022. PubMed DOI
Pollard SM, et al. Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell. 2009;4:568–580. doi: 10.1016/j.stem.2009.03.014. PubMed DOI
Busek P, et al. Dipeptidyl peptidase-IV inhibits glioma cell growth independent of its enzymatic activity. Int. J. Biochem. Cell Biol. 2012;44:738–747. doi: 10.1016/j.biocel.2012.01.011. PubMed DOI
Trylcova J, et al. Effect of cancer-associated fibroblasts on the migration of glioma cells in vitro. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 2015;36:5873–5879. doi: 10.1007/s13277-015-3259-8. PubMed DOI
Team,RC. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (Foundation for Statistical Computing, 2013).
Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray preprocessing. Bioinforma. Oxf. Engl. 2010;26:2363–2367. doi: 10.1093/bioinformatics/btq431. PubMed DOI PMC
Smyth G. Limma: linear models for microarray data In Gentleman R, Carey V, Dudoit S, et al. Bioinformatics and Computational Biology Solutions Using R and Bioconductor (Gentleman, R. et al.) 397–420 (Springer, 2005).
Cancer Genome Atlas Research Network Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–1068. doi: 10.1038/nature07385. PubMed DOI PMC
Lauss M. rocc: ROC Based Classification. R Package Version 1.2. http://CRAN.R-project.org/package=rocc (30 October 2014, date last accessed) (2010).
Microtubule-associated NAV3 regulates invasive phenotypes in glioblastoma cells
Fibrillar extracellular matrix produced by pericyte-like cells facilitates glioma cell dissemination