Dual Targeting of BRAF and mTOR Signaling in Melanoma Cells with Pyridinyl Imidazole Compounds
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000868
European Regional Development Fund
MUNI/A/1087/2018
Masarykova Univerzita
18-01396S
Grantová Agentura České Republiky
NV19-08-00450
Ministerstvo Zdravotnictví Ceské Republiky
CIISB - LM2018127
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015062
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32531927
PubMed Central
PMC7352453
DOI
10.3390/cancers12061516
PII: cancers12061516
Knihovny.cz E-zdroje
- Klíčová slova
- BRAF V600E, BRAF inhibitor, ER stress, endosome, lysosome, mTORC1, melanoma, pyridinyl imidazole, small molecule drug,
- Publikační typ
- časopisecké články MeSH
BRAF inhibitors can delay the progression of metastatic melanoma, but resistance usually emerges, leading to relapse. Drugs simultaneously targeting two or more pathways essential for cancer growth could slow or prevent the development of resistant clones. Here, we identified pyridinyl imidazole compounds SB202190, SB203580, and SB590885 as dual inhibitors of critical proliferative pathways in human melanoma cells bearing the V600E activating mutation of BRAF kinase. We found that the drugs simultaneously disrupt the BRAF V600E-driven extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) activity and the mechanistic target of rapamycin complex 1 (mTORC1) signaling in melanoma cells. Pyridinyl imidazole compounds directly inhibit BRAF V600E kinase. Moreover, they interfere with the endolysosomal compartment, promoting the accumulation of large acidic vacuole-like vesicles and dynamic changes in mTOR signaling. A transient increase in mTORC1 activity is followed by the enrichment of the Ragulator complex protein p18/LAMTOR1 at contact sites of large vesicles and delocalization of mTOR from the lysosomes. The induced disruption of the endolysosomal pathway not only disrupts mTORC1 signaling, but also renders melanoma cells sensitive to endoplasmic reticulum (ER) stress. Our findings identify new activities of pharmacologically relevant small molecule compounds and provide a biological rationale for the development of anti-melanoma therapeutics based on the pyridinyl imidazole core.
Zobrazit více v PubMed
Miller A.J., Mihm M.C., Jr. Melanoma. N. Engl. J. Med. 2006;355:51–65. doi: 10.1056/NEJMra052166. PubMed DOI
Berger M.F., Hodis E., Heffernan T.P., Deribe Y.L., Lawrence M.S., Protopopov A., Ivanova E., Watson I.R., Nickerson E., Ghosh P., et al. Melanoma Genome Sequencing Reveals Frequent PREX2 Mutations. Nature. 2012;485:502–506. doi: 10.1038/nature11071. PubMed DOI PMC
Watson M., Holman D.M., Maguire-Eisen M. Ultraviolet Radiation Exposure and Its Impact on Skin Cancer Risk. Semin. Oncol. Nurs. 2016;32:241–254. doi: 10.1016/j.soncn.2016.05.005. PubMed DOI PMC
Dahl C., Guldberg P. The Genome and Epigenome of Malignant Melanoma. APMIS Acta Pathol. Microbiol. Immunol. Scand. 2007;115:1161–1176. doi: 10.1111/j.1600-0463.2007.apm_855.xml.x. PubMed DOI
Fecher L.A., Amaravadi R.K., Flaherty K.T. The MAPK Pathway in Melanoma. Curr. Opin. Oncol. 2008;20:183–189. doi: 10.1097/CCO.0b013e3282f5271c. PubMed DOI
Agianian B., Gavathiotis E. Current Insights of BRAF Inhibitors in Cancer. J. Med. Chem. 2018;61:5775–5793. doi: 10.1021/acs.jmedchem.7b01306. PubMed DOI
Sánchez-Hernández I., Baquero P., Calleros L., Chiloeches A. Dual Inhibition of V600EBRAF and the PI3K/AKT/MTOR Pathway Cooperates to Induce Apoptosis in Melanoma Cells through a MEK-Independent Mechanism. Cancer Lett. 2012;314:244–255. doi: 10.1016/j.canlet.2011.09.037. PubMed DOI
Samatar A.A., Poulikakos P.I. Targeting RAS–ERK Signalling in Cancer: Promises and Challenges. Nat. Rev. Drug Discov. 2014;13:928–942. doi: 10.1038/nrd4281. PubMed DOI
Greger J.G., Eastman S.D., Zhang V., Bleam M.R., Hughes A.M., Smitheman K.N., Dickerson S.H., Laquerre S.G., Liu L., Gilmer T.M. Combinations of BRAF, MEK, and PI3K/MTOR Inhibitors Overcome Acquired Resistance to the BRAF Inhibitor GSK2118436 Dabrafenib, Mediated by NRAS or MEK Mutations. Mol. Cancer Ther. 2012;11:909–920. doi: 10.1158/1535-7163.MCT-11-0989. PubMed DOI
Wei B.-R., Michael H.T., Halsey C.H.C., Peer C.J., Adhikari A., Dwyer J.E., Hoover S.B., El Meskini R., Kozlov S., Weaver Ohler Z., et al. Synergistic Targeted Inhibition of MEK and Dual PI3K/MTOR Diminishes Viability and Inhibits Tumor Growth of Canine Melanoma Underscoring Its Utility as a Preclinical Model for Human Mucosal Melanoma. Pigment Cell Melanoma Res. 2016;29:643–655. doi: 10.1111/pcmr.12512. PubMed DOI PMC
Deuker M.M., McMahon M. Rational Targeting of BRAF and PI3-Kinase Signaling for Melanoma Therapy. Mol. Cell. Oncol. 2016;3:e1033095. doi: 10.1080/23723556.2015.1033095. PubMed DOI PMC
Dibble C.C., Cantley L.C. Regulation of MTORC1 by PI3K Signaling. Trends Cell. Biol. 2015;25:545–555. doi: 10.1016/j.tcb.2015.06.002. PubMed DOI PMC
Saxton R.A., Sabatini D.M. MTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017;168:960–976. doi: 10.1016/j.cell.2017.02.004. PubMed DOI PMC
Kim J., Guan K.-L. MTOR as a Central Hub of Nutrient Signalling and Cell Growth. Nat. Cell Biol. 2019;21:63–71. doi: 10.1038/s41556-018-0205-1. PubMed DOI
Buerger C., DeVries B., Stambolic V. Localization of Rheb to the Endomembrane Is Critical for Its Signaling Function. Biochem. Biophys. Res. Commun. 2006;344:869–880. doi: 10.1016/j.bbrc.2006.03.220. PubMed DOI
Tee A.R., Manning B.D., Roux P.P., Cantley L.C., Blenis J. Tuberous Sclerosis Complex Gene Products, Tuberin and Hamartin, Control MTOR Signaling by Acting as a GTPase-Activating Protein Complex toward Rheb. Curr. Biol. 2003;13:1259–1268. doi: 10.1016/S0960-9822(03)00506-2. PubMed DOI
Inoki K., Li Y., Xu T., Guan K.-L. Rheb GTPase Is a Direct Target of TSC2 GAP Activity and Regulates MTOR Signaling. Genes Dev. 2003;17:1829–1834. doi: 10.1101/gad.1110003. PubMed DOI PMC
Demetriades C., Plescher M., Teleman A.A. Lysosomal Recruitment of TSC2 Is a Universal Response to Cellular Stress. Nat. Commun. 2016;7:10662. doi: 10.1038/ncomms10662. PubMed DOI PMC
Bar-Peled L., Schweitzer L.D., Zoncu R., Sabatini D.M. Ragulator Is a GEF for the Rag GTPases That Signal Amino Acid Levels to MTORC1. Cell. 2012;150:1196–1208. doi: 10.1016/j.cell.2012.07.032. PubMed DOI PMC
Sancak Y., Bar-Peled L., Zoncu R., Markhard A.L., Nada S., Sabatini D.M. Ragulator-Rag Complex Targets MTORC1 to the Lysosomal Surface and Is Necessary for Its Activation by Amino Acids. Cell. 2010;141:290–303. doi: 10.1016/j.cell.2010.02.024. PubMed DOI PMC
Sekiguchi T., Hirose E., Nakashima N., Ii M., Nishimoto T. Novel G Proteins, Rag C and Rag D, Interact with GTP-Binding Proteins, Rag A and Rag, B. J. Biol. Chem. 2001;276:7246–7257. doi: 10.1074/jbc.M004389200. PubMed DOI
Sancak Y., Peterson T.R., Shaul Y.D., Lindquist R.A., Thoreen C.C., Bar-Peled L., Sabatini D.M. The Rag GTPases Bind Raptor and Mediate Amino Acid Signaling to MTORC1. Science. 2008;320:1496–1501. doi: 10.1126/science.1157535. PubMed DOI PMC
Zoncu R., Bar-Peled L., Efeyan A., Wang S., Sancak Y., Sabatini D.M. MTORC1 Senses Lysosomal Amino Acids Through an Inside-Out Mechanism That Requires the Vacuolar H+-ATPase. Science. 2011;334:678–683. doi: 10.1126/science.1207056. PubMed DOI PMC
Bar-Peled L., Sabatini D.M. Regulation of MTORC1 by Amino Acids. Trends Cell. Biol. 2014;24:400–406. doi: 10.1016/j.tcb.2014.03.003. PubMed DOI PMC
Wolfson R.L., Sabatini D.M. The Dawn of the Age of Amino Acid Sensors for the MTORC1 Pathway. Cell Metab. 2017;26:301–309. doi: 10.1016/j.cmet.2017.07.001. PubMed DOI PMC
Saini K.S., Loi S., de Azambuja E., Metzger-Filho O., Saini M.L., Ignatiadis M., Dancey J.E., Piccart-Gebhart M.J. Targeting the PI3K/AKT/MTOR and Raf/MEK/ERK Pathways in the Treatment of Breast Cancer. Cancer Treat. Rev. 2013;39:935–946. doi: 10.1016/j.ctrv.2013.03.009. PubMed DOI
Argast G.M., Fausto N., Campbell J.S. Inhibition of RIP2/RICK/CARDIAK Activity by Pyridinyl Imidazole Inhibitors of P38 MAPK. Mol. Cell. Biochem. 2005;268:129–140. doi: 10.1007/s11010-005-3701-0. PubMed DOI
Bain J., Plater L., Elliott M., Shpiro N., Hastie C.J., Mclauchlan H., Klevernic I., Arthur J.S.C., Alessi D.R., Cohen P. The Selectivity of Protein Kinase Inhibitors: A Further Update. Biochem. J. 2007;408:297–315. doi: 10.1042/BJ20070797. PubMed DOI PMC
Bellei B., Pitisci A., Migliano E., Cardinali G., Picardo M. Pyridinyl Imidazole Compounds Interfere with Melanosomes Sorting through the Inhibition of Cyclin G-Associated Kinase, a Regulator of Cathepsins Maturation. Cell. Signal. 2014;26:716–723. doi: 10.1016/j.cellsig.2013.12.023. PubMed DOI
Menon M.B., Dhamija S., Kotlyarov A., Gaestel M. The Problem of Pyridinyl Imidazole Class Inhibitors of MAPK14/P38α and MAPK11/P38β in Autophagy Research. Autophagy. 2015;11:1425–1427. doi: 10.1080/15548627.2015.1059562. PubMed DOI PMC
Kalmes A., Deou J., Clowes A.W., Daum G. Raf-1 Is Activated by the P38 Mitogen-Activated Protein Kinase Inhibitor, SB203580. FEBS Lett. 1998;444:71–74. doi: 10.1016/S0014-5793(99)00034-4. PubMed DOI
Henklova P., Vrzal R., Papouskova B., Bednar P., Jancova P., Anzenbacherova E., Ulrichova J., Maurel P., Pavek P., Dvorak Z. SB203580, a Pharmacological Inhibitor of P38 MAP Kinase Transduction Pathway Activates ERK and JNK MAP Kinases in Primary Cultures of Human Hepatocytes. Eur. J. Pharmacol. 2008;593:16–23. doi: 10.1016/j.ejphar.2008.07.007. PubMed DOI
New L., Li Y., Ge B., Zhong H., Mansbridge J., Liu K., Han J. SB203580 Promote EGF-Stimulated Early Morphological Differentiation in PC12 Cell through Activating ERK Pathway. J. Cell. Biochem. 2001;83:585–596. doi: 10.1002/jcb.1253. PubMed DOI
Lavoie H., Thevakumaran N., Gavory G., Li J.J., Padeganeh A., Guiral S., Duchaine J., Mao D.Y.L., Bouvier M., Sicheri F., et al. Inhibitors That Stabilize a Closed RAF Kinase Domain Conformation Induce Dimerization. Nat. Chem. Biol. 2013;9:428–436. doi: 10.1038/nchembio.1257. PubMed DOI PMC
Gudernova I., Foldynova-Trantirkova S., El Ghannamova B., Fafilek B., Varecha M., Balek L., Hruba E., Jonatova L., Jelinkova I., Bosakova M.K., et al. One Reporter for In-Cell Activity Profiling of Majority of Protein Kinase Oncogenes. Elife. 2017;6:e21536. doi: 10.7554/eLife.21536. PubMed DOI PMC
King A.J., Patrick D.R., Batorsky R.S., Ho M.L., Do H.T., Zhang S.Y., Kumar R., Rusnak D.W., Takle A.K., Wilson D.M., et al. Demonstration of a Genetic Therapeutic Index for Tumors Expressing Oncogenic BRAF by the Kinase Inhibitor SB-590885. Cancer Res. 2006;66:11100–11105. doi: 10.1158/0008-5472.CAN-06-2554. PubMed DOI
Menon M.B., Kotlyarov A., Gaestel M. SB202190-Induced Cell Type-Specific Vacuole Formation and Defective Autophagy Do Not Depend on P38 MAP Kinase Inhibition. PLoS ONE. 2011;6:e23054. doi: 10.1371/journal.pone.0023054. PubMed DOI PMC
Doherty G.J., McMahon H.T. Mechanisms of Endocytosis. Annu. Rev. Biochem. 2009;78:857–902. doi: 10.1146/annurev.biochem.78.081307.110540. PubMed DOI
Jefferies H.B.J., Cooke F.T., Jat P., Boucheron C., Koizumi T., Hayakawa M., Kaizawa H., Ohishi T., Workman P., Waterfield M.D., et al. A Selective PIKfyve Inhibitor Blocks PtdIns(3,5)P2 Production and Disrupts Endomembrane Transport and Retroviral Budding. EMBO Rep. 2008;9:164–170. doi: 10.1038/sj.embor.7401155. PubMed DOI PMC
Bridges D., Ma J.-T., Park S., Inoki K., Weisman L.S., Saltiel A.R. Phosphatidylinositol 3,5-Bisphosphate Plays a Role in the Activation and Subcellular Localization of Mechanistic Target of Rapamycin 1. Mol. Biol. Cell. 2012;23:2955–2962. doi: 10.1091/mbc.e11-12-1034. PubMed DOI PMC
Compton L.M., Ikonomov O.C., Sbrissa D., Garg P., Shisheva A. Active Vacuolar H+ ATPase and Functional Cycle of Rab5 Are Required for the Vacuolation Defect Triggered by PtdIns(3,5)P2 Loss under PIKfyve or Vps34 Deficiency. Am. J. Physiol. Cell Physiol. 2016;311:C366–C377. doi: 10.1152/ajpcell.00104.2016. PubMed DOI PMC
Shisheva A. PIKfyve: Partners, Significance, Debates and Paradoxes. Cell Biol. Int. 2008;32:591–604. doi: 10.1016/j.cellbi.2008.01.006. PubMed DOI PMC
Krishna S., Palm W., Lee Y., Yang W., Bandyopadhyay U., Xu H., Florey O., Thompson C.B., Overholtzer M. PIKfyve Regulates Vacuole Maturation and Nutrient Recovery Following Engulfment. Dev. Cell. 2016;38:536–547. doi: 10.1016/j.devcel.2016.08.001. PubMed DOI PMC
Zhang C.S., Jiang B., Li M., Zhu M., Peng Y., Zhang Y.L., Wu Y.Q., Li T.Y., Liang Y., Lu Z., et al. The Lysosomal V-ATPase-Ragulator Complex Is a Common Activator for AMPK and MTORC1, Acting as a Switch between Catabolism and Anabolism. Cell Metab. 2014;20:526–540. doi: 10.1016/j.cmet.2014.06.014. PubMed DOI
Flinn R.J., Yan Y., Goswami S., Parker P.J., Backer J.M., Margolis B. The Late Endosome Is Essential for MTORC1 Signaling. Mol. Biol. Cell. 2010;21:833–841. doi: 10.1091/mbc.e09-09-0756. PubMed DOI PMC
Shen K., Sabatini D.M. Ragulator and SLC38A9 Activate the Rag GTPases through Noncanonical GEF Mechanisms. Proc. Natl. Acad. Sci. USA. 2018;115:9545–9550. doi: 10.1073/pnas.1811727115. PubMed DOI PMC
Mu Z., Wang L., Deng W., Wang J., Wu G. Structural Insight into the Ragulator Complex Which Anchors MTORC1 to the Lysosomal Membrane. Cell Discov. 2017;3:17049. doi: 10.1038/celldisc.2017.49. PubMed DOI PMC
Sardiello M., Palmieri M., Di Ronza A., Medina D.L., Valenza M., Gennarino V.A., Di Malta C., Donaudy F., Embrione V., Polishchuk R.S., et al. A Gene Network Regulating Lysosomal Biogenesis and Function. Science. 2009;325:473–477. doi: 10.1126/science.1174447. PubMed DOI
Settembre C., Zoncu R., Medina D.L., Vetrini F., Erdin S., Erdin S., Huynh T., Ferron M., Karsenty G., Vellard M.C., et al. A Lysosome-to-Nucleus Signalling Mechanism Senses and Regulates the Lysosome via MTOR and TFEB. EMBO J. 2012;31:1095–1108. doi: 10.1038/emboj.2012.32. PubMed DOI PMC
Reddy K., Cusack C.L., Nnah I.C., Khayati K., Saqcena C., Huynh T.B., Noggle S.A., Ballabio A., Dobrowolski R. Dysregulation of Nutrient Sensing and CLEARance in Presenilin Deficiency. Cell Rep. 2016;14:2166–2179. doi: 10.1016/j.celrep.2016.02.006. PubMed DOI PMC
Gayle S., Landrette S., Beeharry N., Conrad C., Hernandez M., Beckett P., Ferguson S.M., Mandelkern T., Zheng M., Xu T., et al. Identification of Apilimod as a First-in-Class PIKfyve Kinase Inhibitor for Treatment of B-Cell Non-Hodgkin Lymphoma. Blood. 2017;129:1768–1778. doi: 10.1182/blood-2016-09-736892. PubMed DOI PMC
Wang W., Gao Q., Yang M., Zhang X., Yu L., Lawas M., Li X., Bryant-Genevier M., Southall N.T., Marugan J., et al. Up-Regulation of Lysosomal TRPML1 Channels Is Essential for Lysosomal Adaptation to Nutrient Starvation. Proc. Natl. Acad. Sci. USA. 2015;112:E1373–E1381. doi: 10.1073/pnas.1419669112. PubMed DOI PMC
Shimobayashi M., Hall M.N. Multiple amino acid sensing inputs to mTORC1. Cell Res. 2016;26:7–20. doi: 10.1038/cr.2015.146. PubMed DOI PMC
Kim E., Goraksha-Hicks P., Li L., Neufeld T.P., Guan K. Regulation of TORC1 by Rag GTPases in Nutrient Response. Nat. Cell Biol. 2008;10:935–945. doi: 10.1038/ncb1753. PubMed DOI PMC
Commisso C., Davidson S.M., Soydaner-Azeloglu R.G., Parker S.J., Kamphorst J.J., Hackett S., Grabocka E., Nofal M., Drebin J.A., Thompson C.B., et al. Macropinocytosis of Protein Is an Amino Acid Supply Route in Ras-Transformed Cells. Nature. 2013;497:633–637. doi: 10.1038/nature12138. PubMed DOI PMC
Yoshida S., Pacitto R., Inoki K., Swanson J. Macropinocytosis, MTORC1 and Cellular Growth Control. Cell. Mol. Life Sci. 2018;75:1227–1239. doi: 10.1007/s00018-017-2710-y. PubMed DOI PMC
Reis R.C.M., Sorgine M.H.F., Coelho-Sampaio T. A Novel Methodology for the Investigation of Intracellular Proteolytic Processing in Intact Cells. Eur. J. Cell Biol. 1998;75:192–197. doi: 10.1016/S0171-9335(98)80061-7. PubMed DOI
Mishra R., Bhowmick N.A. Visualization of Macropinocytosis in Prostate Fibroblasts. Bio. Protoc. 2019;9:e3235. doi: 10.21769/BioProtoc.3235. PubMed DOI PMC
Min S.H., Suzuki A., Weaver L., Guzman J., Chung Y., Jin H., Gonzalez F., Trasorras C., Zhao L., Spruce L.A., et al. PIKfyve Deficiency in Myeloid Cells Impairs Lysosomal Homeostasis in Macrophages and Promotes Systemic Inflammation in Mice. Mol. Cell. Biol. 2019;39:e00158-19. doi: 10.1128/MCB.00158-19. PubMed DOI PMC
Wang X., Proud C.G. The MTOR Pathway in the Control of Protein Synthesis. Physiology. 2006;21:362–369. doi: 10.1152/physiol.00024.2006. PubMed DOI
Ogata M., Hino S.-I., Saito A., Morikawa K., Kondo S., Kanemoto S., Murakami T., Taniguchi M., Tanii I., Yoshinaga K., et al. Autophagy Is Activated for Cell Survival after Endoplasmic Reticulum Stress. Mol. Cell. Biol. 2006;26:9220–9231. doi: 10.1128/MCB.01453-06. PubMed DOI PMC
Hatzivassiliou G., Song K., Yen I., Brandhuber B.J., Anderson D.J., Alvarado R., Ludlam M.J.C., Stokoe D., Gloor S.L., Vigers G., et al. RAF Inhibitors Prime Wild-Type RAF to Activate the MAPK Pathway and Enhance Growth. Nature. 2010;464:431–435. doi: 10.1038/nature08833. PubMed DOI
Shimizu T., Tolcher A.W., Papadopoulos K.P., Beeram M., Rasco D.W., Smith L.S., Gunn S., Smetzer L., Mays T.A., Kaiser B., et al. The Clinical Effect of the Dual-Targeting Strategy Involving PI3K/AKT/MTOR and RAS/MEK/ERK Pathways in Patients with Advanced Cancer. Clin. Cancer Res. 2012;18:2316–2325. doi: 10.1158/1078-0432.CCR-11-2381. PubMed DOI
Penna I., Molla A., Grazia G., Cleris L., Nicolini G., Perrone F., Picciani B., del Vecchio M., de Braud F., Mortarini R., et al. Primary Cross-Resistance to BRAFV600E-, MEK1/2- and PI3K/MTOR-Specific Inhibitors in BRAF-Mutant Melanoma Cells Counteracted by Dual Pathway Blockade. Oncotarget. 2016;7:3947–3965. doi: 10.18632/oncotarget.6600. PubMed DOI PMC
Aramburu J., Ortells M.C., Tejedor S., Buxadé M., López-Rodríguez C. Transcriptional Regulation of the Stress Response by MTOR. Sci. Signal. 2014;7:re2. doi: 10.1126/scisignal.2005326. PubMed DOI
Heberle A.M., Prentzell M.T., van Eunen K., Bakker B.M., Grellscheid S.N., Thedieck K. Molecular Mechanisms of MTOR Regulation by Stress. Mol. Cell. Oncol. 2015;2:e970489. doi: 10.4161/23723548.2014.970489. PubMed DOI PMC
Wong C.-O., Li R., Montell C., Venkatachalam K. Drosophila TRPML Is Required for TORC1 Activation. Curr. Biol. 2012;22:1616–1621. doi: 10.1016/j.cub.2012.06.055. PubMed DOI PMC
Dong X., Shen D., Wang X., Dawson T., Li X., Zhang Q., Cheng X., Zhang Y., Weisman L.S., Delling M., et al. PI(3,5)P(2) Controls Membrane Trafficking by Direct Activation of Mucolipin Ca(2+) Release Channels in the Endolysosome. Nat. Commun. 2010;1:38. doi: 10.1038/ncomms1037. PubMed DOI PMC
Choy C.H., Saffi G., Gray M.A., Wallace C., Dayam R.M., Ou Z.Y.A., Lenk G., Puertollano R., Watkins S.C., Botelho R.J. Lysosome Enlargement during Inhibition of the Lipid Kinase PIKfyve Proceeds through Lysosome Coalescence. J. Cell Sci. 2018;131:jcs213587. doi: 10.1242/jcs.213587. PubMed DOI PMC
Nada S., Hondo A., Kasai A., Koike M., Saito K., Uchiyama Y., Okada M. The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK-ERK pathway to late endosomes. EMBO J. 2009;28:477–489. doi: 10.1038/emboj.2008.308. PubMed DOI PMC
Takahashi Y., Nada S., Mori S., Soma-Nagae T., Oneyama C., Okada M. The Late Endosome/Lysosome-Anchored P18-MTORC1 Pathway Controls Terminal Maturation of Lysosomes. Biochem. Biophys. Res. Commun. 2012;417:1151–1157. doi: 10.1016/j.bbrc.2011.12.082. PubMed DOI
Ojha R., Leli N.M., Onorati A., Piao S., Verginadis I.I., Tameire F., Rebecca V.W., Chude C.I., Murugan S., Fennelly C., et al. ER Translocation of the MAPK Pathway Drives Therapy Resistance in BRAF-Mutant Melanoma. Cancer Discov. 2019;9:396–415. doi: 10.1158/2159-8290.CD-18-0348. PubMed DOI PMC
Rashid H.O., Yadav R.K., Kim H.R., Chae H.J. ER Stress: Autophagy Induction, Inhibition and Selection. Autophagy. 2015;11:1956–1977. doi: 10.1080/15548627.2015.1091141. PubMed DOI PMC
Senft D., Ronai Z.A. UPR, Autophagy, and Mitochondria Crosstalk Underlies the ER Stress Response. Trends Biochem. Sci. 2015;40:141–148. doi: 10.1016/j.tibs.2015.01.002. PubMed DOI PMC
Lin Y., Jiang M., Chen W., Zhao T., Wei Y. Cancer and ER Stress: Mutual Crosstalk between Autophagy, Oxidative Stress and Inflammatory Response. Biomed. Pharmacother. 2019;118:109249. doi: 10.1016/j.biopha.2019.109249. PubMed DOI
Yu L., Chen Y., Tooze S.A. Autophagy Pathway: Cellular and Molecular Mechanisms. Autophagy. 2018;14:207–215. doi: 10.1080/15548627.2017.1378838. PubMed DOI PMC
Nakamura S., Hasegawa J., Yoshimori T. Regulation of Lysosomal Phosphoinositide Balance by INPP5E Is Essential for Autophagosome–Lysosome Fusion. Autophagy. 2016;12:2500–2501. doi: 10.1080/15548627.2016.1234568. PubMed DOI PMC
Dossou A.S., Basu A. The Emerging Roles of MTORC1 in Macromanaging Autophagy. Cancers (Basel) 2019;11:1422. doi: 10.3390/cancers11101422. PubMed DOI PMC
Rabanal-Ruiz Y., Otten E.G., Korolchuk V.I. MTORC1 as the Main Gateway to Autophagy. Essays Biochem. 2017;61:565–584. PubMed PMC
Martina J.A., Diab H.I., Brady O.A., Puertollano R. TFEB and TFE3 Are Novel Components of the Integrated Stress Response. EMBO J. 2016;35:479–495. doi: 10.15252/embj.201593428. PubMed DOI PMC
Cheng X., Liu H., Jiang C.C., Fang L., Chen C., Zhang X.D., Jiang Z.W. Connecting Endoplasmic Reticulum Stress to Autophagy through IRE1/JNK/Beclin-1 in Breast Cancer Cells. Int. J. Mol. Med. 2014;34:772–781. doi: 10.3892/ijmm.2014.1822. PubMed DOI
Bondzi C., Grant S., Krystal G.W. A Novel Assay for the Measurement of Raf-1 Kinase Activity. Oncogene. 2000;19:5030–5033. doi: 10.1038/sj.onc.1203862. PubMed DOI
Verlande A., Krafčíková M., Potěšil D., Trantírek L., Zdráhal Z., Elkalaf M., Trnka J., Souček K., Rauch N., Rauch J., et al. Metabolic stress regulates ERK activity by controlling KSR-RAF heterodimerization. EMBO Rep. 2018;19:320–336. doi: 10.15252/embr.201744524. PubMed DOI PMC
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Slabý T., Kolman P., Dostál Z., Antoš M., Lošťák M., Chmelík R. Off-Axis Setup Taking Full Advantage of Incoherent Illumination in Coherence-Controlled Holographic Microscope. Opt. Express. 2013;21:14747–14762. doi: 10.1364/OE.21.014747. PubMed DOI
Zangle T.A., Teitell M.A. Live-Cell Mass Profiling: An Emerging Approach in Quantitative Biophysics. Nat. Methods. 2014;11:1221–1228. doi: 10.1038/nmeth.3175. PubMed DOI PMC
Dietmair S., Timmins N.E., Gray P.P., Nielsen L.K., Krömer J.O. Towards Quantitative Metabolomics of Mammalian Cells: Development of a Metabolite Extraction Protocol. Anal. Biochem. 2010;404:155–164. doi: 10.1016/j.ab.2010.04.031. PubMed DOI