Metabolic stress regulates ERK activity by controlling KSR-RAF heterodimerization
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29263201
PubMed Central
PMC5797961
DOI
10.15252/embr.201744524
PII: embr.201744524
Knihovny.cz E-zdroje
- Klíčová slova
- RAF‐ERK signaling, cell cycle arrest, cell survival, melanoma, metabolic stress,
- MeSH
- aktivace enzymů MeSH
- extracelulárním signálem regulované MAP kinasy metabolismus MeSH
- fyziologický stres * MeSH
- glukosa metabolismus MeSH
- glykolýza MeSH
- GTP-fosfohydrolasy genetika metabolismus MeSH
- kontrolní body buněčného cyklu genetika MeSH
- lidé MeSH
- melanom genetika metabolismus MeSH
- membránové proteiny genetika metabolismus MeSH
- multimerizace proteinu * MeSH
- mutace MeSH
- nádorové buněčné linie MeSH
- proteinkinasy chemie genetika metabolismus MeSH
- proteiny 14-3-3 chemie metabolismus MeSH
- raf kinasy chemie genetika metabolismus MeSH
- rekombinantní fúzní proteiny MeSH
- spotřeba kyslíku MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- extracelulárním signálem regulované MAP kinasy MeSH
- glukosa MeSH
- GTP-fosfohydrolasy MeSH
- KSR-1 protein kinase MeSH Prohlížeč
- membránové proteiny MeSH
- NRAS protein, human MeSH Prohlížeč
- proteinkinasy MeSH
- proteiny 14-3-3 MeSH
- raf kinasy MeSH
- rekombinantní fúzní proteiny MeSH
Altered cell metabolism is a hallmark of cancer, and targeting specific metabolic nodes is considered an attractive strategy for cancer therapy. In this study, we evaluate the effects of metabolic stressors on the deregulated ERK pathway in melanoma cells bearing activating mutations of the NRAS or BRAF oncogenes. We report that metabolic stressors promote the dimerization of KSR proteins with CRAF in NRAS-mutant cells, and with oncogenic BRAF in BRAFV600E-mutant cells, thereby enhancing ERK pathway activation. Despite this similarity, the two genomic subtypes react differently when a higher level of metabolic stress is induced. In NRAS-mutant cells, the ERK pathway is even more stimulated, while it is strongly downregulated in BRAFV600E-mutant cells. We demonstrate that this is caused by the dissociation of mutant BRAF from KSR and is mediated by activated AMPK. Both types of ERK regulation nevertheless lead to cell cycle arrest. Besides studying the effects of the metabolic stressors on ERK pathway activity, we also present data suggesting that for efficient therapies of both genomic melanoma subtypes, specific metabolic targeting is necessary.
Central European Institute of Technology Masaryk University Brno Czech Republic
Conway Institute University College Dublin Dublin Ireland
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Laboratory of Cytokinetics Institute of Biophysics Academy of Sciences Brno Czech Republic
School of Medicine University College Dublin Dublin Ireland
Systems Biology Ireland University College Dublin Dublin Ireland
Zobrazit více v PubMed
Wellbrock C, Karasarides M, Marais R (2004) The RAF proteins take centre stage. Nat Rev Mol Cell Biol 5: 875–885 PubMed
Yoon S, Seger R (2006) The extracellular signal‐regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24: 21–44 PubMed
Gray‐Schopfer V, Wellbrock C, Marais R (2007) Melanoma biology and new targeted therapy. Nature 445: 851–857 PubMed
Bos JL (1989) ras oncogenes in human cancer: a review. Cancer Res 49: 4682–4689 PubMed
Fedorenko IV, Gibney GT, Smalley KS (2013) NRAS mutant melanoma: biological behavior and future strategies for therapeutic management. Oncogene 32: 3009–3018 PubMed PMC
Dumaz N, Hayward R, Martin J, Ogilvie, Hedley D, Curtin JA, Bastian BC, Springer C, Marais R (2006) In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res 66: 9483–9491 PubMed
Kolch W (2005) Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 6: 827–837 PubMed
Lavoie H, Therrien M (2015) Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol 16: 281–298 PubMed
Yu W, Fantl WJ, Harrowe G, Williams LT (1998) Regulation of the MAP kinase pathway by mammalian Ksr through direct interaction with MEK and ERK. Curr Biol 8: 56–64 PubMed
Nguyen A, Burack WR, Stock JL, Kortum R, Chaika OV, Afkarian M, Muller WJ, Murphy KM, Morrison DK, Lewis RE et al (2002) Kinase suppressor of Ras (KSR) is a scaffold which facilitates mitogen‐activated protein kinase activation in vivo . Mol Cell Biol 22: 3035–3045 PubMed PMC
Clapéron A, Therrien M (2007) KSR and CNK: two scaffolds regulating RAS‐mediated RAF activation. Oncogene 26: 3143–3158 PubMed
Rajakulendran T, Sahmi M, Lefrançois M, Sicheri F, Therrien M (2009) A dimerization‐dependent mechanism drives RAF catalytic activation. Nature 461: 542–545 PubMed
Udell CM, Rajakulendran T, Sicheri F, Therrien M (2011) Mechanistic principles of RAF kinase signaling. Cell Mol Life Sci 68: 553–565 PubMed PMC
DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7: 11–20 PubMed
Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324: 1029–1033 PubMed PMC
Owen OE, Kalhan SC, Hanson RW (2002) The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 277: 30409–30412 PubMed
Nagarajan A, Malvi P, Wajapeyee N (2016) Oncogene‐directed alterations in cancer cell metabolism. Trends Cancer 2: 365–377 PubMed PMC
Haq R, Shoag J, Andreu‐Perez P, Yokoyama S, Edelman H, Rowe GC, Frederick DT, Hurley AD, Nellore A, Kung AL et al (2013) Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. Cancer Cell 23: 302–315 PubMed PMC
Abildgaard C, Guldberg P (2015) Molecular drivers of cellular metabolic reprogramming in melanoma. Trends Mol Med 21: 164–171 PubMed
Witters LA (2001) The blooming of the French lilac. J Clin Invest 108: 1105–1107 PubMed PMC
Rojas LB, Gomes MB (2013) metformin: an old but still the best treatment for type 2 diabetes. Diabetol Metab Syndr 5: 6 PubMed PMC
Mason CS, Springer CJ, Cooper RG, Superti‐Furga G, Marshall CJ, Marais R (1999) Serine and tyrosine phosphorylations cooperate in Raf‐1, but not B‐Raf activation. EMBO J 15: 2137–2148 PubMed PMC
Dumaz N, Marais R (2003) Protein kinase A blocks Raf‐1 activity by stimulating 14‐3‐3 binding and blocking Raf‐1 interaction with Ras. J Biol Chem 278: 29819–29823 PubMed
Fabian JR, Vojtek AB, Cooper JA, Morrison DK (1994) A single amino acid change in Raf‐1 inhibits Ras binding and alters Raf‐1 function. Proc Natl Acad Sci USA 91: 5982–5986 PubMed PMC
Tzivion G, Luo Z, Avruch J (1998) A dimeric 14‐3‐3 protein is an essential cofactor for Raf kinase activity. Nature 394: 88–92 PubMed
Rommel C, Radziwill G, Lovrić J, Noeldeke J, Heinicke T, Jones D, Aitken A, Moelling K (1999) Activated Ras displaces 14‐3‐3 protein from the amino terminus of c‐Raf‐1. Oncogene 12: 609–619 PubMed
Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ, Cantley LC (1997) The structural basis for 14‐3‐3: phosphopeptide binding specificity. Cell 91: 961–971 PubMed
Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu‐Duvas I, Dhomen N, Hussain J, Reis‐Filho JS, Springer CJ, Pritchard C et al (2010) Kinase‐dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140: 209–221 PubMed PMC
Cacace AM, Michaud NR, Therrien M, Mathes K, Copeland T, Rubin GM, Morrison DK (1999) Identification of constitutive and ras‐inducible phosphorylation sites of KSR: implications for 14‐3‐3 binding, mitogen‐activated protein kinase binding, and KSR overexpression. Mol Cell Biol 19: 229–240 PubMed PMC
Müller J, Ory S, Copeland T, Piwnica‐Worms H, Morrison DK (2001) C‐TAK1 regulates Ras signaling by phosphorylating the MAPK scaffold, KSR1. Mol Cell 8: 983–993 PubMed
Ory S, Zhou M, Conrads TP, Veenstra TD, Morrison DK (2003) Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf‐1 on critical 14‐3‐3 binding sites. Curr Biol 13: 1356–1364 PubMed
Douziech M, Sahmi M, Laberge G, Therrien M (2006) A KSR/CNK complex mediated by HYP, a novel SAM domain‐containing protein, regulates RAS‐dependent RAF activation in Drosophila . Genes Dev 20: 807–819 PubMed PMC
Denouel‐Galy A, Douville EM, Warne PH, Papin C, Laugier D, Calothy G, Downward J, Eychène A (1998) Murine Ksr interacts with MEK and inhibits Ras‐induced transformation. Curr Biol 8: 46–55 PubMed
Ritt DA, Monson DM, Specht SI, Morrison DK (2010) Impact of feedback phosphorylation and Raf heterodimerization on normal and mutant B‐Raf signaling. Mol Cell Biol 30: 806–819 PubMed PMC
Meloche S, Seuwen K, Pages G, Pouyssegur J (1992) Biphasic and synergistic activation of p44mapk (ERK1) by growth factors: correlation between late phase activation and mitogenicity. Mol Endocrinol 6: 845–854 PubMed
Weber JD, Raben DM, Philips PJ, Baldassare JJ (1997) Sustained activation of extracellular‐signal regulated kinase I (ERK1) is require for the continued expression of cyclin D1 in G1 phase. Biochem J 326: 61–68 PubMed PMC
Squires MS, Nixon PM, Cook SJ (2002) Cell‐cycle arrest by PD184352 requires inhibition of extracellular signal‐regulated kinases (ERK) 1/2 but not ERK5/BMK1. Biochem J 366: 673–680 PubMed PMC
Meloche S, Pouysségur J (2007) The ERK1/2 mitogen‐activated protein kinase pathway as a master regulator of the G1 to S phase transition. Oncogene 26: 3227–3239 PubMed
Sewing A, Wiseman B, Lloyd AC, Land H (1997) High‐intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol Cell Biol 17: 5588–5597 PubMed PMC
Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M (1997) Raf‐induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol Cell Biol 17: 5598–5611 PubMed PMC
Park JS, Qiao L, Gilfor D, Yang MY, Hylemon PB, Benz C, Darlington G, Firestone G, Fisher PB, Dent P (2000) A role for both Ets and C/EBP transcription factors and Mrna stabilization in the MAPK dependent increase in p21 (Cip‐1/WAF1/mda6) protein levels in primary hepatocytes. Mol Biol Cell 11: 2915–2932 PubMed PMC
Coleman ML, Marshall CJ, Olson MF (2003) Ras promotes p21(Waf1/Cip1) protein stability via a cyclin D1‐imposed block in proteasome‐mediated degradation. EMBO J 22: 2036–2046 PubMed PMC
Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, Anso E, Glasauer A, Dufour E, Mutlu GM, Budigner GS et al (2014) metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife 3: e02242 PubMed PMC
Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13: 1016–1023 PubMed PMC
Yang C, Ko B, Hensley CT, Jiang L, Wasti AT, Kim J, Sudderth J, Calvaruso MA, Lumata L, Mitsche M et al (2014) Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol Cell 56: 414–424 PubMed PMC
Wise DR, Ward PS, Shay JE, Cross JR, Gruber JJ, Sachdeva UM, Platt JM, DeMatteo RG, Simon MC, Thompson CB (2011) Hypoxia promotes isocitrate dehydrogenase‐dependent carboxylation of α‐ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci USA 108: 19611–19616 PubMed PMC
Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L et al (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481: 380–384 PubMed PMC
Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, Yang Y, Linehan WM, Chandel NS, DeBerardinis RJ (2011) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481: 385–388 PubMed PMC
Scott DA, Richardson AD, Filipp FV, Knutzen CA, Chiang GG, Ronai ZA, Osterman AL, Smith JW (2011) Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect. J Biol Chem 286: 42626–42634 PubMed PMC
Boroughs LK, DeBerardinis RJ (2015) Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol 17: 351–359 PubMed PMC
Hu J, Yu H, Kornev AP, Zhao J, Filbert EL, Taylor SS, Shaw AS (2011) Mutation that blocks ATP binding creates a pseudokinase stabilizing the scaffolding function of kinase suppressor of Ras, CRAF and BRAF. Proc Natl Acad Sci USA 108: 6067–6072 PubMed PMC
Leicht DT, Balan V, Zhu J, Kaplun A, Bronisz A, Rana A, Tzivion G (2013) MEK‐1 activates C‐Raf through a Ras‐independent mechanism. Biochim Biophys Acta 1833: 976–986 PubMed PMC
Zheng B, Jeong JH, Asara JM, Yuan YY, Granter SR, Chin L, Cantley LC (2009) Oncogenic B‐RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation. Mol Cell 33: 237–247 PubMed PMC
Costanzo‐Garvey DL, Pfluger PT, Dougherty MK, Stock JL, Boehm M, Chaika O, Fernandez MR, Fisher K, Kortum RL, Hong EG et al (2009) KSR2 is an essential regulator of AMP kinase, energy expenditure, and insulin sensitivity. Cell Metab 10: 366–378 PubMed PMC
Pearce LR, Atanassova N, Banton MC, Bottomley B, van der Klaauw AA, Revelli JP, Hendricks A, Keogh JM, Henning E, Doree D et al (2013) KSR2 mutations are associated with obesity, insulin resistance, and impaired cellular fuel oxidation. Cell 155: 765–777 PubMed PMC
Bondzi C, Grant S, Krystal GW (2000) A novel assay for the measurement of Raf‐1 kinase activity. Oncogene 19: 5030–5033 PubMed
Dietmair S, Timmins NE, Gray PP, Nielsen LK, Krömer JO (2010) Towards quantitative metabolomics of mammalian cells: development of a metabolite extraction protocol. Anal Biochem 404: 155–164 PubMed
eIF4F controls ERK MAPK signaling in melanomas with BRAF and NRAS mutations
Dual Targeting of BRAF and mTOR Signaling in Melanoma Cells with Pyridinyl Imidazole Compounds