MD simulations reveal the basis for dynamic assembly of Hfq-RNA complexes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
PubMed
33857481
PubMed Central
PMC8121710
DOI
10.1016/j.jbc.2021.100656
PII: S0021-9258(21)00443-9
Knihovny.cz E-zdroje
- Klíčová slova
- ARN repeats, Crc protein, Hfq protein, RNA metabolism, RNA-binding protein, dynamic recognition, molecular dynamics, protein–nucleic acid interaction,
- MeSH
- bakteriální RNA chemie genetika metabolismus MeSH
- konformace nukleové kyseliny MeSH
- konformace proteinů MeSH
- nukleotidové motivy * MeSH
- protein hostitelského faktoru 1 chemie genetika metabolismus MeSH
- Pseudomonas aeruginosa genetika metabolismus MeSH
- regulace genové exprese u bakterií * MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální RNA MeSH
- protein hostitelského faktoru 1 MeSH
The conserved protein Hfq is a key factor in the RNA-mediated control of gene expression in most known bacteria. The transient intermediates Hfq forms with RNA support intricate and robust regulatory networks. In Pseudomonas, Hfq recognizes repeats of adenine-purine-any nucleotide (ARN) in target mRNAs via its distal binding side, and together with the catabolite repression control (Crc) protein, assembles into a translation-repression complex. Earlier experiments yielded static, ensemble-averaged structures of the complex, but details of its interface dynamics and assembly pathway remained elusive. Using explicit solvent atomistic molecular dynamics simulations, we modeled the extensive dynamics of the Hfq-RNA interface and found implications for the assembly of the complex. We predict that syn/anti flips of the adenine nucleotides in each ARN repeat contribute to a dynamic recognition mechanism between the Hfq distal side and mRNA targets. We identify a previously unknown binding pocket that can accept any nucleotide and propose that it may serve as a 'status quo' staging point, providing nonspecific binding affinity, until Crc engages the Hfq-RNA binary complex. The dynamical components of the Hfq-RNA recognition can speed up screening of the pool of the surrounding RNAs, participate in rapid accommodation of the RNA on the protein surface, and facilitate competition among different RNAs. The register of Crc in the ternary assembly could be defined by the recognition of a guanine-specific base-phosphate interaction between the first and last ARN repeats of the bound RNA. This dynamic substrate recognition provides structural rationale for the stepwise assembly of multicomponent ribonucleoprotein complexes nucleated by Hfq-RNA binding.
Department of Biochemistry University of Cambridge Cambridge United Kingdom
Institute of Biophysics of the Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Vogel J., Luisi B.F. Hfq and its constellation of RNA. Nat. Rev. Microbiol. 2011;9:578–589. PubMed PMC
Hoekzema M., Romilly C., Holmqvist E., Wagner E.G.H. Hfq-dependent mRNA unfolding promotes sRNA-based inhibition of translation. EMBO J. 2019;38 PubMed PMC
Azam M.S., Vanderpool C.K. Translational regulation by bacterial small RNAs via an unusual Hfq-dependent mechanism. Nucleic Acids Res. 2017;46:2585–2599. PubMed PMC
Kwiatkowska J., Wroblewska Z., Johnson K.A., Olejniczak M. The binding of class II sRNA MgrR to two different sites on matchmaker protein Hfq enables efficient competition for Hfq and annealing to regulated mRNAs. RNA. 2018;24:1761–1784. PubMed PMC
Vecerek B., Moll I., BLASI U. Translational autocontrol of the Escherichia coli Hfq RNA chaperone gene. RNA. 2005;11:976–984. PubMed PMC
Sonnleitner E., Wulf A., Campagne S., Pei X.-Y., Wolfinger M.T., Forlani G., Prindl K., Abdou L., Resch A., Allain F.H.-T., Luisi B.F., Urlaub H., Bläsi U. Interplay between the catabolite repression control protein Crc, Hfq and RNA in Hfq-dependent translational regulation in Pseudomonas aeruginosa. Nucleic Acids Res. 2018;46:1470–1485. PubMed PMC
Schumacher M.A., Pearson R.F., Møller T., Valentin-Hansen P., Brennan R.G. Structures of the pleiotropic translational regulator Hfq and an Hfq–RNA complex: A bacterial Sm-like protein. EMBO J. 2002;21:3546–3556. PubMed PMC
Link T.M., Valentin-Hansen P., Brennan R.G. Structure of Escherichia coli Hfq bound to polyriboadenylate RNA. Proc. Natl. Acad. Sci. U. S. A. 2009;106:19292–19297. PubMed PMC
Mikulecky P.J., Kaw M.K., Brescia C.C., Takach J.C., Sledjeski D.D., Feig A.L. Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs. Nat. Struct. Mol. Biol. 2004;11:1206–1214. PubMed PMC
Brennan R.G., Link T.M. Hfq structure, function and ligand binding. Curr. Opin. Microbiol. 2007;10:125–133. PubMed
Santiago-Frangos A., Kavita K., Schu D.J., Gottesman S., Woodson S.A. C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA. Proc. Natl. Acad. Sci. U. S. A. 2016;113:E6089–E6096. PubMed PMC
Wen B., Wang W., Zhang J., Gong Q., Shi Y., Wu J., Zhang Z. Structural and dynamic properties of the C-terminal region of the Escherichia coli RNA chaperone Hfq: Integrative experimental and computational studies. Phys. Chem. Chem. Phys. 2017;19:21152–21164. PubMed
Robinson K.E., Orans J., Kovach A.R., Link T.M., Brennan R.G. Mapping Hfq-RNA interaction surfaces using tryptophan fluorescence quenching. Nucleic Acids Res. 2014;42:2736–2749. PubMed PMC
Sonnleitner E., Bläsi U. Regulation of Hfq by the RNA CrcZ in Pseudomonas aeruginosa carbon catabolite repression. PLoS Genet. 2014;10 PubMed PMC
Van den Bossche A., Ceyssens P.-J., De Smet J., Hendrix H., Bellon H., Leimer N., Wagemans J., Delattre A.-S., Cenens W., Aertsen A., Landuyt B., Minakhin L., Severinov K., Noben J.-P., Lavigne R. Systematic identification of hypothetical bacteriophage proteins targeting key protein complexes of Pseudomonas aeruginosa. J. Proteome Res. 2014;13:4446–4456. PubMed
Milojevic T., Grishkovskaya I., Sonnleitner E., Djinovic-Carugo K., Bläsi U. The Pseudomonas aeruginosa catabolite repression control protein Crc is devoid of RNA binding activity. PLoS One. 2013;8 PubMed PMC
Wolff J.A., MacGregor C.H., Eisenberg R.C., Phibbs P.V. Isolation and characterization of catabolite repression control mutants of Pseudomonas aeruginosa PAO. J. Bacteriol. 1991;173:4700–4706. PubMed PMC
Sonnleitner E., Abdou L., Haas D. Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U. S. A. 2009;106:21866–21871. PubMed PMC
Pei X.Y., Dendooven T., Sonnleitner E., Chen S., Bläsi U., Luisi B.F. Architectural principles for Hfq/Crc-mediated regulation of gene expression. Elife. 2019;8 PubMed PMC
Nikulin A., Stolboushkina E., Perederina A., Vassilieva I., Blaesi U., Moll I., Kachalova G., Yokoyama S., Vassylyev D., Garber M., Nikonov S. Structure of Pseudomonas aeruginosa Hfq protein. Acta Crystallogr. D Biol. Crystallogr. 2005;61:141–146. PubMed
Šponer J., Bussi G., Krepl M., Banáš P., Bottaro S., Cunha R.A., Gil-Ley A., Pinamonti G., Poblete S., Jurečka P., Walter N.G., Otyepka M. RNA structural dynamics as captured by molecular simulations: A comprehensive overview. Chem. Rev. 2018;118:4177–4338. PubMed PMC
Nerenberg P.S., Head-Gordon T. New developments in force fields for biomolecular simulations. Curr. Opin. Struct. Biol. 2018;49:129–138. PubMed
Campagne S., Krepl M., Sponer J., Allain F.H.T. Chapter fourteen - combining NMR spectroscopy and molecular dynamic simulations to solve and analyze the structure of protein–RNA complexes. In: Wand A.J., editor. Methods Enzymol. Academic Press; Cambridge, MA: 2019. pp. 393–422. PubMed
Borišek J., Saltalamacchia A., Gallì A., Palermo G., Molteni E., Malcovati L., Magistrato A. Disclosing the impact of carcinogenic SF3b mutations on pre-mRNA recognition via all-atom simulations. Biomolecules. 2019;9 PubMed PMC
Sharma M., Sharma S., Alawada A. Understanding the binding specificities of mRNA targets by the mammalian quaking protein. Nucleic Acids Res. 2019;47:10564–10579. PubMed PMC
Casalino L., Palermo G., Spinello A., Rothlisberger U., Magistrato A. All-atom simulations disentangle the functional dynamics underlying gene maturation in the intron lariat spliceosome. Proc. Natl. Acad. Sci. U. S. A. 2018;115:6584–6589. PubMed PMC
Palermo G., Casalino L., Magistrato A., Andrew McCammon J. Understanding the mechanistic basis of non-coding RNA through molecular dynamics simulations. J. Struct. Biol. 2019;206:267–279. PubMed PMC
Sharma M., Anirudh C.R. Mechanism of mRNA-STAR domain interaction: Molecular dynamics simulations of mammalian quaking STAR protein. Sci. Rep. 2017;7 PubMed PMC
Górecka K.M., Krepl M., Szlachcic A., Poznański J., Šponer J., Nowotny M. RuvC uses dynamic probing of the holliday junction to achieve sequence specificity and efficient resolution. Nat. Commun. 2019;10 PubMed PMC
Ripin N., Boudet J., Duszczyk M.M., Hinniger A., Faller M., Krepl M., Gadi A., Schneider R.J., Šponer J., Meisner-Kober N.C., Allain F.H.-T. Molecular basis for AU-rich element recognition and dimerization by the HuR C-terminal RRM. Proc. Natl. Acad. Sci. U. S. A. 2019;116:2935–2944. PubMed PMC
Borkar A.N., Bardaro M.F., Camilloni C., Aprile F.A., Varani G., Vendruscolo M. Structure of a low-population binding intermediate in protein-RNA recognition. Proc. Natl. Acad. Sci. U. S. A. 2016;113:7171–7176. PubMed PMC
Fender A., Elf J., Hampel K., Zimmermann B., Wagner E.G.H. RNAs actively cycle on the Sm-like protein Hfq. Genes Dev. 2010;24:2621–2626. PubMed PMC
Wagner E.G.H. Cycling of RNAs on Hfq. RNA Biol. 2013;10:619–626. PubMed PMC
Krepl M., Havrila M., Stadlbauer P., Banas P., Otyepka M., Pasulka J., Stefl R., Sponer J. Can we execute stable microsecond-scale atomistic simulations of protein-RNA complexes? J. Chem. Theor. Comput. 2015;11:1220–1243. PubMed
Bergonzo C., Henriksen N.M., Roe D.R., Cheatham T.E. Highly sampled tetranucleotide and tetraloop motifs enable evaluation of common RNA force fields. RNA. 2015;21:1578–1590. PubMed PMC
Richardson J.S., Schneider B., Murray L.W., Kapral G.J., Immormino R.M., Headd J.J., Richardson D.C., Ham D., Hershkovits E., Williams L.D., Keating K.S., Pyle A.M., Micallef D., Westbrook J., Berman H.M. RNA backbone: Consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution) RNA. 2008;14:465–481. PubMed PMC
Zirbel C.L., Sponer J.E., Sponer J., Stombaugh J., Leontis N.B. Classification and energetics of the base-phosphate interactions in RNA. Nucleic Acids Res. 2009;37:4898–4918. PubMed PMC
Daubner G.M., Cléry A., Jayne S., Stevenin J., Allain F.H.-T. A syn–anti conformational difference allows SRSF2 to recognize guanines and cytosines equally well. EMBO J. 2012;31:162–174. PubMed PMC
Kligun E., Mandel-Gutfreund Y. The role of RNA conformation in RNA-protein recognition. RNA Biol. 2015;12:720–727. PubMed PMC
Schulz E.C., Seiler M., Zuliani C., Voigt F., Rybin V., Pogenberg V., Mücke N., Wilmanns M., Gibson T.J., Barabas O. Intermolecular base stacking mediates RNA-RNA interaction in a crystal structure of the RNA chaperone Hfq. Sci. Rep. 2017;7 PubMed PMC
Horstmann N., Orans J., Valentin-Hansen P., Shelburne S.A., III, Brennan R.G. Structural mechanism of Staphylococcus aureus Hfq binding to an RNA A-tract. Nucleic Acids Res. 2012;40:11023–11035. PubMed PMC
Wlodawer A., Minor W., Dauter Z., Jaskolski M. Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J. 2008;275:1–21. PubMed PMC
Chou F.-C., Sripakdeevong P., Dibrov S.M., Hermann T., Das R. Correcting pervasive errors in RNA crystallography through enumerative structure prediction. Nat. Methods. 2012;10:74. PubMed PMC
Krepl M., Blatter M., Cléry A., Damberger F.F., Allain F.H.T., Sponer J. Structural study of the fox-1 RRM protein hydration reveals a role for key water molecules in RRM-RNA recognition. Nucleic Acids Res. 2017;45:8046–8063. PubMed PMC
Atakisi H., Moreau D.W., Thorne R.E. Effects of protein-crystal hydration and temperature on side-chain conformational heterogeneity in monoclinic lysozyme crystals. Acta Crystallogr. D Struct. Biol. 2018;74:264–278. PubMed PMC
Ganser L.R., Kelly M.L., Herschlag D., Al-Hashimi H.M. The roles of structural dynamics in the cellular functions of RNAs. Nat. Rev. Mol. Cell Biol. 2019;20:474–489. PubMed PMC
Santiago-Frangos A., Woodson S.A. Hfq chaperone brings speed dating to bacterial sRNA. Wiley Interdiscip. Rev. RNA. 2018;9 PubMed PMC
Krepl M., Cléry A., Blatter M., Allain F.H.T., Sponer J. Synergy between NMR measurements and MD simulations of protein/RNA complexes: Application to the RRMs, the most common RNA recognition motifs. Nucleic Acids Res. 2016;44:6452–6470. PubMed PMC
Šponer J., Leszczyński J., Hobza P. Nature of nucleic acid−base stacking: Nonempirical ab Initio and empirical potential characterization of 10 stacked base dimers. Comparison of stacked and H-bonded base pairs. J. Phys. Chem. 1996;100:5590–5596.
Šponer J., Jurečka P., Marchan I., Luque F.J., Orozco M., Hobza P. Nature of base stacking: Reference quantum-chemical stacking energies in ten unique B-DNA base-pair steps. Chemistry. 2006;12:2854–2865. PubMed
Šponer J., Riley K.E., Hobza P. Nature and magnitude of aromatic stacking of nucleic acid bases. Phys. Chem. Chem. Phys. 2008;10:2595–2610. PubMed
Sponer J., Sponer J.E., Mladek A., Jurecka P., Banas P., Otyepka M. Nature and magnitude of aromatic base stacking in DNA and RNA: Quantum chemistry, molecular mechanics, and experiment. Biopolymers. 2013;99:978–988. PubMed
Wang L., Wang W., Li F., Zhang J., Wu J., Gong Q., Shi Y. Structural insights into the recognition of the internal A-rich linker from OxyS sRNA by Escherichia coli Hfq. Nucleic Acids Res. 2015;43:2400–2411. PubMed PMC
Case IYB-SDA, Brozell S.R., Cerutti D.S., Cheatham T.E., III, Cruzeiro V.W.D., Darden T.A., Duke R.E., Ghoreishi D., Gilson M.K., Gohlke H., Goetz A.W., Greene D., Harris R., Homeyer N., Izadi S. University of California; San Francisco, San Francisco, CA: 2018. AMBER 18.
Zgarbova M., Otyepka M., Sponer J., Mladek A., Banas P., Cheatham T.E., Jurecka P. Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theor. Comput. 2011;7:2886–2902. PubMed PMC
Maier J.A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K., Simmerling C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theor. Comput. 2015;11:3696–3713. PubMed PMC
Šponer J., Krepl M., Banáš P., Kührová P., Zgarbová M., Jurečka P., Havrila M., Otyepka M. How to understand atomistic molecular dynamics simulations of RNA and protein–RNA complexes? Wiley Interdiscip. Rev. RNA. 2017;8 PubMed
Kuhrova P., Best R., Bottaro S., Bussi G., Sponer J., Otyepka M., Banas P. Computer folding of RNA tetraloops: Identification of key force field deficiencies. J. Chem. Theor. Comput. 2016;12:4534–4548. PubMed PMC
Noel J.K., Levi M., Raghunathan M., Lammert H., Hayes R.L., Onuchic J.N., Whitford P.C. SMOG 2: A versatile software package for generating structure-based models. PLoS Comput. Biol. 2016;12 PubMed PMC
Berendsen H.J.C., Grigera J.R., Straatsma T.P. The missing term in effective pair potentials. J. Phys. Chem. 1987;91:6269–6271.
Joung I.S., Cheatham T.E. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008;112:9020–9041. PubMed PMC
Krepl M., Vögele J., Kruse H., Duchardt-Ferner E., Wöhnert J., Sponer J. An intricate balance of hydrogen bonding, ion atmosphere and dynamics facilitates a seamless uracil to cytosine substitution in the U-turn of the neomycin-sensing riboswitch. Nucleic Acids Res. 2018;46:6528–6543. PubMed PMC
Le Grand S., Götz A.W., Walker R.C. SPFP: Speed without compromise—a mixed precision model for GPU accelerated molecular dynamics simulations. Comput. Phys. Commun. 2013;184:374–380.
Ryckaert J.P., Ciccotti G., Berendsen H.J.C. Numerical-integration of cartesian equations of motion of a system with constraints - molecular-dynamics of N-alkanes. J. Comput. Phys. 1977;23:327–341.
Hopkins C.W., Le Grand S., Walker R.C., Roitberg A.E. Long-time-step molecular dynamics through hydrogen mass repartitioning. J. Chem. Theor. Comput. 2015;11:1864–1874. PubMed
Darden T., York D., Pedersen L. Particle mesh Ewald - an N.Log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993;98
Roe D.R., Cheatham T.E. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theor. Comput. 2013;9:3084–3095. PubMed
Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. PubMed
Merritt E.A., Bacon D.J. Raster3D: Photorealistic molecular graphics. In: Carter C.W., Sweet R.M., editors. Macromolecular Crystallography, Pt B. Elsevier Academic Press Inc; San Diego, CA: 1997. pp. 505–524.
Zhao J., Kennedy S.D., Berger K.D., Turner D.H. Nuclear magnetic resonance of single-stranded RNAs and DNAs of CAAU and UCAAUC as benchmarks for molecular dynamics simulations. J. Chem. Theor. Comput. 2020;16:1968–1984. PubMed
Mlýnský V., Kührová P., Kühr T., Otyepka M., Bussi G., Banáš P., Šponer J. Fine-tuning of the AMBER RNA force field with a new term adjusting interactions of terminal nucleotides. J. Chem. Theor. Comput. 2020;16:3936–3946. PubMed
Kuhrova P., Mlynsky V., Zgarbova M., Krepl M., Bussi G., Best R.B., Otyepka M., Sponer J., Banas P. Improving the performance of the RNA amber force field by tuning the hydrogen-bonding interactions. J. Chem. Theor. Comput. 2019;15:3288–3305. PubMed PMC
Bottaro S., Bussi G., Kennedy S.D., Turner D.H., Lindorff-Larsen K. Conformational ensembles of RNA oligonucleotides from integrating NMR and molecular simulations. Sci. Adv. 2018;4 PubMed PMC
Szabla R., Havrila M., Kruse H., Šponer J. Comparative assessment of different RNA tetranucleotides from the DFT-D3 and force field perspective. J. Phys. Chem. B. 2016;120:10635–10648. PubMed
Bergonzo C., Henriksen N.M., Roe D.R., Swails J.M., Roitberg A.E., Cheatham T.E. Multidimensional replica exchange molecular dynamics yields a converged ensemble of an RNA tetranucleotide. J. Chem. Theor. Comput. 2014;10:492–499. PubMed PMC
Condon D.E., Kennedy S.D., Mort B.C., Kierzek R., Yildirim I., Turner D.H. Stacking in RNA: NMR of four tetramers benchmark molecular dynamics. J. Chem. Theor. Comput. 2015;11:2729–2742. PubMed PMC
Banáš P., Mládek A., Otyepka M., Zgarbová M., Jurečka P., Svozil D., Lankaš F., Šponer J. Can we accurately describe the structure of adenine tracts in B-DNA? Reference quantum-chemical computations reveal overstabilization of stacking by molecular mechanics. J. Chem. Theor. Comput. 2012;8:2448–2460. PubMed