Microtubule-associated NAV3 regulates invasive phenotypes in glioblastoma cells
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
NV19-03-00501
Ministerstvo Zdravotnictví Ceské Republiky
922120
Grantová Agentura, Univerzita Karlova
Czech-BioImaging LM2023050
Ministerstvo Školství, Mládeže a Tělovýchovy
Center for Tumor Ecology - Research of the Cancer
Ministerstvo Školství, Mládeže a Tělovýchovy
EATRIS-CZ LM2015064
Ministerstvo Školství, Mládeže a Tělovýchovy
National institute for cancer research LX22NPO5102
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
39097525
PubMed Central
PMC11669409
DOI
10.1111/bpa.13294
Knihovny.cz E-zdroje
- Klíčová slova
- NAV3, amoeboid, glioblastoma, invasion, mesenchymal,
- MeSH
- fenotyp * MeSH
- glioblastom * patologie genetika metabolismus MeSH
- invazivní růst nádoru * genetika MeSH
- lidé MeSH
- membránové proteiny MeSH
- mikrotubuly metabolismus MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory mozku * patologie genetika metabolismus MeSH
- pohyb buněk genetika fyziologie MeSH
- proteiny nervové tkáně metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- membránové proteiny MeSH
- NAV3 protein, human MeSH Prohlížeč
- proteiny nervové tkáně MeSH
Glioblastomas are aggressive brain tumors for which effective therapy is still lacking, resulting in dismal survival rates. These tumors display significant phenotypic plasticity, harboring diverse cell populations ranging from tumor core cells to dispersed, highly invasive cells. Neuron navigator 3 (NAV3), a microtubule-associated protein affecting microtubule growth and dynamics, is downregulated in various cancers, including glioblastoma, and has thus been considered a tumor suppressor. In this study, we challenge this designation and unveil distinct expression patterns of NAV3 across different invasion phenotypes. Using glioblastoma cell lines and patient-derived glioma stem-like cell cultures, we disclose an upregulation of NAV3 in invading glioblastoma cells, contrasting with its lower expression in cells residing in tumor spheroid cores. Furthermore, we establish an association between low and high NAV3 expression and the amoeboid and mesenchymal invasive phenotype, respectively, and demonstrate that overexpression of NAV3 directly stimulates glioblastoma invasive behavior in both 2D and 3D environments. Consistently, we observed increased NAV3 expression in cells migrating along blood vessels in mouse xenografts. Overall, our results shed light on the role of NAV3 in glioblastoma invasion, providing insights into this lethal aspect of glioblastoma behavior.
Zobrazit více v PubMed
Beauchesne P. Extra‐neural metastases of malignant gliomas: myth or reality? Cancers. 2011;3:461–477. PubMed PMC
Minata M, Audia A, Shi J, Lu S, Bernstock J, Pavlyukov MS, das A, Kim SH, Shin YJ, Lee Y, Koo H, Snigdha K, Waghmare I, Guo X, Mohyeldin A, Gallego‐Perez D, Wang J, Chen D, Cheng P, Mukheef F, Contreras M, Reyes JF, Vaillant B, Sulman EP, Cheng SY, Markert JM, Tannous BA, Lu X, Kango‐Singh M, Lee LJ, Nam DH, Nakano I, Bhat KP Phenotypic plasticity of invasive edge glioma stem‐like cells in response to ionizing radiation. Cell Rep 2019;26(7):1893‐1905.e7. PubMed PMC
Drumm MR, Dixit KS, Grimm S, Kumthekar P, Lukas RV, Raizer JJ, et al. Extensive brainstem infiltration, not mass effect, is a common feature of end‐stage cerebral glioblastomas. Neuro Oncol. 2020;22(4):470–479. PubMed PMC
McKinnon C, Nandhabalan M, Murray SA, Plaha P. Glioblastoma: clinical presentation, diagnosis, and management. BMJ. 2021;374:n1560. PubMed
Zreik J, Moinuddin FM, Yolcu YU, Alvi MA, Chaichana KL, Quinones‐Hinojosa A, et al. Improved 3‐year survival rates for glioblastoma multiforme are associated with trends in treatment: analysis of the national cancer database from 2004 to 2013. J Neurooncol. 2020;148(1):69–79. PubMed
Cuddapah VA, Robel S, Watkins S, Sontheimer H. A neurocentric perspective on glioma invasion. Nat Rev Neurosci. 2014;15(7):455–465. PubMed PMC
Gritsenko P, Leenders W, Friedl P. Recapitulating in vivo‐like plasticity of glioma cell invasion along blood vessels and in astrocyte‐rich stroma. Histochem Cell Biol. 2017;148(4):395–406. PubMed PMC
Fabian C, Han M, Bjerkvig R, Niclou SP. Novel facets of glioma invasion. In: Thomas C, Galluzzi LBT‐IR of C and MB , editors. Actin cytoskeleton in cancer progression and metastasis–part C. Cambridge, MA: Academic Press; 2021. p. 33–64 Ch. 2.
Vollmann‐Zwerenz A, Leidgens V, Feliciello G, Klein CA, Hau P. Tumor cell Invasion in Glioblastoma. Int J Mol Sci. 2020;21(6):1932. PubMed PMC
Marino S, Menna G, Di Bonaventura R, Lisi L, Mattogno P, Figà F, et al. The extracellular matrix in glioblastomas: a glance at its structural modifications in shaping the Tumoral microenvironment—a systematic review. Cancers. 2023;15:1879. PubMed PMC
Te Boekhorst V, Friedl P. Plasticity of cancer cell invasion‐mechanisms and implications for therapy. Adv Cancer Res. 2016;132:209–264. PubMed
Paňková K, Rösel D, Novotný M, Brábek J. The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell Mol Life Sci. 2010;67(1):63–71. PubMed PMC
Cui Y, Cole S, Pepper J, Otero JJ, Winter JO. Hyaluronic acid induces ROCK‐dependent amoeboid migration in glioblastoma cells. Biomater Sci. 2020;8(17):4821–4831. PubMed PMC
van Haren J, Draegestein K, Keijzer N, Abrahams JP, Grosveld F, Peeters PJ, et al. Mammalian navigators are microtubule plus‐end tracking proteins that can reorganize the cytoskeleton to induce neurite‐like extensions. Cell Motil Cytoskeleton. 2009;66(10):824–838. PubMed
Sánchez‐Huertas C, Bonhomme M, Falco A, Fagotto‐Kaufmann C, van Haren J, Jeanneteau F, et al. The +TIP Navigator‐1 is an actin–microtubule crosslinker that regulates axonal growth cone motility. J Cell Biol. 2020;219(9):e201905199. PubMed PMC
van Haren J, Boudeau J, Schmidt S, Basu S, Liu Z, Lammers D, et al. Dynamic microtubules catalyze formation of navigator‐TRIO complexes to regulate neurite extension. Curr Biol. 2014;24(15):1778–1785. PubMed
Powers RM, Hevner RF, Halpain S. The neuron navigators: structure, function, and evolutionary history. Front Mol Neurosci. 2022;15:1099554. PubMed PMC
Carlsson E, Krohn K, Ovaska K, Lindberg P, Häyry V, Maliniemi P, et al. Neuron navigator 3 alterations in nervous system tumors associate with tumor malignancy grade and prognosis. Genes Chromosomes Cancer. 2013;52(2):191–201. PubMed
Etienne‐Manneville S. Microtubules in cell migration. Annu Rev Cell Dev Biol. 2013;29:471–499. PubMed
Etienne‐Manneville S, Hall A. Integrin‐mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell. 2001;106(4):489–498. PubMed
Peglion F, Coumailleau F, Etienne‐Manneville S. Live imaging of microtubule dynamics in glioblastoma cells invading the zebrafish brain. J Vis Exp. 2022;185. PubMed
Bowman RL, Wang Q, Carro A, Verhaak RGW, Squatrito M. GlioVis data portal for visualization and analysis of brain tumor expression datasets. Neuro‐Oncol. 2017;19:139–141. PubMed PMC
Darmanis S, Sloan SA, Croote D, Mignardi M, Chernikova S, Samghababi P, et al. Single‐cell RNA‐Seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep. 2017;21(5):1399–1410. PubMed PMC
Hambardzumyan D, Bergers G. Glioblastoma: defining tumor niches. Trends Cancer. 2015;1(4):252–265. PubMed PMC
Brat DJ, Castellano‐Sanchez AA, Hunter SB, Pecot M, Cohen C, Hammond EH, et al. Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res. 2004;64(3):920–927. PubMed
Erices JI, Bizama C, Niechi I, Uribe D, Rosales A, Fabres K, et al. Glioblastoma microenvironment and invasiveness: new insights and therapeutic targets. Int J Mol Sci. 2023;24:7047. PubMed PMC
Comba A, Faisal SM, Varela ML, Hollon T, Al‐Holou WN, Umemura Y, et al. Uncovering spatiotemporal heterogeneity of high‐grade gliomas: from disease biology to therapeutic implications. Front Oncol. 2021;11:703764. PubMed PMC
Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Chepurnykh TV, Fradkov AF, et al. Engineering of a monomeric green‐to‐red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol. 2006;24(4):461–465. PubMed
Dogterom M, Koenderink GH. Actin‐microtubule crosstalk in cell biology. Nat Rev Mol Cell Biol. 2019;20(1):38–54. PubMed
Ketchen SE, Gamboa‐Esteves FO, Lawler SE, Nowicki MO, Rohwedder A, Knipp S, et al. Drug resistance in glioma cells induced by a mesenchymal‐amoeboid migratory switch. Biomedicines. 2022;10:9. PubMed PMC
Čermák V, Gandalovičová A, Merta L, Harant K, Rösel D, Brábek J. High‐throughput transcriptomic and proteomic profiling of mesenchymal‐amoeboid transition in 3D collagen. Sci Data. 2020;7(1):160. PubMed PMC
Čermák V, Škarková A, Merta L, Kolomazníková V, Palušová V, Uldrijan S, et al. RNA‐seq characterization of melanoma phenotype switch in 3D collagen after p38 MAPK inhibitor treatment. Biomolecules. 2021;11(3):449. PubMed PMC
Grundy TJ, De Leon E, Griffin KR, Stringer BW, Day BW, Fabry B, et al. Differential response of patient‐derived primary glioblastoma cells to environmental stiffness. Sci Rep. 2016;6(1):23353. PubMed PMC
Heffernan JM, Sirianni RW. Modeling microenvironmental regulation of glioblastoma stem cells: a biomaterials perspectives. Front Mater. 2018;5:1–19.
Wolf KJ, Lee S, Kumar S. A 3D topographical model of parenchymal infiltration and perivascular invasion in glioblastoma. APL Bioeng. 2018;2(3):031903. PubMed PMC
Uboveja A, Satija YK, Siraj F, Sharma I, Saluja D. p73‐NAV3 axis plays a critical role in suppression of colon cancer metastasis. Oncogenesis. 2020;9(2):12. PubMed PMC
Cohen‐Dvashi H, Ben‐Chetrit N, Russell R, Carvalho S, Lauriola M, Nisani S, et al. Navigator‐3, a modulator of cell migration, may act as a suppressor of breast cancer progression. EMBO Mol Med. 2015;7(3):299–314. PubMed PMC
Lin J, Teo S, Lam DH, Jeyaseelan K, Wang S. MicroRNA‐10b pleiotropically regulates invasion, angiogenicity and apoptosis of tumor cells resembling mesenchymal subtype of glioblastoma multiforme. Cell Death Dis. 2012;3(10):e398. PubMed PMC
Puchalski RB, Shah N, Miller J, Dalley R, Nomura SR, Yoon J‐G, et al. An anatomic transcriptional atlas of human glioblastoma. Science. 2018;360(6389):660–663. PubMed PMC
Eberhart CG, Bar EE. Spatial enrichment of cellular states in glioblastoma. Acta Neuropathol. 2020;140(1):85–87. PubMed PMC
Bugaeva O, Maliniemi P, Prestvik WS, Leivo E, Kluger N, Salava A, et al. Tumour suppressor neuron navigator 3 and matrix metalloproteinase 14 are co‐expressed in most melanomas but downregulated in thick tumours. Acta Derm Venereol. 2023;103:adv00883. PubMed PMC
Günther HS, Schmidt NO, Phillips HS, Kemming D, Kharbanda S, Soriano R, et al. Glioblastoma‐derived stem cell‐enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene. 2008;27(20):2897–2909. PubMed
Seker F, Cingoz A, Sur‐Erdem İ, Erguder N, Erkent A, Uyulur F, et al. Identification of SERPINE1 as a regulator of glioblastoma cell dispersal with transcriptome profiling. Cancers. 2019;11(11):1651. PubMed PMC
Bastola S, Pavlyukov MS, Yamashita D, Ghosh S, Cho H, Kagaya N, et al. Glioma‐initiating cells at tumor edge gain signals from tumor core cells to promote their malignancy. Nat Commun. 2020;11(1):4660. PubMed PMC
Garcia‐Diaz C, Pöysti A, Mereu E, Clements MP, Brooks LJ, Galvez‐Cancino F, et al. Glioblastoma cell fate is differentially regulated by the microenvironments of the tumor bulk and infiltrative margin. Cell Rep. 2023;42(5):112472. PubMed
Fayzullin A, Sandberg CJ, Spreadbury M, Saberniak BM, Grieg Z, Skaga E, et al. Phenotypic and expressional heterogeneity in the invasive glioma cells. Transl Oncol. 2019;12(1):122–133. PubMed PMC
Ruiz‐Ontañon P, Orgaz JL, Aldaz B, Elosegui‐Artola A, Martino J, Berciano MT, et al. Cellular plasticity confers migratory and invasive advantages to a population of glioblastoma‐initiating cells that infiltrate peritumoral tissue. Stem Cells. 2013;31(6):1075–1085. PubMed
Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147(5):992–1009. PubMed
Čermák V, Gandalovičová A, Merta L, Fučíková J, Špíšek R, Rösel D, et al. RNA‐seq of macrophages of amoeboid or mesenchymal migratory phenotype due to specific structure of environment. Sci Data. 2018;5:5. PubMed PMC
Ulrich TA, de Juan Pardo EM, Kumar S. The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res. 2009;69(10):4167–4174. PubMed PMC
Seker‐Polat F, Pinarbasi Degirmenci N, Solaroglu I, Bagci‐Onder T. Tumor cell infiltration into the brain in glioblastoma: from mechanisms to clinical perspectives. Cancers. 2022;14:443. PubMed PMC
Pointer KB, Clark PA, Schroeder AB, Salamat MS, Eliceiri KW, Kuo JS. Association of collagen architecture with glioblastoma patient survival. J Neurosurg. 2016;126(6):1812–1821. PubMed PMC
Koh I, Cha J, Park J, Choi J, Kang S‐G, Kim P. The mode and dynamics of glioblastoma cell invasion into a decellularized tissue‐derived extracellular matrix‐based three‐dimensional tumor model. Sci Rep. 2018;8(1):4608. PubMed PMC
Agudelo‐Garcia PA, de Jesus JK, Williams SP, Nowicki MO, Chiocca EA, Liyanarachchi S, et al. Glioma cell migration on three‐dimensional nanofiber scaffolds is regulated by substrate topography and abolished by inhibition of STAT3 signaling. Neoplasia. 2011;13(9):831–840. PubMed PMC
Ngo MT, Harley BAC. Perivascular signals alter global gene expression profile of glioblastoma and response to temozolomide in a gelatin hydrogel. Biomaterials. 2019;198:122–134. PubMed PMC
Sana J, Busek P, Fadrus P, Besse A, Radova L, Vecera M, et al. Identification of microRNAs differentially expressed in glioblastoma stem‐like cells and their association with patient survival. Sci Rep. 2018;8(1):2836. PubMed PMC
Xie Y, Bergström T, Jiang Y, Johansson P, Marinescu VD, Lindberg N, et al. The human glioblastoma cell culture resource: validated cell models representing all molecular subtypes. EBioMedicine. 2015;2(10):1351–1363. PubMed PMC
Rosenberg S, Verreault M, Schmitt C, Guegan J, Guehennec J, Levasseur C, et al. Multi‐omics analysis of primary glioblastoma cell lines shows recapitulation of pivotal molecular features of parental tumors. Neuro Oncol. 2017;19(2):219–228. PubMed PMC
Schindelin J, Arganda‐Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open‐source platform for biological‐image analysis. Nat Methods. 2012;9(7):676–682. PubMed PMC
Busek P, Stremenova J, Sromova L, Hilser M, Balaziova E, Kosek D, et al. Dipeptidyl peptidase‐IV inhibits glioma cell growth independent of its enzymatic activity. Int J Biochem Cell Biol. 2012;44(5):738–747. PubMed