Dual Targeting of BRAF and mTOR Signaling in Melanoma Cells with Pyridinyl Imidazole Compounds

. 2020 Jun 10 ; 12 (6) : . [epub] 20200610

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32531927

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund
MUNI/A/1087/2018 Masarykova Univerzita
18-01396S Grantová Agentura České Republiky
NV19-08-00450 Ministerstvo Zdravotnictví Ceské Republiky
CIISB - LM2018127 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015062 Ministerstvo Školství, Mládeže a Tělovýchovy

BRAF inhibitors can delay the progression of metastatic melanoma, but resistance usually emerges, leading to relapse. Drugs simultaneously targeting two or more pathways essential for cancer growth could slow or prevent the development of resistant clones. Here, we identified pyridinyl imidazole compounds SB202190, SB203580, and SB590885 as dual inhibitors of critical proliferative pathways in human melanoma cells bearing the V600E activating mutation of BRAF kinase. We found that the drugs simultaneously disrupt the BRAF V600E-driven extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) activity and the mechanistic target of rapamycin complex 1 (mTORC1) signaling in melanoma cells. Pyridinyl imidazole compounds directly inhibit BRAF V600E kinase. Moreover, they interfere with the endolysosomal compartment, promoting the accumulation of large acidic vacuole-like vesicles and dynamic changes in mTOR signaling. A transient increase in mTORC1 activity is followed by the enrichment of the Ragulator complex protein p18/LAMTOR1 at contact sites of large vesicles and delocalization of mTOR from the lysosomes. The induced disruption of the endolysosomal pathway not only disrupts mTORC1 signaling, but also renders melanoma cells sensitive to endoplasmic reticulum (ER) stress. Our findings identify new activities of pharmacologically relevant small molecule compounds and provide a biological rationale for the development of anti-melanoma therapeutics based on the pyridinyl imidazole core.

Zobrazit více v PubMed

Miller A.J., Mihm M.C., Jr. Melanoma. N. Engl. J. Med. 2006;355:51–65. doi: 10.1056/NEJMra052166. PubMed DOI

Berger M.F., Hodis E., Heffernan T.P., Deribe Y.L., Lawrence M.S., Protopopov A., Ivanova E., Watson I.R., Nickerson E., Ghosh P., et al. Melanoma Genome Sequencing Reveals Frequent PREX2 Mutations. Nature. 2012;485:502–506. doi: 10.1038/nature11071. PubMed DOI PMC

Watson M., Holman D.M., Maguire-Eisen M. Ultraviolet Radiation Exposure and Its Impact on Skin Cancer Risk. Semin. Oncol. Nurs. 2016;32:241–254. doi: 10.1016/j.soncn.2016.05.005. PubMed DOI PMC

Dahl C., Guldberg P. The Genome and Epigenome of Malignant Melanoma. APMIS Acta Pathol. Microbiol. Immunol. Scand. 2007;115:1161–1176. doi: 10.1111/j.1600-0463.2007.apm_855.xml.x. PubMed DOI

Fecher L.A., Amaravadi R.K., Flaherty K.T. The MAPK Pathway in Melanoma. Curr. Opin. Oncol. 2008;20:183–189. doi: 10.1097/CCO.0b013e3282f5271c. PubMed DOI

Agianian B., Gavathiotis E. Current Insights of BRAF Inhibitors in Cancer. J. Med. Chem. 2018;61:5775–5793. doi: 10.1021/acs.jmedchem.7b01306. PubMed DOI

Sánchez-Hernández I., Baquero P., Calleros L., Chiloeches A. Dual Inhibition of V600EBRAF and the PI3K/AKT/MTOR Pathway Cooperates to Induce Apoptosis in Melanoma Cells through a MEK-Independent Mechanism. Cancer Lett. 2012;314:244–255. doi: 10.1016/j.canlet.2011.09.037. PubMed DOI

Samatar A.A., Poulikakos P.I. Targeting RAS–ERK Signalling in Cancer: Promises and Challenges. Nat. Rev. Drug Discov. 2014;13:928–942. doi: 10.1038/nrd4281. PubMed DOI

Greger J.G., Eastman S.D., Zhang V., Bleam M.R., Hughes A.M., Smitheman K.N., Dickerson S.H., Laquerre S.G., Liu L., Gilmer T.M. Combinations of BRAF, MEK, and PI3K/MTOR Inhibitors Overcome Acquired Resistance to the BRAF Inhibitor GSK2118436 Dabrafenib, Mediated by NRAS or MEK Mutations. Mol. Cancer Ther. 2012;11:909–920. doi: 10.1158/1535-7163.MCT-11-0989. PubMed DOI

Wei B.-R., Michael H.T., Halsey C.H.C., Peer C.J., Adhikari A., Dwyer J.E., Hoover S.B., El Meskini R., Kozlov S., Weaver Ohler Z., et al. Synergistic Targeted Inhibition of MEK and Dual PI3K/MTOR Diminishes Viability and Inhibits Tumor Growth of Canine Melanoma Underscoring Its Utility as a Preclinical Model for Human Mucosal Melanoma. Pigment Cell Melanoma Res. 2016;29:643–655. doi: 10.1111/pcmr.12512. PubMed DOI PMC

Deuker M.M., McMahon M. Rational Targeting of BRAF and PI3-Kinase Signaling for Melanoma Therapy. Mol. Cell. Oncol. 2016;3:e1033095. doi: 10.1080/23723556.2015.1033095. PubMed DOI PMC

Dibble C.C., Cantley L.C. Regulation of MTORC1 by PI3K Signaling. Trends Cell. Biol. 2015;25:545–555. doi: 10.1016/j.tcb.2015.06.002. PubMed DOI PMC

Saxton R.A., Sabatini D.M. MTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017;168:960–976. doi: 10.1016/j.cell.2017.02.004. PubMed DOI PMC

Kim J., Guan K.-L. MTOR as a Central Hub of Nutrient Signalling and Cell Growth. Nat. Cell Biol. 2019;21:63–71. doi: 10.1038/s41556-018-0205-1. PubMed DOI

Buerger C., DeVries B., Stambolic V. Localization of Rheb to the Endomembrane Is Critical for Its Signaling Function. Biochem. Biophys. Res. Commun. 2006;344:869–880. doi: 10.1016/j.bbrc.2006.03.220. PubMed DOI

Tee A.R., Manning B.D., Roux P.P., Cantley L.C., Blenis J. Tuberous Sclerosis Complex Gene Products, Tuberin and Hamartin, Control MTOR Signaling by Acting as a GTPase-Activating Protein Complex toward Rheb. Curr. Biol. 2003;13:1259–1268. doi: 10.1016/S0960-9822(03)00506-2. PubMed DOI

Inoki K., Li Y., Xu T., Guan K.-L. Rheb GTPase Is a Direct Target of TSC2 GAP Activity and Regulates MTOR Signaling. Genes Dev. 2003;17:1829–1834. doi: 10.1101/gad.1110003. PubMed DOI PMC

Demetriades C., Plescher M., Teleman A.A. Lysosomal Recruitment of TSC2 Is a Universal Response to Cellular Stress. Nat. Commun. 2016;7:10662. doi: 10.1038/ncomms10662. PubMed DOI PMC

Bar-Peled L., Schweitzer L.D., Zoncu R., Sabatini D.M. Ragulator Is a GEF for the Rag GTPases That Signal Amino Acid Levels to MTORC1. Cell. 2012;150:1196–1208. doi: 10.1016/j.cell.2012.07.032. PubMed DOI PMC

Sancak Y., Bar-Peled L., Zoncu R., Markhard A.L., Nada S., Sabatini D.M. Ragulator-Rag Complex Targets MTORC1 to the Lysosomal Surface and Is Necessary for Its Activation by Amino Acids. Cell. 2010;141:290–303. doi: 10.1016/j.cell.2010.02.024. PubMed DOI PMC

Sekiguchi T., Hirose E., Nakashima N., Ii M., Nishimoto T. Novel G Proteins, Rag C and Rag D, Interact with GTP-Binding Proteins, Rag A and Rag, B. J. Biol. Chem. 2001;276:7246–7257. doi: 10.1074/jbc.M004389200. PubMed DOI

Sancak Y., Peterson T.R., Shaul Y.D., Lindquist R.A., Thoreen C.C., Bar-Peled L., Sabatini D.M. The Rag GTPases Bind Raptor and Mediate Amino Acid Signaling to MTORC1. Science. 2008;320:1496–1501. doi: 10.1126/science.1157535. PubMed DOI PMC

Zoncu R., Bar-Peled L., Efeyan A., Wang S., Sancak Y., Sabatini D.M. MTORC1 Senses Lysosomal Amino Acids Through an Inside-Out Mechanism That Requires the Vacuolar H+-ATPase. Science. 2011;334:678–683. doi: 10.1126/science.1207056. PubMed DOI PMC

Bar-Peled L., Sabatini D.M. Regulation of MTORC1 by Amino Acids. Trends Cell. Biol. 2014;24:400–406. doi: 10.1016/j.tcb.2014.03.003. PubMed DOI PMC

Wolfson R.L., Sabatini D.M. The Dawn of the Age of Amino Acid Sensors for the MTORC1 Pathway. Cell Metab. 2017;26:301–309. doi: 10.1016/j.cmet.2017.07.001. PubMed DOI PMC

Saini K.S., Loi S., de Azambuja E., Metzger-Filho O., Saini M.L., Ignatiadis M., Dancey J.E., Piccart-Gebhart M.J. Targeting the PI3K/AKT/MTOR and Raf/MEK/ERK Pathways in the Treatment of Breast Cancer. Cancer Treat. Rev. 2013;39:935–946. doi: 10.1016/j.ctrv.2013.03.009. PubMed DOI

Argast G.M., Fausto N., Campbell J.S. Inhibition of RIP2/RICK/CARDIAK Activity by Pyridinyl Imidazole Inhibitors of P38 MAPK. Mol. Cell. Biochem. 2005;268:129–140. doi: 10.1007/s11010-005-3701-0. PubMed DOI

Bain J., Plater L., Elliott M., Shpiro N., Hastie C.J., Mclauchlan H., Klevernic I., Arthur J.S.C., Alessi D.R., Cohen P. The Selectivity of Protein Kinase Inhibitors: A Further Update. Biochem. J. 2007;408:297–315. doi: 10.1042/BJ20070797. PubMed DOI PMC

Bellei B., Pitisci A., Migliano E., Cardinali G., Picardo M. Pyridinyl Imidazole Compounds Interfere with Melanosomes Sorting through the Inhibition of Cyclin G-Associated Kinase, a Regulator of Cathepsins Maturation. Cell. Signal. 2014;26:716–723. doi: 10.1016/j.cellsig.2013.12.023. PubMed DOI

Menon M.B., Dhamija S., Kotlyarov A., Gaestel M. The Problem of Pyridinyl Imidazole Class Inhibitors of MAPK14/P38α and MAPK11/P38β in Autophagy Research. Autophagy. 2015;11:1425–1427. doi: 10.1080/15548627.2015.1059562. PubMed DOI PMC

Kalmes A., Deou J., Clowes A.W., Daum G. Raf-1 Is Activated by the P38 Mitogen-Activated Protein Kinase Inhibitor, SB203580. FEBS Lett. 1998;444:71–74. doi: 10.1016/S0014-5793(99)00034-4. PubMed DOI

Henklova P., Vrzal R., Papouskova B., Bednar P., Jancova P., Anzenbacherova E., Ulrichova J., Maurel P., Pavek P., Dvorak Z. SB203580, a Pharmacological Inhibitor of P38 MAP Kinase Transduction Pathway Activates ERK and JNK MAP Kinases in Primary Cultures of Human Hepatocytes. Eur. J. Pharmacol. 2008;593:16–23. doi: 10.1016/j.ejphar.2008.07.007. PubMed DOI

New L., Li Y., Ge B., Zhong H., Mansbridge J., Liu K., Han J. SB203580 Promote EGF-Stimulated Early Morphological Differentiation in PC12 Cell through Activating ERK Pathway. J. Cell. Biochem. 2001;83:585–596. doi: 10.1002/jcb.1253. PubMed DOI

Lavoie H., Thevakumaran N., Gavory G., Li J.J., Padeganeh A., Guiral S., Duchaine J., Mao D.Y.L., Bouvier M., Sicheri F., et al. Inhibitors That Stabilize a Closed RAF Kinase Domain Conformation Induce Dimerization. Nat. Chem. Biol. 2013;9:428–436. doi: 10.1038/nchembio.1257. PubMed DOI PMC

Gudernova I., Foldynova-Trantirkova S., El Ghannamova B., Fafilek B., Varecha M., Balek L., Hruba E., Jonatova L., Jelinkova I., Bosakova M.K., et al. One Reporter for In-Cell Activity Profiling of Majority of Protein Kinase Oncogenes. Elife. 2017;6:e21536. doi: 10.7554/eLife.21536. PubMed DOI PMC

King A.J., Patrick D.R., Batorsky R.S., Ho M.L., Do H.T., Zhang S.Y., Kumar R., Rusnak D.W., Takle A.K., Wilson D.M., et al. Demonstration of a Genetic Therapeutic Index for Tumors Expressing Oncogenic BRAF by the Kinase Inhibitor SB-590885. Cancer Res. 2006;66:11100–11105. doi: 10.1158/0008-5472.CAN-06-2554. PubMed DOI

Menon M.B., Kotlyarov A., Gaestel M. SB202190-Induced Cell Type-Specific Vacuole Formation and Defective Autophagy Do Not Depend on P38 MAP Kinase Inhibition. PLoS ONE. 2011;6:e23054. doi: 10.1371/journal.pone.0023054. PubMed DOI PMC

Doherty G.J., McMahon H.T. Mechanisms of Endocytosis. Annu. Rev. Biochem. 2009;78:857–902. doi: 10.1146/annurev.biochem.78.081307.110540. PubMed DOI

Jefferies H.B.J., Cooke F.T., Jat P., Boucheron C., Koizumi T., Hayakawa M., Kaizawa H., Ohishi T., Workman P., Waterfield M.D., et al. A Selective PIKfyve Inhibitor Blocks PtdIns(3,5)P2 Production and Disrupts Endomembrane Transport and Retroviral Budding. EMBO Rep. 2008;9:164–170. doi: 10.1038/sj.embor.7401155. PubMed DOI PMC

Bridges D., Ma J.-T., Park S., Inoki K., Weisman L.S., Saltiel A.R. Phosphatidylinositol 3,5-Bisphosphate Plays a Role in the Activation and Subcellular Localization of Mechanistic Target of Rapamycin 1. Mol. Biol. Cell. 2012;23:2955–2962. doi: 10.1091/mbc.e11-12-1034. PubMed DOI PMC

Compton L.M., Ikonomov O.C., Sbrissa D., Garg P., Shisheva A. Active Vacuolar H+ ATPase and Functional Cycle of Rab5 Are Required for the Vacuolation Defect Triggered by PtdIns(3,5)P2 Loss under PIKfyve or Vps34 Deficiency. Am. J. Physiol. Cell Physiol. 2016;311:C366–C377. doi: 10.1152/ajpcell.00104.2016. PubMed DOI PMC

Shisheva A. PIKfyve: Partners, Significance, Debates and Paradoxes. Cell Biol. Int. 2008;32:591–604. doi: 10.1016/j.cellbi.2008.01.006. PubMed DOI PMC

Krishna S., Palm W., Lee Y., Yang W., Bandyopadhyay U., Xu H., Florey O., Thompson C.B., Overholtzer M. PIKfyve Regulates Vacuole Maturation and Nutrient Recovery Following Engulfment. Dev. Cell. 2016;38:536–547. doi: 10.1016/j.devcel.2016.08.001. PubMed DOI PMC

Zhang C.S., Jiang B., Li M., Zhu M., Peng Y., Zhang Y.L., Wu Y.Q., Li T.Y., Liang Y., Lu Z., et al. The Lysosomal V-ATPase-Ragulator Complex Is a Common Activator for AMPK and MTORC1, Acting as a Switch between Catabolism and Anabolism. Cell Metab. 2014;20:526–540. doi: 10.1016/j.cmet.2014.06.014. PubMed DOI

Flinn R.J., Yan Y., Goswami S., Parker P.J., Backer J.M., Margolis B. The Late Endosome Is Essential for MTORC1 Signaling. Mol. Biol. Cell. 2010;21:833–841. doi: 10.1091/mbc.e09-09-0756. PubMed DOI PMC

Shen K., Sabatini D.M. Ragulator and SLC38A9 Activate the Rag GTPases through Noncanonical GEF Mechanisms. Proc. Natl. Acad. Sci. USA. 2018;115:9545–9550. doi: 10.1073/pnas.1811727115. PubMed DOI PMC

Mu Z., Wang L., Deng W., Wang J., Wu G. Structural Insight into the Ragulator Complex Which Anchors MTORC1 to the Lysosomal Membrane. Cell Discov. 2017;3:17049. doi: 10.1038/celldisc.2017.49. PubMed DOI PMC

Sardiello M., Palmieri M., Di Ronza A., Medina D.L., Valenza M., Gennarino V.A., Di Malta C., Donaudy F., Embrione V., Polishchuk R.S., et al. A Gene Network Regulating Lysosomal Biogenesis and Function. Science. 2009;325:473–477. doi: 10.1126/science.1174447. PubMed DOI

Settembre C., Zoncu R., Medina D.L., Vetrini F., Erdin S., Erdin S., Huynh T., Ferron M., Karsenty G., Vellard M.C., et al. A Lysosome-to-Nucleus Signalling Mechanism Senses and Regulates the Lysosome via MTOR and TFEB. EMBO J. 2012;31:1095–1108. doi: 10.1038/emboj.2012.32. PubMed DOI PMC

Reddy K., Cusack C.L., Nnah I.C., Khayati K., Saqcena C., Huynh T.B., Noggle S.A., Ballabio A., Dobrowolski R. Dysregulation of Nutrient Sensing and CLEARance in Presenilin Deficiency. Cell Rep. 2016;14:2166–2179. doi: 10.1016/j.celrep.2016.02.006. PubMed DOI PMC

Gayle S., Landrette S., Beeharry N., Conrad C., Hernandez M., Beckett P., Ferguson S.M., Mandelkern T., Zheng M., Xu T., et al. Identification of Apilimod as a First-in-Class PIKfyve Kinase Inhibitor for Treatment of B-Cell Non-Hodgkin Lymphoma. Blood. 2017;129:1768–1778. doi: 10.1182/blood-2016-09-736892. PubMed DOI PMC

Wang W., Gao Q., Yang M., Zhang X., Yu L., Lawas M., Li X., Bryant-Genevier M., Southall N.T., Marugan J., et al. Up-Regulation of Lysosomal TRPML1 Channels Is Essential for Lysosomal Adaptation to Nutrient Starvation. Proc. Natl. Acad. Sci. USA. 2015;112:E1373–E1381. doi: 10.1073/pnas.1419669112. PubMed DOI PMC

Shimobayashi M., Hall M.N. Multiple amino acid sensing inputs to mTORC1. Cell Res. 2016;26:7–20. doi: 10.1038/cr.2015.146. PubMed DOI PMC

Kim E., Goraksha-Hicks P., Li L., Neufeld T.P., Guan K. Regulation of TORC1 by Rag GTPases in Nutrient Response. Nat. Cell Biol. 2008;10:935–945. doi: 10.1038/ncb1753. PubMed DOI PMC

Commisso C., Davidson S.M., Soydaner-Azeloglu R.G., Parker S.J., Kamphorst J.J., Hackett S., Grabocka E., Nofal M., Drebin J.A., Thompson C.B., et al. Macropinocytosis of Protein Is an Amino Acid Supply Route in Ras-Transformed Cells. Nature. 2013;497:633–637. doi: 10.1038/nature12138. PubMed DOI PMC

Yoshida S., Pacitto R., Inoki K., Swanson J. Macropinocytosis, MTORC1 and Cellular Growth Control. Cell. Mol. Life Sci. 2018;75:1227–1239. doi: 10.1007/s00018-017-2710-y. PubMed DOI PMC

Reis R.C.M., Sorgine M.H.F., Coelho-Sampaio T. A Novel Methodology for the Investigation of Intracellular Proteolytic Processing in Intact Cells. Eur. J. Cell Biol. 1998;75:192–197. doi: 10.1016/S0171-9335(98)80061-7. PubMed DOI

Mishra R., Bhowmick N.A. Visualization of Macropinocytosis in Prostate Fibroblasts. Bio. Protoc. 2019;9:e3235. doi: 10.21769/BioProtoc.3235. PubMed DOI PMC

Min S.H., Suzuki A., Weaver L., Guzman J., Chung Y., Jin H., Gonzalez F., Trasorras C., Zhao L., Spruce L.A., et al. PIKfyve Deficiency in Myeloid Cells Impairs Lysosomal Homeostasis in Macrophages and Promotes Systemic Inflammation in Mice. Mol. Cell. Biol. 2019;39:e00158-19. doi: 10.1128/MCB.00158-19. PubMed DOI PMC

Wang X., Proud C.G. The MTOR Pathway in the Control of Protein Synthesis. Physiology. 2006;21:362–369. doi: 10.1152/physiol.00024.2006. PubMed DOI

Ogata M., Hino S.-I., Saito A., Morikawa K., Kondo S., Kanemoto S., Murakami T., Taniguchi M., Tanii I., Yoshinaga K., et al. Autophagy Is Activated for Cell Survival after Endoplasmic Reticulum Stress. Mol. Cell. Biol. 2006;26:9220–9231. doi: 10.1128/MCB.01453-06. PubMed DOI PMC

Hatzivassiliou G., Song K., Yen I., Brandhuber B.J., Anderson D.J., Alvarado R., Ludlam M.J.C., Stokoe D., Gloor S.L., Vigers G., et al. RAF Inhibitors Prime Wild-Type RAF to Activate the MAPK Pathway and Enhance Growth. Nature. 2010;464:431–435. doi: 10.1038/nature08833. PubMed DOI

Shimizu T., Tolcher A.W., Papadopoulos K.P., Beeram M., Rasco D.W., Smith L.S., Gunn S., Smetzer L., Mays T.A., Kaiser B., et al. The Clinical Effect of the Dual-Targeting Strategy Involving PI3K/AKT/MTOR and RAS/MEK/ERK Pathways in Patients with Advanced Cancer. Clin. Cancer Res. 2012;18:2316–2325. doi: 10.1158/1078-0432.CCR-11-2381. PubMed DOI

Penna I., Molla A., Grazia G., Cleris L., Nicolini G., Perrone F., Picciani B., del Vecchio M., de Braud F., Mortarini R., et al. Primary Cross-Resistance to BRAFV600E-, MEK1/2- and PI3K/MTOR-Specific Inhibitors in BRAF-Mutant Melanoma Cells Counteracted by Dual Pathway Blockade. Oncotarget. 2016;7:3947–3965. doi: 10.18632/oncotarget.6600. PubMed DOI PMC

Aramburu J., Ortells M.C., Tejedor S., Buxadé M., López-Rodríguez C. Transcriptional Regulation of the Stress Response by MTOR. Sci. Signal. 2014;7:re2. doi: 10.1126/scisignal.2005326. PubMed DOI

Heberle A.M., Prentzell M.T., van Eunen K., Bakker B.M., Grellscheid S.N., Thedieck K. Molecular Mechanisms of MTOR Regulation by Stress. Mol. Cell. Oncol. 2015;2:e970489. doi: 10.4161/23723548.2014.970489. PubMed DOI PMC

Wong C.-O., Li R., Montell C., Venkatachalam K. Drosophila TRPML Is Required for TORC1 Activation. Curr. Biol. 2012;22:1616–1621. doi: 10.1016/j.cub.2012.06.055. PubMed DOI PMC

Dong X., Shen D., Wang X., Dawson T., Li X., Zhang Q., Cheng X., Zhang Y., Weisman L.S., Delling M., et al. PI(3,5)P(2) Controls Membrane Trafficking by Direct Activation of Mucolipin Ca(2+) Release Channels in the Endolysosome. Nat. Commun. 2010;1:38. doi: 10.1038/ncomms1037. PubMed DOI PMC

Choy C.H., Saffi G., Gray M.A., Wallace C., Dayam R.M., Ou Z.Y.A., Lenk G., Puertollano R., Watkins S.C., Botelho R.J. Lysosome Enlargement during Inhibition of the Lipid Kinase PIKfyve Proceeds through Lysosome Coalescence. J. Cell Sci. 2018;131:jcs213587. doi: 10.1242/jcs.213587. PubMed DOI PMC

Nada S., Hondo A., Kasai A., Koike M., Saito K., Uchiyama Y., Okada M. The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK-ERK pathway to late endosomes. EMBO J. 2009;28:477–489. doi: 10.1038/emboj.2008.308. PubMed DOI PMC

Takahashi Y., Nada S., Mori S., Soma-Nagae T., Oneyama C., Okada M. The Late Endosome/Lysosome-Anchored P18-MTORC1 Pathway Controls Terminal Maturation of Lysosomes. Biochem. Biophys. Res. Commun. 2012;417:1151–1157. doi: 10.1016/j.bbrc.2011.12.082. PubMed DOI

Ojha R., Leli N.M., Onorati A., Piao S., Verginadis I.I., Tameire F., Rebecca V.W., Chude C.I., Murugan S., Fennelly C., et al. ER Translocation of the MAPK Pathway Drives Therapy Resistance in BRAF-Mutant Melanoma. Cancer Discov. 2019;9:396–415. doi: 10.1158/2159-8290.CD-18-0348. PubMed DOI PMC

Rashid H.O., Yadav R.K., Kim H.R., Chae H.J. ER Stress: Autophagy Induction, Inhibition and Selection. Autophagy. 2015;11:1956–1977. doi: 10.1080/15548627.2015.1091141. PubMed DOI PMC

Senft D., Ronai Z.A. UPR, Autophagy, and Mitochondria Crosstalk Underlies the ER Stress Response. Trends Biochem. Sci. 2015;40:141–148. doi: 10.1016/j.tibs.2015.01.002. PubMed DOI PMC

Lin Y., Jiang M., Chen W., Zhao T., Wei Y. Cancer and ER Stress: Mutual Crosstalk between Autophagy, Oxidative Stress and Inflammatory Response. Biomed. Pharmacother. 2019;118:109249. doi: 10.1016/j.biopha.2019.109249. PubMed DOI

Yu L., Chen Y., Tooze S.A. Autophagy Pathway: Cellular and Molecular Mechanisms. Autophagy. 2018;14:207–215. doi: 10.1080/15548627.2017.1378838. PubMed DOI PMC

Nakamura S., Hasegawa J., Yoshimori T. Regulation of Lysosomal Phosphoinositide Balance by INPP5E Is Essential for Autophagosome–Lysosome Fusion. Autophagy. 2016;12:2500–2501. doi: 10.1080/15548627.2016.1234568. PubMed DOI PMC

Dossou A.S., Basu A. The Emerging Roles of MTORC1 in Macromanaging Autophagy. Cancers (Basel) 2019;11:1422. doi: 10.3390/cancers11101422. PubMed DOI PMC

Rabanal-Ruiz Y., Otten E.G., Korolchuk V.I. MTORC1 as the Main Gateway to Autophagy. Essays Biochem. 2017;61:565–584. PubMed PMC

Martina J.A., Diab H.I., Brady O.A., Puertollano R. TFEB and TFE3 Are Novel Components of the Integrated Stress Response. EMBO J. 2016;35:479–495. doi: 10.15252/embj.201593428. PubMed DOI PMC

Cheng X., Liu H., Jiang C.C., Fang L., Chen C., Zhang X.D., Jiang Z.W. Connecting Endoplasmic Reticulum Stress to Autophagy through IRE1/JNK/Beclin-1 in Breast Cancer Cells. Int. J. Mol. Med. 2014;34:772–781. doi: 10.3892/ijmm.2014.1822. PubMed DOI

Bondzi C., Grant S., Krystal G.W. A Novel Assay for the Measurement of Raf-1 Kinase Activity. Oncogene. 2000;19:5030–5033. doi: 10.1038/sj.onc.1203862. PubMed DOI

Verlande A., Krafčíková M., Potěšil D., Trantírek L., Zdráhal Z., Elkalaf M., Trnka J., Souček K., Rauch N., Rauch J., et al. Metabolic stress regulates ERK activity by controlling KSR-RAF heterodimerization. EMBO Rep. 2018;19:320–336. doi: 10.15252/embr.201744524. PubMed DOI PMC

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Slabý T., Kolman P., Dostál Z., Antoš M., Lošťák M., Chmelík R. Off-Axis Setup Taking Full Advantage of Incoherent Illumination in Coherence-Controlled Holographic Microscope. Opt. Express. 2013;21:14747–14762. doi: 10.1364/OE.21.014747. PubMed DOI

Zangle T.A., Teitell M.A. Live-Cell Mass Profiling: An Emerging Approach in Quantitative Biophysics. Nat. Methods. 2014;11:1221–1228. doi: 10.1038/nmeth.3175. PubMed DOI PMC

Dietmair S., Timmins N.E., Gray P.P., Nielsen L.K., Krömer J.O. Towards Quantitative Metabolomics of Mammalian Cells: Development of a Metabolite Extraction Protocol. Anal. Biochem. 2010;404:155–164. doi: 10.1016/j.ab.2010.04.031. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

RNA-seq Characterization of Melanoma Phenotype Switch in 3D Collagen after p38 MAPK Inhibitor Treatment

. 2021 Mar 17 ; 11 (3) : . [epub] 20210317

Targeted Therapies for Melanoma

. 2020 Sep 03 ; 12 (9) : . [epub] 20200903

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...