RNA-seq Characterization of Melanoma Phenotype Switch in 3D Collagen after p38 MAPK Inhibitor Treatment
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33802847
PubMed Central
PMC8002814
DOI
10.3390/biom11030449
PII: biom11030449
Knihovny.cz E-zdroje
- Klíčová slova
- amoeboid invasion, cancer, melanoma, metastasis, phenotype switch,
- MeSH
- buněčná diferenciace účinky léků genetika MeSH
- fenotyp MeSH
- genová ontologie MeSH
- imidazoly farmakologie MeSH
- inhibitory proteinkinas farmakologie MeSH
- kolagen metabolismus MeSH
- lidé MeSH
- melanom genetika patologie MeSH
- mitogenem aktivované proteinkinasy p38 antagonisté a inhibitory metabolismus MeSH
- nádorové buněčné linie MeSH
- nádorové mikroprostředí účinky léků genetika MeSH
- naftaleny farmakologie MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- proliferace buněk účinky léků genetika MeSH
- pyrazoly farmakologie MeSH
- pyridiny farmakologie MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- sekvenování transkriptomu metody MeSH
- stanovení celkové genové exprese metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)imidazole MeSH Prohlížeč
- doramapimod MeSH Prohlížeč
- imidazoly MeSH
- inhibitory proteinkinas MeSH
- kolagen MeSH
- mitogenem aktivované proteinkinasy p38 MeSH
- naftaleny MeSH
- pyrazoly MeSH
- pyridiny MeSH
Melanoma phenotype plasticity underlies tumour dissemination and resistance to therapy, yet its regulation is incompletely understood. In vivo switching between a more differentiated, proliferative phenotype and a dedifferentiated, invasive phenotype is directed by the tumour microenvironment. We found that treatment of partially dedifferentiated, invasive A375M2 cells with two structurally unrelated p38 MAPK inhibitors, SB2021920 and BIRB796, induces a phenotype switch in 3D collagen, as documented by increased expression of melanocyte differentiation markers and a loss of invasive phenotype markers. The phenotype is accompanied by morphological change corresponding to amoeboid-mesenchymal transition. We performed RNA sequencing with an Illumina HiSeq platform to fully characterise transcriptome changes underlying the switch. Gene expression results obtained with RNA-seq were validated by comparing them with RT-qPCR. Transcriptomic data generated in the study will extend the present understanding of phenotype plasticity in melanoma and its contribution to invasion and metastasis.
Department of Biology Faculty of Medicine Masaryk University Kamenice 5 625 00 Brno Czech Republic
Department of Cell Biology Charles University Viničná 7 128 44 Prague Czech Republic
Zobrazit více v PubMed
Rambow F., Marine J.-C., Goding C.R. Melanoma plasticity and phenotypic diversity: Therapeutic barriers and opportunities. Genes Dev. 2019;33:1295–1318. doi: 10.1101/gad.329771.119. PubMed DOI PMC
Goding C.R., Arnheiter H. Mitf—the First 25 Years. Genes Dev. 2019;33:983–1007. doi: 10.1101/gad.324657.119. PubMed DOI PMC
Hartman M.L., Czyz M. MITF in melanoma: Mechanisms behind its expression and activity. Cell. Mol. Life Sci. 2015;72:1249–1260. doi: 10.1007/s00018-014-1791-0. PubMed DOI PMC
Kim J.-H., Hong A.-R., Kim Y.-H., Yoo H., Kang S.-W., Chang S.E., Song Y. JNK suppresses melanogenesis by interfering with CREB-regulated transcription coactivator 3-dependent MITF expression. Theranostics. 2020;10:4017–4029. doi: 10.7150/thno.41502. PubMed DOI PMC
Falletta P., Sanchez-Del-Campo L., Chauhan J., Effern M., Kenyon A., Kershaw C.J., Siddaway R., Lisle R.J., Freter R., Daniels M.J., et al. Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma. Genes Dev. 2017;31:18–33. doi: 10.1101/gad.290940.116. PubMed DOI PMC
Buscà R., Bertolotto C., Abbe P., Englaro W., Ishizaki T., Narumiya S., Boquet P., Ortonne J.P., Ballotti R. Inhibition of rho is required for CAMP-induced melanoma cell differentiation. Mol. Biol. Cell. 1998;9:1367–1378. doi: 10.1091/mbc.9.6.1367. PubMed DOI PMC
Hoek K.S., Schlegel N.C., Brafford P., Sucker A., Ugurel S., Kumar R., Weber B.L., Nathanson K.L., Phillips D.J., Herlyn M., et al. Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment. Cell Res. 2006;19:290–302. doi: 10.1111/j.1600-0749.2006.00322.x. PubMed DOI
Vivas-García Y., Falletta P., Liebing J., Louphrasitthiphol P., Feng Y., Chauhan J., Scott D.A., Glodde N., Chocarro-Calvo A., Bonham S., et al. Lineage-restricted regulation of SCD and fatty acid saturation by MITF controls melanoma phenotypic plasticity. Mol. Cell. 2020;77:120–137.e9. doi: 10.1016/j.molcel.2019.10.014. PubMed DOI PMC
Misek S.A., Appleton K.M., Dexheimer T.S., Lisabeth E.M., Lo R.S., Larsen S.D., Gallo K.A., Neubig R.R. Rho-mediated signaling promotes BRAF inhibitor resistance in de-differentiated melanoma cells. Oncogene. 2020;39:1466–1483. doi: 10.1038/s41388-019-1074-1. PubMed DOI PMC
Konieczkowski D.J., Johannessen C.M., Abudayyeh O., Kim J.W., Cooper Z.A., Piris A., Frederick D.T., Barzily-Rokni M., Straussman R., Haq R., et al. A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discov. 2014;4:816–827. doi: 10.1158/2159-8290.CD-13-0424. PubMed DOI PMC
Verfaillie A., Imrichova H., Atak Z.K., Dewaele M., Rambow F., Hulselmans G., Christiaens V., Svetlichnyy D., Luciani F., Van Der Mooter L.L., et al. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nat. Commun. 2015;6:6683. doi: 10.1038/ncomms7683. PubMed DOI PMC
Kholmanskikh O., Van Baren N., Brasseur F., Ottaviani S., Vanacker J., Arts N., Van Der Bruggen P., Coulie P., De Plaen E. Interleukins 1α and 1β secreted by some melanoma cell lines strongly reduce expression of MITF-M and melanocyte differentiation antigens. Int. J. Cancer. 2010;127:1625–1636. doi: 10.1002/ijc.25182. PubMed DOI
Miskolczi Z., Smith M.P., Rowling E.J., Ferguson J., Barriuso J., Wellbrock C. Collagen abundance controls melanoma phenotypes through lineage-specific microenvironment sensing. Oncogene. 2018;37:3166–3182. doi: 10.1038/s41388-018-0209-0. PubMed DOI PMC
Strub T., Kobi D., Koludrovic D., Davidson I. In: Research on Melanoma—A Glimpse into Current Directions and Future Trends. Murph M., editor. IntechOpen; London, UK: 2011.
Thurber A., Douglas G., Sturm E., Zabierowski S., Smit D., Ramakrishnan S., Hacker E., Leonard J., Herlyn M., Sturm R. Inverse expression states of the BRN2 and MITF transcription factors in melanoma spheres and tumour xenografts regulate the NOTCH pathway. Oncogene. 2011;30:3036–3048. doi: 10.1038/onc.2011.33. PubMed DOI PMC
O’Connell M.P., Marchbank K., Webster M.R., Valiga A.A., Kaur A., Vultur A., Li L., Herlyn M., Villanueva J., Liu Q., et al. Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2. Cancer Discov. 2013;3:1378–1393. doi: 10.1158/2159-8290.CD-13-0005. PubMed DOI PMC
Landsberg J., Kohlmeyer J., Renn M., Bald T., Rogava M., Cron M., Fatho M., Lennerz V., Wölfel T., Hölzel M., et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature. 2012;490:412–416. doi: 10.1038/nature11538. PubMed DOI
Mehta A., Kim Y.J., Robert L., Tsoi J., Comin-Anduix B., Berent-Maoz B., Cochran A.J., Economou J.S., Tumeh P.C., Puig-Saus C., et al. Immunotherapy resistance by inflammation-induced dedifferentiation. Cancer Discov. 2018;8:935–943. doi: 10.1158/2159-8290.CD-17-1178. PubMed DOI PMC
Müller J., Krijgsman O., Tsoi J., Robert L., Hugo W., Song C., Kong X., Possik P.A., Cornelissen-Steijger P.D.M., Foppen M.H.G., et al. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat. Commun. 2014;5:5712. doi: 10.1038/ncomms6712. PubMed DOI PMC
Kozar I., Margue C., Rothengatter S., Haan C., Kreis S. Many ways to resistance: How melanoma cells evade targeted therapies. Biochim. Biophys. Acta Rev. Cancer. 2019;1871:313–322. doi: 10.1016/j.bbcan.2019.02.002. PubMed DOI
Arozarena I., Wellbrock C. Phenotype plasticity as enabler of melanoma progression and therapy resistance. Nat. Rev. Cancer. 2019;19:377–391. doi: 10.1038/s41568-019-0154-4. PubMed DOI
Moustakas A., Heldin C.H. Non-smad TGF-β signals. J. Cell Sci. 2005;118:3573–3584. doi: 10.1242/jcs.02554. PubMed DOI
Moustakas A., Heldin C.-H. Dynamic control of TGF-β signaling and its links to the cytoskeleton. FEBS Lett. 2008;582:2051–2065. doi: 10.1016/j.febslet.2008.03.027. PubMed DOI
Kim J.-G., Islam R., Cho J.Y., Jeong H., Cap K.-C., Park Y., Hossain A.J., Park J.-B. Regulation of RhoA GTPase and various transcription factors in the RhoA pathway. J. Cell. Physiol. 2018;233:6381–6392. doi: 10.1002/jcp.26487. PubMed DOI
Lin C., Yao E., Zhang K., Jiang X., Croll S., Thompson-Peer K., Chuang P.-T. YAP is essential for mechanical force production and epithelial cell proliferation during lung branching morphogenesis. eLife. 2017;6:e21130. doi: 10.7554/eLife.21130. PubMed DOI PMC
Edwards D.N., Ngwa V.M., Wang S., Shiuan E., Brantley-Sieders D.M., Kim L.C., Reynolds A.B., Chen J. The receptor tyrosine kinase EphA2 promotes glutamine metabolism in tumors by activating the transcriptional coactivators YAP and TAZ. Sci. Signal. 2017;10:eaan4667. doi: 10.1126/scisignal.aan4667. PubMed DOI PMC
Srivastava S., Pang K.M., Iida M., Nelson M.S., Liu J., Nam A., Wang J., Mambetsariev I., Pillai R., Mohanty A., et al. Activation of EPHA2-ROBO1 heterodimer by SLIT2 attenuates non-canonical signaling and proliferation in squamous cell carcinomas. iScience. 2020;23:101692. doi: 10.1016/j.isci.2020.101692. PubMed DOI PMC
Malik A., Kanneganti T.-D. Function and regulation of IL-1α in inflammatory diseases and cancer. Immunol. Rev. 2018;281:124–137. doi: 10.1111/imr.12615. PubMed DOI PMC
Paňková D., Jobe N., Kratochvílová M., Buccione R., Brábek J., Rösel D. NG2-mediated Rho activation promotes amoeboid invasiveness of cancer cells. Eur. J. Cell Biol. 2012;91:969–977. doi: 10.1016/j.ejcb.2012.05.001. PubMed DOI
Vaškovičová K., Szabadosová E., Čermák V., Gandalovičová A., Kasalová L., Rösel D., Brábek J. PKCα promotes the mesenchymal to amoeboid transition and increases cancer cell invasiveness. BMC Cancer. 2015;15:326. doi: 10.1186/s12885-015-1347-1. PubMed DOI PMC
Dovas A., Yoneda A., Couchman J.R. PKC-α-dependent activation of RhoA by syndecan-4 during focal adhension formation. J. Cell Sci. 2006;119:2837–2846. doi: 10.1242/jcs.03020. PubMed DOI
Riesenberg S., Groetchen A., Siddaway R., Bald T., Reinhardt J., Smorra D., Kohlmeyer J., Renn M., Phung B., Aymans P., et al. MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment. Nat. Commun. 2015;6:8755. doi: 10.1038/ncomms9755. PubMed DOI PMC
Arts N., Cané S., Hennequart M., Lamy J., Bommer G., Van Den Eynde B., De Plaen E. microRNA-155, Induced by interleukin-1ß, represses the expression of microphthalmia-associated transcription factor (MITF-M) in melanoma cells. PLoS ONE. 2015;10:e0122517. doi: 10.1371/journal.pone.0122517. PubMed DOI PMC
Soustek M.S., Balsa E., Barrow J.J., Jedrychowski M., Vogel R., Gygi S.P., Puigserver P. Inhibition of the ER stress IRE1α inflammatory pathway protects against cell death in mitochondrial complex I mutant cells. Cell Death Dis. 2018;9:658. doi: 10.1038/s41419-018-0696-5. PubMed DOI PMC
Chaudhari N., Talwar P., Parimisetty A., d’Hellencourt C.L., Ravanan P. A molecular web: Endoplasmic reticulum stress, inflammation, and oxidative stress. Front. Cell. Neurosci. 2014;8:213. doi: 10.3389/fncel.2014.00213. PubMed DOI PMC
Ju R.J., Stehbens S.J., Haass N.K. The role of melanoma cell-stroma interaction in cell motility, invasion, and metastasis. Front. Med. 2018;5:5. doi: 10.3389/fmed.2018.00307. PubMed DOI PMC
Paňková K., Rösel D., Novotný M., Brábek J. The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell. Mol. Life Sci. 2009;67:63–71. doi: 10.1007/s00018-009-0132-1. PubMed DOI PMC
Kosla J., Paňková D., Plachý J., Tolde O., Bicanová K., Dvořák M., Rösel D., Brábek J. Metastasis of aggressive amoeboid sarcoma cells is dependent on Rho/ROCK/MLC signaling. Cell Commun. Signal. 2013;11:51. doi: 10.1186/1478-811X-11-51. PubMed DOI PMC
Micuda S., Rösel D., Ryska A., Brábek J. ROCK inhibitors as emerging therapeutic candidates for sarcomas. Curr. Cancer Drug Targets. 2010;10:127–134. doi: 10.2174/156800910791054202. PubMed DOI
Voller J., Zahajská L., Plíhalová L., Jeřábková J., Burget D., Pataki A.C., Kryštof V., Zatloukal M., Brábek J., Rösel D., et al. 6-substituted purines as ROCK inhibitors with anti-metastatic activity. Bioorg. Chem. 2019;90:103005. doi: 10.1016/j.bioorg.2019.103005. PubMed DOI
Cantelli G., Orgaz J.L., Rodriguez-Hernandez I., Karagiannis P., Maiques O., Matias-Guiu X., Nestle F.O., Marti R.M., Karagiannis S.N., Sanz-Moreno V. TGF-β-induced transcription sustains amoeboid melanoma migration and dissemination. Curr. Biol. 2015;25:2899–2914. doi: 10.1016/j.cub.2015.09.054. PubMed DOI PMC
Georgouli M., Herraiz C., Crosas-Molist E., Fanshawe B., Maiques O., Perdrix A., Pandya P., Rodriguez-Hernandez I., Ilieva K.M., Cantelli G., et al. Regional activation of myosin II in cancer cells drives tumor progression via a secretory cross-talk with the immune microenvironment. Cell. 2019;176:757–774.e23. doi: 10.1016/j.cell.2018.12.038. PubMed DOI PMC
Merta L., Gandalovičová A., Čermák V., Dibus M., Gutschner T., Diederichs S., Rösel D., Brábek J. Increased level of long non-coding RNA MALAT1 is a common feature of amoeboid invasion. Cancers. 2020;12:1136. doi: 10.3390/cancers12051136. PubMed DOI PMC
Sanz-Moreno V., Gaggioli C., Yeo M., Albrengues J., Wallberg F., Viros A., Hooper S., Mitter R., Féral C.C., Cook M., et al. ROCK and JAK1 signaling cooperate to control actomyosin contractility in tumor cells and stroma. Cancer Cell. 2011;20:229–245. doi: 10.1016/j.ccr.2011.06.018. PubMed DOI
Sanz-Moreno V., Gadea G., Ahn J., Paterson H., Marra P., Pinner S., Sahai E., Marshall C.J. Rac activation and inactivation control plasticity of tumor cell movement. Cell. 2008;135:510–523. doi: 10.1016/j.cell.2008.09.043. PubMed DOI
Karaman M.W., Herrgard S., Treiber D.K., Gallant P., Atteridge C.E., Campbell B.T., Chan K.W., Ciceri P., Davis M.I., Edeen P.T., et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 2008;26:127–132. doi: 10.1038/nbt1358. PubMed DOI
Bain J., Plater L., Elliott M., Shpiro N., Hastie C.J., Mclauchlan H., Klevernic I., Arthur J.S.C., Alessi D.R., Cohen P. The selectivity of protein kinase inhibitors: A further update. Biochem. J. 2007;408:297–315. doi: 10.1042/BJ20070797. PubMed DOI PMC
Palušová V., Renzová T., Verlande A., Vaclová T., Medková M., Cetlová L., Sedláčková M., Hříbková H., Slaninová I., Krutá M., et al. Dual targeting of BRAF and mTOR signaling in melanoma cells with pyridinyl imidazole compounds. Cancers. 2020;12:1516. doi: 10.3390/cancers12061516. PubMed DOI PMC
Yang C., Zhu Z., Tong B.C.-K., Iyaswamy A., Xie W.-J., Zhu Y., Sreenivasmurthy S.G., Senthilkumar K., Cheung K.-H., Song J.-X., et al. A stress response P38 MAP kinase inhibitor SB202190 promoted TFEB/TFE3-dependent autophagy and lysosomal biogenesis independent of P38. Redox Biol. 2020;32:101445. doi: 10.1016/j.redox.2020.101445. PubMed DOI PMC
Čermák V., Škarková A., Merta L., Rösel D., Brábek J. Melanoma Phenotype Switch in 3D Collagen After P38 MAPK Inhibitor Treatment. [(accessed on 7 March 2021)]; doi: 10.6084/m9.figshare.c.5215253. Available online: PubMed DOI PMC
Hemesath T.J., Steingrímsson E., McGill G., Hansen M.J., Vaught J., Hodgkinson C.A., Arnheiter H., Copeland N.G., Jenkins N.A., Fisher D.E. Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev. 1994;8:2770–2780. doi: 10.1101/gad.8.22.2770. PubMed DOI
Martina J.A., Puertollano R. Rag GTPases mediate amino acid–dependent recruitment of TFEB and MITF to lysosomes. J. Cell Biol. 2013;200:475–491. doi: 10.1083/jcb.201209135. PubMed DOI PMC
Amae S., Fuse N., Yasumoto K.I., Sato S., Yajima I., Yamamoto H., Udono T., Durlu Y.K., Tamai M., Takahashi K., et al. Identification of a novel isoform of microphthalmia-associated transcription factor that is enriched in retinal pigment epithelium. Biochem. Biophys. Res. Commun. 1998;247:710–715. doi: 10.1006/bbrc.1998.8838. PubMed DOI
Yasumoto K., Takeda K., Saito H., Watanabe K., Takahashi K., Shibahara S. Microphthalmia-associated transcription factor interacts with LEF-1, a mediator of Wnt signaling. EMBO J. 2002;21:2703–2714. doi: 10.1093/emboj/21.11.2703. PubMed DOI PMC
Čermák V., Gandalovičová A., Merta L., Harant K., Rösel D., Brábek J. High-throughput transcriptomic and proteomic profiling of mesenchymal-amoeboid transition in 3D collagen. Sci. Data. 2020;7:1–11. doi: 10.1038/s41597-020-0499-2. PubMed DOI PMC
Clark E.A., Golub T.R., Lander E.S., Hynes R.O. Genomic analysis of metastasis reveals an essential role for RhoC. Nature. 2000;406:532–535. doi: 10.1038/35020106. PubMed DOI
Kozlowski J.M., Fidler I.J., Hanna N., Hart I.R. A human melanoma line heterogeneous with respect to metastatic capacity in athymic nude mice. J. Natl. Cancer Inst. 1984;72:913–917. doi: 10.1093/jnci/72.4.913. PubMed DOI
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12. doi: 10.14806/ej.17.1.200. DOI
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Čermák V., Gandalovičová A., Merta L., Rösel D., Brábek J. RNA-Seq Of Human Melanoma Cell Line A375m2 Treated with SB202190 or BIRB796 against DMSO-Treated Controls. [(accessed on 28 November 2020)]; Available online: https://identifiers.org/arrayexpress:E-MTAB-9273.
Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:0034. doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC
Perkins J.R., Dawes J.M., McMahon S.B., Bennett D.L.H., Orengo C., Kohl M. ReadqPCR and NormqPCR: R packages for the reading, quality checking and normalisation of RT-QPCR quantification cycle (Cq) data. BMC Genom. 2012;13:296. doi: 10.1186/1471-2164-13-296. PubMed DOI PMC
Benjamini Y., Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI
Čermák V., Gandalovičová A., Merta L., Fučíková J., Špíšek R., Rösel D., Brábek J. RNA-seq of macrophages of amoeboid or mesenchymal migratory phenotype due to specific structure of environment. Sci. Data. 2018;5:180198. doi: 10.1038/sdata.2018.198. PubMed DOI PMC
Kuleshov M.V., Jones M.R., Rouillard A.D., Fernandez N.F., Duan Q., Wang Z., Koplev S., Jenkins S.L., Jagodnik K.M., Lachmann A., et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–W97. doi: 10.1093/nar/gkw377. PubMed DOI PMC
Folberg R., Arbieva Z., Moses J., Hayee A., Sandal T., Kadkol S.H., Lin A.Y., Valyi-Nagy K., Setty S., Leach L., et al. Tumor cell plasticity in uveal melanoma: Microenvironment directed dampening of the invasive and metastatic genotype and phenotype accompanies the generation of vasculogenic mimicry patterns. Am. J. Pathol. 2006;169:1376–1389. doi: 10.2353/ajpath.2006.060223. PubMed DOI PMC
Molbiotools Multiple List Comparator. [(accessed on 4 March 2021)]; Available online: http://www.molbiotools.com/listcompare.html.
Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. [(accessed on 21 November 2020)]; Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Widmer D.S., Cheng P.F., Eichhoff O.M., Belloni B.C., Zipser M.C., Schlegel N.C., Javelaud D., Mauviel A., Dummer R., Hoek K.S. Systematic classification of melanoma cells by phenotype-specific gene expression mapping. Pigment. Cell Melanoma Res. 2012;25:343–353. doi: 10.1111/j.1755-148X.2012.00986.x. PubMed DOI
Han H., Cho J.-W., Lee S.-Y., Yun A., Kim H., Bae D., Yang S., Kim C.Y., Lee M., Kim E., et al. TRRUST v2: An expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018;46:D380–D386. doi: 10.1093/nar/gkx1013. PubMed DOI PMC
Tirosh I., Izar B., Prakadan S.M., Wadsworth M.H., Treacy D., Trombetta J.J., Rotem A., Rodman C., Lian C., Murphy G., et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-Seq. Science. 2016;352:189–196. doi: 10.1126/science.aad0501. PubMed DOI PMC
Jeffs A.R., Glover A.C., Slobbe L.J., Wang L., He S., Hazlett J.A., Awasthi A., Woolley A.G., Marshall E.S., Joseph W.R., et al. A gene expression signature of invasive potential in metastatic melanoma cells. PLoS ONE. 2009;4:e8461. doi: 10.1371/journal.pone.0008461. PubMed DOI PMC
Rodriguez-Hernandez I., Maiques O., Kohlhammer L., Cantelli G., Perdrix-Rosell A., Monger J., Fanshawe B., Bridgeman V.L., Karagiannis S.N., Penin R.M., et al. WNT11-FZD7-DAAM1 signalling supports tumour initiating abilities and melanoma amoeboid invasion. Nat. Commun. 2020;11:1–20. doi: 10.1038/s41467-020-18951-2. PubMed DOI PMC
Arozarena I., Bischof H., Gilby D., Belloni B., Dummer R., Wellbrock C. In melanoma, beta-catenin is a suppressor of invasion. Oncogene. 2011;30:4531–4543. doi: 10.1038/onc.2011.162. PubMed DOI PMC
Parri M., Taddei M.L., Bianchini F., Calorini L., Chiarugi P. EphA2 reexpression prompts invasion of melanoma cells shifting from mesenchymal to amoeboid-like motility style. Cancer Res. 2009;69:2072–2081. doi: 10.1158/0008-5472.CAN-08-1845. PubMed DOI
Microtubule-associated NAV3 regulates invasive phenotypes in glioblastoma cells