Microtubule-associated NAV3 regulates invasive phenotypes in glioblastoma cells

. 2025 Jan ; 35 (1) : e13294. [epub] 20240803

Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39097525

Grantová podpora
NV19-03-00501 Ministerstvo Zdravotnictví Ceské Republiky
922120 Grantová Agentura, Univerzita Karlova
Czech-BioImaging LM2023050 Ministerstvo Školství, Mládeže a Tělovýchovy
Center for Tumor Ecology - Research of the Cancer Ministerstvo Školství, Mládeže a Tělovýchovy
EATRIS-CZ LM2015064 Ministerstvo Školství, Mládeže a Tělovýchovy
National institute for cancer research LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy

Glioblastomas are aggressive brain tumors for which effective therapy is still lacking, resulting in dismal survival rates. These tumors display significant phenotypic plasticity, harboring diverse cell populations ranging from tumor core cells to dispersed, highly invasive cells. Neuron navigator 3 (NAV3), a microtubule-associated protein affecting microtubule growth and dynamics, is downregulated in various cancers, including glioblastoma, and has thus been considered a tumor suppressor. In this study, we challenge this designation and unveil distinct expression patterns of NAV3 across different invasion phenotypes. Using glioblastoma cell lines and patient-derived glioma stem-like cell cultures, we disclose an upregulation of NAV3 in invading glioblastoma cells, contrasting with its lower expression in cells residing in tumor spheroid cores. Furthermore, we establish an association between low and high NAV3 expression and the amoeboid and mesenchymal invasive phenotype, respectively, and demonstrate that overexpression of NAV3 directly stimulates glioblastoma invasive behavior in both 2D and 3D environments. Consistently, we observed increased NAV3 expression in cells migrating along blood vessels in mouse xenografts. Overall, our results shed light on the role of NAV3 in glioblastoma invasion, providing insights into this lethal aspect of glioblastoma behavior.

Zobrazit více v PubMed

Beauchesne P. Extra‐neural metastases of malignant gliomas: myth or reality? Cancers. 2011;3:461–477. PubMed PMC

Minata M, Audia A, Shi J, Lu S, Bernstock J, Pavlyukov MS, das A, Kim SH, Shin YJ, Lee Y, Koo H, Snigdha K, Waghmare I, Guo X, Mohyeldin A, Gallego‐Perez D, Wang J, Chen D, Cheng P, Mukheef F, Contreras M, Reyes JF, Vaillant B, Sulman EP, Cheng SY, Markert JM, Tannous BA, Lu X, Kango‐Singh M, Lee LJ, Nam DH, Nakano I, Bhat KP Phenotypic plasticity of invasive edge glioma stem‐like cells in response to ionizing radiation. Cell Rep 2019;26(7):1893‐1905.e7. PubMed PMC

Drumm MR, Dixit KS, Grimm S, Kumthekar P, Lukas RV, Raizer JJ, et al. Extensive brainstem infiltration, not mass effect, is a common feature of end‐stage cerebral glioblastomas. Neuro Oncol. 2020;22(4):470–479. PubMed PMC

McKinnon C, Nandhabalan M, Murray SA, Plaha P. Glioblastoma: clinical presentation, diagnosis, and management. BMJ. 2021;374:n1560. PubMed

Zreik J, Moinuddin FM, Yolcu YU, Alvi MA, Chaichana KL, Quinones‐Hinojosa A, et al. Improved 3‐year survival rates for glioblastoma multiforme are associated with trends in treatment: analysis of the national cancer database from 2004 to 2013. J Neurooncol. 2020;148(1):69–79. PubMed

Cuddapah VA, Robel S, Watkins S, Sontheimer H. A neurocentric perspective on glioma invasion. Nat Rev Neurosci. 2014;15(7):455–465. PubMed PMC

Gritsenko P, Leenders W, Friedl P. Recapitulating in vivo‐like plasticity of glioma cell invasion along blood vessels and in astrocyte‐rich stroma. Histochem Cell Biol. 2017;148(4):395–406. PubMed PMC

Fabian C, Han M, Bjerkvig R, Niclou SP. Novel facets of glioma invasion. In: Thomas C, Galluzzi LBT‐IR of C and MB , editors. Actin cytoskeleton in cancer progression and metastasis–part C. Cambridge, MA: Academic Press; 2021. p. 33–64 Ch. 2.

Vollmann‐Zwerenz A, Leidgens V, Feliciello G, Klein CA, Hau P. Tumor cell Invasion in Glioblastoma. Int J Mol Sci. 2020;21(6):1932. PubMed PMC

Marino S, Menna G, Di Bonaventura R, Lisi L, Mattogno P, Figà F, et al. The extracellular matrix in glioblastomas: a glance at its structural modifications in shaping the Tumoral microenvironment—a systematic review. Cancers. 2023;15:1879. PubMed PMC

Te Boekhorst V, Friedl P. Plasticity of cancer cell invasion‐mechanisms and implications for therapy. Adv Cancer Res. 2016;132:209–264. PubMed

Paňková K, Rösel D, Novotný M, Brábek J. The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell Mol Life Sci. 2010;67(1):63–71. PubMed PMC

Cui Y, Cole S, Pepper J, Otero JJ, Winter JO. Hyaluronic acid induces ROCK‐dependent amoeboid migration in glioblastoma cells. Biomater Sci. 2020;8(17):4821–4831. PubMed PMC

van Haren J, Draegestein K, Keijzer N, Abrahams JP, Grosveld F, Peeters PJ, et al. Mammalian navigators are microtubule plus‐end tracking proteins that can reorganize the cytoskeleton to induce neurite‐like extensions. Cell Motil Cytoskeleton. 2009;66(10):824–838. PubMed

Sánchez‐Huertas C, Bonhomme M, Falco A, Fagotto‐Kaufmann C, van Haren J, Jeanneteau F, et al. The +TIP Navigator‐1 is an actin–microtubule crosslinker that regulates axonal growth cone motility. J Cell Biol. 2020;219(9):e201905199. PubMed PMC

van Haren J, Boudeau J, Schmidt S, Basu S, Liu Z, Lammers D, et al. Dynamic microtubules catalyze formation of navigator‐TRIO complexes to regulate neurite extension. Curr Biol. 2014;24(15):1778–1785. PubMed

Powers RM, Hevner RF, Halpain S. The neuron navigators: structure, function, and evolutionary history. Front Mol Neurosci. 2022;15:1099554. PubMed PMC

Carlsson E, Krohn K, Ovaska K, Lindberg P, Häyry V, Maliniemi P, et al. Neuron navigator 3 alterations in nervous system tumors associate with tumor malignancy grade and prognosis. Genes Chromosomes Cancer. 2013;52(2):191–201. PubMed

Etienne‐Manneville S. Microtubules in cell migration. Annu Rev Cell Dev Biol. 2013;29:471–499. PubMed

Etienne‐Manneville S, Hall A. Integrin‐mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell. 2001;106(4):489–498. PubMed

Peglion F, Coumailleau F, Etienne‐Manneville S. Live imaging of microtubule dynamics in glioblastoma cells invading the zebrafish brain. J Vis Exp. 2022;185. PubMed

Bowman RL, Wang Q, Carro A, Verhaak RGW, Squatrito M. GlioVis data portal for visualization and analysis of brain tumor expression datasets. Neuro‐Oncol. 2017;19:139–141. PubMed PMC

Darmanis S, Sloan SA, Croote D, Mignardi M, Chernikova S, Samghababi P, et al. Single‐cell RNA‐Seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep. 2017;21(5):1399–1410. PubMed PMC

Hambardzumyan D, Bergers G. Glioblastoma: defining tumor niches. Trends Cancer. 2015;1(4):252–265. PubMed PMC

Brat DJ, Castellano‐Sanchez AA, Hunter SB, Pecot M, Cohen C, Hammond EH, et al. Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res. 2004;64(3):920–927. PubMed

Erices JI, Bizama C, Niechi I, Uribe D, Rosales A, Fabres K, et al. Glioblastoma microenvironment and invasiveness: new insights and therapeutic targets. Int J Mol Sci. 2023;24:7047. PubMed PMC

Comba A, Faisal SM, Varela ML, Hollon T, Al‐Holou WN, Umemura Y, et al. Uncovering spatiotemporal heterogeneity of high‐grade gliomas: from disease biology to therapeutic implications. Front Oncol. 2021;11:703764. PubMed PMC

Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Chepurnykh TV, Fradkov AF, et al. Engineering of a monomeric green‐to‐red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol. 2006;24(4):461–465. PubMed

Dogterom M, Koenderink GH. Actin‐microtubule crosstalk in cell biology. Nat Rev Mol Cell Biol. 2019;20(1):38–54. PubMed

Ketchen SE, Gamboa‐Esteves FO, Lawler SE, Nowicki MO, Rohwedder A, Knipp S, et al. Drug resistance in glioma cells induced by a mesenchymal‐amoeboid migratory switch. Biomedicines. 2022;10:9. PubMed PMC

Čermák V, Gandalovičová A, Merta L, Harant K, Rösel D, Brábek J. High‐throughput transcriptomic and proteomic profiling of mesenchymal‐amoeboid transition in 3D collagen. Sci Data. 2020;7(1):160. PubMed PMC

Čermák V, Škarková A, Merta L, Kolomazníková V, Palušová V, Uldrijan S, et al. RNA‐seq characterization of melanoma phenotype switch in 3D collagen after p38 MAPK inhibitor treatment. Biomolecules. 2021;11(3):449. PubMed PMC

Grundy TJ, De Leon E, Griffin KR, Stringer BW, Day BW, Fabry B, et al. Differential response of patient‐derived primary glioblastoma cells to environmental stiffness. Sci Rep. 2016;6(1):23353. PubMed PMC

Heffernan JM, Sirianni RW. Modeling microenvironmental regulation of glioblastoma stem cells: a biomaterials perspectives. Front Mater. 2018;5:1–19.

Wolf KJ, Lee S, Kumar S. A 3D topographical model of parenchymal infiltration and perivascular invasion in glioblastoma. APL Bioeng. 2018;2(3):031903. PubMed PMC

Uboveja A, Satija YK, Siraj F, Sharma I, Saluja D. p73‐NAV3 axis plays a critical role in suppression of colon cancer metastasis. Oncogenesis. 2020;9(2):12. PubMed PMC

Cohen‐Dvashi H, Ben‐Chetrit N, Russell R, Carvalho S, Lauriola M, Nisani S, et al. Navigator‐3, a modulator of cell migration, may act as a suppressor of breast cancer progression. EMBO Mol Med. 2015;7(3):299–314. PubMed PMC

Lin J, Teo S, Lam DH, Jeyaseelan K, Wang S. MicroRNA‐10b pleiotropically regulates invasion, angiogenicity and apoptosis of tumor cells resembling mesenchymal subtype of glioblastoma multiforme. Cell Death Dis. 2012;3(10):e398. PubMed PMC

Puchalski RB, Shah N, Miller J, Dalley R, Nomura SR, Yoon J‐G, et al. An anatomic transcriptional atlas of human glioblastoma. Science. 2018;360(6389):660–663. PubMed PMC

Eberhart CG, Bar EE. Spatial enrichment of cellular states in glioblastoma. Acta Neuropathol. 2020;140(1):85–87. PubMed PMC

Bugaeva O, Maliniemi P, Prestvik WS, Leivo E, Kluger N, Salava A, et al. Tumour suppressor neuron navigator 3 and matrix metalloproteinase 14 are co‐expressed in most melanomas but downregulated in thick tumours. Acta Derm Venereol. 2023;103:adv00883. PubMed PMC

Günther HS, Schmidt NO, Phillips HS, Kemming D, Kharbanda S, Soriano R, et al. Glioblastoma‐derived stem cell‐enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene. 2008;27(20):2897–2909. PubMed

Seker F, Cingoz A, Sur‐Erdem İ, Erguder N, Erkent A, Uyulur F, et al. Identification of SERPINE1 as a regulator of glioblastoma cell dispersal with transcriptome profiling. Cancers. 2019;11(11):1651. PubMed PMC

Bastola S, Pavlyukov MS, Yamashita D, Ghosh S, Cho H, Kagaya N, et al. Glioma‐initiating cells at tumor edge gain signals from tumor core cells to promote their malignancy. Nat Commun. 2020;11(1):4660. PubMed PMC

Garcia‐Diaz C, Pöysti A, Mereu E, Clements MP, Brooks LJ, Galvez‐Cancino F, et al. Glioblastoma cell fate is differentially regulated by the microenvironments of the tumor bulk and infiltrative margin. Cell Rep. 2023;42(5):112472. PubMed

Fayzullin A, Sandberg CJ, Spreadbury M, Saberniak BM, Grieg Z, Skaga E, et al. Phenotypic and expressional heterogeneity in the invasive glioma cells. Transl Oncol. 2019;12(1):122–133. PubMed PMC

Ruiz‐Ontañon P, Orgaz JL, Aldaz B, Elosegui‐Artola A, Martino J, Berciano MT, et al. Cellular plasticity confers migratory and invasive advantages to a population of glioblastoma‐initiating cells that infiltrate peritumoral tissue. Stem Cells. 2013;31(6):1075–1085. PubMed

Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147(5):992–1009. PubMed

Čermák V, Gandalovičová A, Merta L, Fučíková J, Špíšek R, Rösel D, et al. RNA‐seq of macrophages of amoeboid or mesenchymal migratory phenotype due to specific structure of environment. Sci Data. 2018;5:5. PubMed PMC

Ulrich TA, de Juan Pardo EM, Kumar S. The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res. 2009;69(10):4167–4174. PubMed PMC

Seker‐Polat F, Pinarbasi Degirmenci N, Solaroglu I, Bagci‐Onder T. Tumor cell infiltration into the brain in glioblastoma: from mechanisms to clinical perspectives. Cancers. 2022;14:443. PubMed PMC

Pointer KB, Clark PA, Schroeder AB, Salamat MS, Eliceiri KW, Kuo JS. Association of collagen architecture with glioblastoma patient survival. J Neurosurg. 2016;126(6):1812–1821. PubMed PMC

Koh I, Cha J, Park J, Choi J, Kang S‐G, Kim P. The mode and dynamics of glioblastoma cell invasion into a decellularized tissue‐derived extracellular matrix‐based three‐dimensional tumor model. Sci Rep. 2018;8(1):4608. PubMed PMC

Agudelo‐Garcia PA, de Jesus JK, Williams SP, Nowicki MO, Chiocca EA, Liyanarachchi S, et al. Glioma cell migration on three‐dimensional nanofiber scaffolds is regulated by substrate topography and abolished by inhibition of STAT3 signaling. Neoplasia. 2011;13(9):831–840. PubMed PMC

Ngo MT, Harley BAC. Perivascular signals alter global gene expression profile of glioblastoma and response to temozolomide in a gelatin hydrogel. Biomaterials. 2019;198:122–134. PubMed PMC

Sana J, Busek P, Fadrus P, Besse A, Radova L, Vecera M, et al. Identification of microRNAs differentially expressed in glioblastoma stem‐like cells and their association with patient survival. Sci Rep. 2018;8(1):2836. PubMed PMC

Xie Y, Bergström T, Jiang Y, Johansson P, Marinescu VD, Lindberg N, et al. The human glioblastoma cell culture resource: validated cell models representing all molecular subtypes. EBioMedicine. 2015;2(10):1351–1363. PubMed PMC

Rosenberg S, Verreault M, Schmitt C, Guegan J, Guehennec J, Levasseur C, et al. Multi‐omics analysis of primary glioblastoma cell lines shows recapitulation of pivotal molecular features of parental tumors. Neuro Oncol. 2017;19(2):219–228. PubMed PMC

Schindelin J, Arganda‐Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open‐source platform for biological‐image analysis. Nat Methods. 2012;9(7):676–682. PubMed PMC

Busek P, Stremenova J, Sromova L, Hilser M, Balaziova E, Kosek D, et al. Dipeptidyl peptidase‐IV inhibits glioma cell growth independent of its enzymatic activity. Int J Biochem Cell Biol. 2012;44(5):738–747. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...