RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy
Grantová podpora
R01 GM062357
NIGMS NIH HHS - United States
R01 GM118524
NIGMS NIH HHS - United States
R01 GM122803
NIGMS NIH HHS - United States
PubMed
29297679
PubMed Central
PMC5920944
DOI
10.1021/acs.chemrev.7b00427
Knihovny.cz E-zdroje
- MeSH
- DNA chemie MeSH
- katalýza MeSH
- konformace nukleové kyseliny * MeSH
- počítačová simulace MeSH
- RNA chemie MeSH
- simulace molekulární dynamiky * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- DNA MeSH
- RNA MeSH
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Zobrazit více v PubMed
Crick F. Central Dogma of Molecular Biology. Nature 1970, 227, 561–563. 10.1038/227561a0. PubMed DOI
Sharp S. J.; Schaack J.; Cooley L.; Burke D. J.; Soil D. Structure and Transcription of Eukaryotic tRNA Gene. CRC Crit. Rev. Biochem. 1985, 19, 107–144. 10.3109/10409238509082541. PubMed DOI
Ogle J. M.; Ramakrishnan V. Structural Insights into Translational Fidelity. Annu. Rev. Biochem. 2005, 74, 129–177. 10.1146/annurev.biochem.74.061903.155440. PubMed DOI
Ogle J. M.; Carter A. P.; Ramakrishnan V. Insights Into the Decoding Mechanism From Recent Ribosome Structures. Trends Biochem. Sci. 2003, 28, 259–266. 10.1016/S0968-0004(03)00066-5. PubMed DOI
Pereira M. J. B.; Harris D. A.; Rueda D.; Walter N. G. Reaction Pathway of the Trans-acting Hepatitis Delta Virus Ribozyme: A Conformational Change Accompanies Catalysis. Biochemistry 2002, 41, 730–740. 10.1021/bi011963t. PubMed DOI
Kruger K.; Grabowski P. J.; Zaug A. J.; Sands J.; Gottschling D. E.; Cech T. R. Self-splicing RNA: Autoexcision and Autocyclization of the Ribosomal RNA Intervening Sequence of Tetrahymena. Cell 1982, 31, 147–157. 10.1016/0092-8674(82)90414-7. PubMed DOI
Emilsson G. M.; Nakamura S.; Roth A.; Breaker R. R. Ribozyme Speed Limits. RNA 2003, 9, 907–918. 10.1261/rna.5680603. PubMed DOI PMC
Carter A. P.; Clemons W. M.; Brodersen D. E.; Morgan-Warren R. J.; Wimberly B. T.; Ramakrishnan V. Functional Insights from the Structure of the 30S Ribosomal Subunit and its Interactions with Antibiotics. Nature 2000, 407, 340–348. 10.1038/35030019. PubMed DOI
Korostelev A.; Ermolenko D. N.; Noller H. F. Structural Dynamics of the Ribosome. Curr. Opin. Chem. Biol. 2008, 12, 674–683. 10.1016/j.cbpa.2008.08.037. PubMed DOI PMC
Schuwirth B. S.; Borovinskaya M. A.; Hau C. W.; Zhang W.; Vila-Sanjurjo A.; Holton J. M.; Cate J. H. D. Structures of the Bacterial Ribosome at 3.5 Å Resolution. Science 2005, 310, 827–834. 10.1126/science.1117230. PubMed DOI
Ben-Shem A.; de Loubresse N. G.; Melnikov S.; Jenner L.; Yusupova G.; Yusupov M. The Structure of the Eukaryotic Ribosome at 3.0 angstrom Resolution. Science 2011, 334, 1524–1529. 10.1126/science.1212642. PubMed DOI
Demeshkina N.; Jenner L.; Westhof E.; Yusupov M.; Yusupova G. A New Understanding of the Decoding Principle on the Ribosome. Nature 2012, 484, 256–259. 10.1038/nature10913. PubMed DOI
Harms J.; Schluenzen F.; Zarivach R.; Bashan A.; Gat S.; Agmon I.; Bartels H.; Franceschi F.; Yonath A. High Resolution Structure of the Large Ribosomal Subunit from a Mesophilic Eubacterium. Cell 2001, 107, 679–688. 10.1016/S0092-8674(01)00546-3. PubMed DOI
Laurberg M.; Asahara H.; Korostelev A.; Zhu J. Y.; Trakhanov S.; Noller H. F. Structural Basis for Translation Termination on the 70S Ribosome. Nature 2008, 454, 852–857. 10.1038/nature07115. PubMed DOI
Ban N.; Nissen P.; Hansen J.; Moore P. B.; Steitz T. A. The Complete Atomic Structure of the Large Ribosomal Subunit at 2.4 angstrom Resolution. Science 2000, 289, 905–920. 10.1126/science.289.5481.905. PubMed DOI
Cech T. R. The Ribosome Is a Ribozyme. Science 2000, 289, 878–879. 10.1126/science.289.5481.878. PubMed DOI
Crick F. H. C. The Origin of the Genetic Code. J. Mol. Biol. 1968, 38, 367–379. 10.1016/0022-2836(68)90392-6. PubMed DOI
Orgel L. E. Evolution of the Genetic Apparatus. J. Mol. Biol. 1968, 38, 381–393. 10.1016/0022-2836(68)90393-8. PubMed DOI
Woese C. R.The Genetic Code: The Molecular Basis for Genetic Expression; Harper & Row: New York, 1967.
Serganov A.; Nudler E. A Decade of Riboswitches. Cell 2013, 152, 17–24. 10.1016/j.cell.2012.12.024. PubMed DOI PMC
Wilson R. C.; Doudna J. A.. Molecular Mechanisms of RNA Interference. In Annual Review of Biophysics; Dill K. A., Ed.; Annual Reviews: Palo Alto, CA, 2013; Vol. 42, pp 217–239. PubMed PMC
Pitchiaya S.; Heinicke L. A.; Custer T. C.; Walter N. G. Single Molecule Fluorescence Approaches Shed Light on Intracellular RNAs. Chem. Rev. 2014, 114, 3224–3265. 10.1021/cr400496q. PubMed DOI PMC
Djebali S.; Davis C. A.; Merkel A.; Dobin A.; Lassmann T.; Mortazavi A.; Tanzer A.; Lagarde J.; Lin W.; Schlesinger F.; et al. Landscape of Transcription in Human Cells. Nature 2012, 489, 101–108. 10.1038/nature11233. PubMed DOI PMC
Guttman M.; Amit I.; Garber M.; French C.; Lin M. F.; Feldser D.; Huarte M.; Zuk O.; Carey B. W.; Cassady J. P.; et al. Chromatin Signature Reveals over a Thousand Highly Conserved Large Non-coding RNAs in Mammals. Nature 2009, 458, 223–227. 10.1038/nature07672. PubMed DOI PMC
Belinky F.; Bahir I.; Stelzer G.; Zimmerman S.; Rosen N.; Nativ N.; Dalah I.; Iny Stein T.; Rappaport N.; Mituyama T.; et al. Non-redundant Compendium of Human ncRNA Genes in GeneCards. Bioinformatics 2013, 29, 255–261. 10.1093/bioinformatics/bts676. PubMed DOI
Huarte M. The Emerging Role of lncRNAs in Cancer. Nat. Med. 2015, 21, 1253–1261. 10.1038/nm.3981. PubMed DOI
Diederichs S.; Bartsch L.; Berkmann J. C.; Fröse K.; Heitmann J.; Hoppe C.; Iggena D.; Jazmati D.; Karschnia P.; Linsenmeier M.; et al. The Dark Matter of the Cancer Genome: Aberrations in Regulatory Elements, Untranslated Regions, Splice Sites, Non-coding RNA and Synonymous Mutations. EMBO Mol. Med. 2016, 8, 442–457. 10.15252/emmm.201506055. PubMed DOI PMC
Ranum L. P. W.; Day J. W. Myotonic Dystrophy: RNA Pathogenesis Comes into Focus. Am. J. Hum. Genet. 2004, 74, 793–804. 10.1086/383590. PubMed DOI PMC
Cooper T. A.; Wan L.; Dreyfuss G. RNA and Disease. Cell 2009, 136, 777–793. 10.1016/j.cell.2009.02.011. PubMed DOI PMC
Cheetham S. W.; Gruhl F.; Mattick J. S.; Dinger M. E. Long Noncoding RNAs and the Genetics of Cancer. Br. J. Cancer 2013, 108, 2419–2425. 10.1038/bjc.2013.233. PubMed DOI PMC
Bracken C. P.; Scott H. S.; Goodall G. J. A Network-biology Perspective of MicroRNA Function and Dysfunction in Cancer. Nat. Rev. Genet. 2016, 17, 719–732. 10.1038/nrg.2016.134. PubMed DOI
Khurana E.; Fu Y.; Chakravarty D.; Demichelis F.; Rubin M. A.; Gerstein M. Role of Non-coding Sequence Variants in Cancer. Nat. Rev. Genet. 2016, 17, 93–108. 10.1038/nrg.2015.17. PubMed DOI
Lünse C. E.; Schüller A.; Mayer G. The Promise of Riboswitches as Potential Antibacterial Drug Targets. Int. J. Med. Microbiol. 2014, 304, 79–92. 10.1016/j.ijmm.2013.09.002. PubMed DOI
Colameco S.; Elliot M. A. Non-coding RNAs as Antibiotic Targets. Biochem. Pharmacol. 2017, 133, 29–42. 10.1016/j.bcp.2016.12.015. PubMed DOI
Blount K. F.; Breaker R. R. Riboswitches as Antibacterial Drug Targets. Nat. Biotechnol. 2006, 24, 1558–1564. 10.1038/nbt1268. PubMed DOI
Blount K. F.; Megyola C.; Plummer M.; Osterman D.; O’Connell T.; Aristoff P.; Quinn C.; Chrusciel R. A.; Poel T. J.; Schostarez H. J.; et al. Novel Riboswitch-Binding Flavin Analog That Protects Mice against Clostridium difficile Infection without Inhibiting Cecal Flora. Antimicrob. Agents Chemother. 2015, 59, 5736–5746. 10.1128/AAC.01282-15. PubMed DOI PMC
Howe J. A.; Wang H.; Fischmann T. O.; Balibar C. J.; Xiao L.; Galgoci A. M.; Malinverni J. C.; Mayhood T.; Villafania A.; Nahvi A.; et al. Selective Small-molecule Inhibition of an RNA Structural Element. Nature 2015, 526, 672–677. 10.1038/nature15542. PubMed DOI
Šponer J. E.; Šponer J.; Mauro E. D. New Evolutionary Insights Into the Non-enzymatic Origin of RNA Oligomers. Wiley Interdiscip. Rev.: RNA 2017, 8, e1400.10.1002/wrna.1400. PubMed DOI
Leontis N. B.; Stombaugh J.; Westhof E. The Non-Watson-Crick Base Pairs and their Associated Isostericity Matrices. Nucleic Acids Res. 2002, 30, 3497–3531. PubMed PMC
Leontis N. B.; Westhof E. Geometric Nomenclature and Classification of RNA Base Pairs. RNA 2001, 7, 499–512. 10.1017/S1355838201002515. PubMed DOI PMC
Sponer J.; Sponer J. E.; Petrov A. I.; Leontis N. B. Quantum Chemical Studies of Nucleic Acids Can We Construct a Bridge to the RNA Structural Biology and Bioinformatics Communities?. J. Phys. Chem. B 2010, 114, 15723–15741. 10.1021/jp104361m. PubMed DOI PMC
Stombaugh J.; Zirbel C. L.; Westhof E.; Leontis N. B. Frequency and Isostericity of RNA Base Pairs. Nucleic Acids Res. 2009, 37, 2294–2312. 10.1093/nar/gkp011. PubMed DOI PMC
Zhao B. S.; Roundtree I. A.; He C. Post-transcriptional Gene Regulation by mRNA Modifications. Nat. Rev. Mol. Cell Biol. 2017, 18, 31–42. 10.1038/nrm.2016.132. PubMed DOI PMC
Mathews D. H.; Sabina J.; Zuker M.; Turner D. H. Expanded Sequence Dependence of Thermodynamic Parameters Improves Prediction of RNA Secondary Structure. J. Mol. Biol. 1999, 288, 911–940. 10.1006/jmbi.1999.2700. PubMed DOI
Mathews D. H.; Turner D. H. Prediction of RNA Secondary Structure by Free Energy Minimization. Curr. Opin. Struct. Biol. 2006, 16, 270–278. 10.1016/j.sbi.2006.05.010. PubMed DOI
Turner D. H.; Sugimoto N.; Freier S. M. RNA Structure Prediction. Annu. Rev. Biophys. Biophys. Chem. 1988, 17, 167–192. 10.1146/annurev.bb.17.060188.001123. PubMed DOI
Mokdad A.; Krasovska M. V.; Sponer J.; Leontis N. B. Structural and Evolutionary Classification of G/U Wobble Basepairs in the Ribosome. Nucleic Acids Res. 2006, 34, 1326–1341. 10.1093/nar/gkl025. PubMed DOI PMC
Hull C. M.; Bevilacqua P. C. Discriminating Self and Non-Self by RNA: Roles for RNA Structure, Misfolding, and Modification in Regulating the Innate Immune Sensor PKR. Acc. Chem. Res. 2016, 49, 1242–1249. 10.1021/acs.accounts.6b00151. PubMed DOI PMC
Sweeney B. A.; Roy P.; Leontis N. B. An Introduction to Recurrent Nucleotide Interactions in RNA. Wiley Interdiscip. Rev.: RNA 2015, 6, 17–45. 10.1002/wrna.1258. PubMed DOI
Zirbel C. L.; Sponer J. E.; Sponer J.; Stombaugh J.; Leontis N. B. Classification and Energetics of the Base-Phosphate Interactions in RNA. Nucleic Acids Res. 2009, 37, 4898–4918. 10.1093/nar/gkp468. PubMed DOI PMC
Leontis N. B.; Westhof E. The 5S rRNA Loop E: Chemical Probing and Phylogenetic Data Versus Crystal Structure. RNA 1998, 4, 1134–1153. 10.1017/S1355838298980566. PubMed DOI PMC
Sarver M.; Zirbel C. L.; Stombaugh J.; Mokdad A.; Leontis N. B. FR3D: Finding Local and Composite Recurrent Structural Motifs in RNA 3D Structures. J. Math. Biol. 2008, 56, 215–252. 10.1007/s00285-007-0110-x. PubMed DOI PMC
Petrov A. I.; Zirbel C. L.; Leontis N. B. Automated Classification of RNA 3D motifs and the RNA 3D Motif Atlas. RNA 2013, 19, 1327–1340. 10.1261/rna.039438.113. PubMed DOI PMC
Leontis N. B.; Westhof E. Analysis of RNA Motifs. Curr. Opin. Struct. Biol. 2003, 13, 300–308. 10.1016/S0959-440X(03)00076-9. PubMed DOI
Lescoute A.; Leontis N. B.; Massire C.; Westhof E. Recurrent Structural RNA Motifs, Isostericity Matrices and Sequence Alignments. Nucleic Acids Res. 2005, 33, 2395–2409. 10.1093/nar/gki535. PubMed DOI PMC
Leontis N. B.; Westhof E. A Common Motif Organizes the Structure of Multi-helix Loops in 16 and 23 S Ribosomal RNAs. J. Mol. Biol. 1998, 283, 571–583. 10.1006/jmbi.1998.2106. PubMed DOI
Richardson J. S.; Schneider B.; Murray L. W.; Kapral G. J.; Immormino R. M.; Headd J. J.; Richardson D. C.; Ham D.; Hershkovits E.; Williams L. D.; et al. RNA backbone: Consensus All-angle Conformers and Modular String Nomenclature (An RNA Ontology Consortium Contribution). RNA 2008, 14, 465–481. 10.1261/rna.657708. PubMed DOI PMC
Sponer J.; Mladek A.; Sponer J. E.; Svozil D.; Zgarbova M.; Banas P.; Jurecka P.; Otyepka M. The DNA and RNA Sugar-Phosphate Backbone Emerges as the Key Player. An Overview of Quantum-chemical, Structural Biology and Simulation Studies. Phys. Chem. Chem. Phys. 2012, 14, 15257–15277. 10.1039/c2cp41987d. PubMed DOI
Zirbel C. L.; Roll J.; Sweeney B. A.; Petrov A. I.; Pirrung M.; Leontis N. B. Identifying Novel Sequence Variants of RNA 3D Motifs. Nucleic Acids Res. 2015, 43, 7504–7520. 10.1093/nar/gkv651. PubMed DOI PMC
Hsiao C.; Mohan S.; Hershkovitz E.; Tannenbaum A.; Williams L. D. Single Nucleotide RNA Choreography. Nucleic Acids Res. 2006, 34, 1481–1491. 10.1093/nar/gkj500. PubMed DOI PMC
Parlea L. G.; Sweeney B. A.; Hosseini-Asanjan M.; Zirbel C. L.; Leontis N. B. The RNA 3D Motif Atlas: Computational Methods for Extraction, Organization and Evaluation of RNA Motifs. Methods 2016, 103, 99–119. 10.1016/j.ymeth.2016.04.025. PubMed DOI PMC
Aboul-ela F.; Karn J.; Varani G. Structure of HIV-1 TAR RNA in the Absence of Ligands Reveals a Novel Conformation of the Trinucleotide Bulge. Nucleic Acids Res. 1996, 24, 3974–3981. PubMed PMC
Shen L. X.; Tinoco J. I. The Structure of an RNA Pseudoknot that Causes Efficient Frameshifting in Mouse Mammary Tumor Virus. J. Mol. Biol. 1995, 247, 963–978. 10.1006/jmbi.1995.0193. PubMed DOI
Gultyaev A. P.; Olsthoorn R. C. L.; Pleij C. W. A.; Westhof E.. RNA Structure: Pseudoknots. eLS; John Wiley & Sons, Ltd.: Chichester, 2012.
Jaeger L.; Verzemnieks E. J.; Geary C. The UA_handle: A Versatile Submotif in Stable RNA Architectures. Nucleic Acids Res. 2009, 37, 215–230. 10.1093/nar/gkn911. PubMed DOI PMC
Koculi E.; Cho S. S.; Desai R.; Thirumalai D.; Woodson S. A. Folding Path of P5abc RNA Involves Direct Coupling of Secondary and Tertiary Structures. Nucleic Acids Res. 2012, 40, 8011–8020. 10.1093/nar/gks468. PubMed DOI PMC
Brion P.; Westhof E. Hierarchy and Dynamics of RNA Folding. Annu. Rev. Biophys. Biomol. Struct. 1997, 26, 113–137. 10.1146/annurev.biophys.26.1.113. PubMed DOI
Tinoco I.; Bustamante C. How RNA Folds. J. Mol. Biol. 1999, 293, 271–281. 10.1006/jmbi.1999.3001. PubMed DOI
Woodson S. A. Compact Intermediates in RNA Folding. Annu. Rev. Biophys. 2010, 39, 61–77. 10.1146/annurev.biophys.093008.131334. PubMed DOI PMC
Rinnenthal J.; Buck J.; Ferner J.; Wacker A.; Fürtig B.; Schwalbe H. Mapping the Landscape of RNA Dynamics with NMR Spectroscopy. Acc. Chem. Res. 2011, 44, 1292–1301. 10.1021/ar200137d. PubMed DOI
Watters K. E.; Strobel E. J.; Yu A. M.; Lis J. T.; Lucks J. B. Cotranscriptional Folding of a Riboswitch at Nucleotide Resolution. Nat. Struct. Mol. Biol. 2016, 23, 1124–1131. 10.1038/nsmb.3316. PubMed DOI PMC
Al-Hashimi H. M.; Walter N. G. RNA Dynamics: It Is about Time. Curr. Opin. Struct. Biol. 2008, 18, 321–329. 10.1016/j.sbi.2008.04.004. PubMed DOI PMC
Shaw D. E.; Deneroff M. M.; Dror R. O.; Kuskin J. S.; Larson R. H.; Salmon J. K.; Young C.; Batson B.; Bowers K. J.; Chao J. C.; et al. Anton, a Special-purpose Machine for Molecular Dynamics Simulation. Commun. ACM 2008, 51, 91–97. 10.1145/1364782.1364802. DOI
Shirts M.; Pande V. S. Screen Savers of the World Unite!. Science 2000, 290, 1903–1904. 10.1126/science.290.5498.1903. PubMed DOI
Pande V. S.; Baker I.; Chapman J.; Elmer S. P.; Khaliq S.; Larson S. M.; Rhee Y. M.; Shirts M. R.; Snow C. D.; Sorin E. J.; et al. Atomistic Protein Folding Simulations on the Submillisecond Time Scale Using Worldwide Distributed Computing. Biopolymers 2003, 68, 91–109. 10.1002/bip.10219. PubMed DOI
Islam B.; Stadlbauer P.; Gil Ley A.; Pérez-Hernández G.; Haider S.; Neidle S.; Bussi G.; Banáš P.; Otyepka M.; Sponer J. Exploring the Dynamics of Propeller Loops in Human Telomeric DNA Quadruplexes Using Atomistic Simulations. J. Chem. Theory Comput. 2017, 13, 2458–2480. 10.1021/acs.jctc.7b00226. PubMed DOI PMC
Fadrna E.; Spackova N.; Sarzynska J.; Koca J.; Orozco M.; Cheatham T. E.; Kulinski T.; Sponer J. Single Stranded Loops of Quadruplex DNA As Key Benchmark for Testing Nucleic Acids Force Fields. J. Chem. Theory Comput. 2009, 5, 2514–2530. 10.1021/ct900200k. PubMed DOI
Smith L. G.; Zhao J.; Mathews D. H.; Turner D. H. Physics-based All-atom Modeling of RNA Energetics and Structure. Wiley Interdiscip. Rev.: RNA 2017, 8, e142210.1002/wrna.1422. PubMed DOI PMC
Case D. A.; Cheatham T. E.; Darden T.; Gohlke H.; Luo R.; Merz K. M.; Onufriev A.; Simmerling C.; Wang B.; Woods R. J. The Amber Biomolecular Simulation Programs. J. Comput. Chem. 2005, 26, 1668–1688. 10.1002/jcc.20290. PubMed DOI PMC
Cornell W. D.; Cieplak P.; Bayly C. I.; Gould I. R.; Merz K. M.; Ferguson D. M.; Spellmeyer D. C.; Fox T.; Caldwell J. W.; Kollman P. A. A 2nd Generation Force-Field for the Simulation of Proteins, Nucleic-Acids, and Organic-Molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197. 10.1021/ja00124a002. DOI
Savelyev A.; MacKerell A. D. All-atom Polarizable Force Field for DNA Based on the Classical Drude Oscillator Model. J. Comput. Chem. 2014, 35, 1219–1239. 10.1002/jcc.23611. PubMed DOI PMC
Lemkul J. A.; MacKerell A. D. Polarizable Force Field for DNA Based on the Classical Drude Oscillator: I. Refinement Using Quantum Mechanical Base Stacking and Conformational Energetics. J. Chem. Theory Comput. 2017, 13, 2053–2071. 10.1021/acs.jctc.7b00067. PubMed DOI PMC
Lemkul J. A.; MacKerell A. D. Polarizable Force Field for DNA Based on the Classical Drude Oscillator: II. Microsecond Molecular Dynamics Simulations of Duplex DNA. J. Chem. Theory Comput. 2017, 13, 2072–2085. 10.1021/acs.jctc.7b00068. PubMed DOI PMC
Brooks B. R.; Brooks C. L.; Mackerell A. D.; Nilsson L.; Petrella R. J.; Roux B.; Won Y.; Archontis G.; Bartels C.; Boresch S.; et al. CHARMM: The Biomolecular Simulation Program. J. Comput. Chem. 2009, 30, 1545–1614. 10.1002/jcc.21287. PubMed DOI PMC
Kruse H.; Mladek A.; Gkionis K.; Hansen A.; Grimme S.; Sponer J. Quantum Chemical Benchmark Study on 46 RNA Backbone Families Using a Dinucleotide Unit. J. Chem. Theory Comput. 2015, 11, 4972–4991. 10.1021/acs.jctc.5b00515. PubMed DOI
Kruse H.; Havrila M.; Sponer J. QM Computations on Complete Nucleic Acids Building Blocks: Analysis of the Sarcin-Ricin RNA Motif Using DFT-D3, HF-3c, PM6-D3H, and MM Approaches. J. Chem. Theory Comput. 2014, 10, 2615–2629. 10.1021/ct500183w. PubMed DOI
Pranata J.; Wierschke S. G.; Jorgensen W. L. OPLS potential functions for nucleotide bases. Relative association constants of hydrogen-bonded base pairs in chloroform. J. Am. Chem. Soc. 1991, 113, 2810–2819. 10.1021/ja00008a002. DOI
Cieplak P.; Cornell W. D.; Bayly C.; Kollman P. A. Application of the Multimolecule and Multiconformational RESP Methodology to Biopolymers: Charge Derivation for DNA, RNA, and Proteins. J. Comput. Chem. 1995, 16, 1357–1377. 10.1002/jcc.540161106. DOI
MacKerell A. D.; Banavali N.; Foloppe N. Development and Current Status of the CHARMM Force Field for Nucleic Acids. Biopolymers 2000, 56, 257–265. 10.1002/1097-0282(2000)56:4<257::AID-BIP10029>3.0.CO;2-W. PubMed DOI
Wang J. M.; Cieplak P.; Kollman P. A. How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules?. J. Comput. Chem. 2000, 21, 1049–1074. 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F. DOI
Dupradeau F.-Y.; Pigache A.; Zaffran T.; Savineau C.; Lelong R.; Grivel N.; Lelong D.; Rosanski W.; Cieplak P. The R.E.D. Tools: Advances in RESP and ESP Charge Derivation and Force Field Library Building. Phys. Chem. Chem. Phys. 2010, 12, 7821–7839. 10.1039/c0cp00111b. PubMed DOI PMC
Sponer J.; Cang X. H.; Cheatham T. E. Molecular Dynamics Simulations of G-DNA and Perspectives on the Simulation of Nucleic Acid Structures. Methods 2012, 57, 25–39. 10.1016/j.ymeth.2012.04.005. PubMed DOI PMC
Cheatham T. E.; Case D. A. Twenty-five Years of Nucleic Acid Simulations. Biopolymers 2013, 99, 969–977. PubMed PMC
Zgarbova M.; Otyepka M.; Sponer J.; Mladek A.; Banas P.; Cheatham T. E.; Jurecka P.; et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. J. Chem. Theory Comput. 2011, 7, 2886–2902. 10.1021/ct200162x. PubMed DOI PMC
Perez A.; Marchan I.; Svozil D.; Sponer J.; Cheatham T. E.; Laughton C. A.; Orozco M. Refinenement of the AMBER Force Field for Nucleic Acids: Improving the Description of Alpha/Gamma Conformers. Biophys. J. 2007, 92, 3817–3829. 10.1529/biophysj.106.097782. PubMed DOI PMC
MacKerell A. D.; Feig M.; Brooks C. L. Extending the Treatment of Backbone Energetics in Protein Force Fields: Limitations of Gas-phase Quantum Mechanics in Reproducing Protein Conformational Distributions in Molecular Dynamics Simulations. J. Comput. Chem. 2004, 25, 1400–1415. 10.1002/jcc.20065. PubMed DOI
Buck M.; Bouguet-Bonnet S.; Pastor R. W.; MacKerell A. D. Jr Importance of the CMAP Correction to the CHARMM22 Protein Force Field: Dynamics of Hen Lysozyme. Biophys. J. 2006, 90, L36–L38. 10.1529/biophysj.105.078154. PubMed DOI PMC
Denning E. J.; Priyakumar U. D.; Nilsson L.; Mackerell A. D. Impact of 2 ’-Hydroxyl Sampling on the Conformational Properties of RNA: Update of the CHARMM All-Atom Additive Force Field for RNA. J. Comput. Chem. 2011, 32, 1929–1943. 10.1002/jcc.21777. PubMed DOI PMC
Mlynsky V.; Banas P.; Hollas D.; Reblova K.; Walter N. G.; Sponer J.; Otyepka M. Extensive Molecular Dynamics Simulations Showing That Canonical G8 and Protonated A38H(+) Forms Are Most Consistent with Crystal Structures of Hairpin Ribozyme. J. Phys. Chem. B 2010, 114, 6642–6652. 10.1021/jp1001258. PubMed DOI PMC
Krepl M.; Zgarbová M.; Stadlbauer P.; Otyepka M.; Banáš P.; Koča J.; Cheatham T. E.; Jurečka P.; Šponer J. Reference Simulations of Noncanonical Nucleic Acids with Different χ Variants of the AMBER Force Field: Quadruplex DNA, Quadruplex RNA, and Z-DNA. J. Chem. Theory Comput. 2012, 8, 2506–2520. 10.1021/ct300275s. PubMed DOI PMC
Zgarbova M.; Otyepka M.; Sponer J.; Lankas F.; Jurecka P. Base Pair Fraying in Molecular Dynamics Simulations of DNA and RNA. J. Chem. Theory Comput. 2014, 10, 3177–3189. 10.1021/ct500120v. PubMed DOI
Zgarbová M.; Rosnik A. M.; Luque F. J.; Curutchet C.; Jurečka P. Transferability and Additivity of Dihedral Parameters in Polarizable and Nonpolarizable Empirical Force Fields. J. Comput. Chem. 2015, 36, 1874–1884. 10.1002/jcc.24012. PubMed DOI
MacKerell A. D.; Feig M.; Brooks C. L. Improved Treatment of the Protein Backbone in Empirical Force Fields. J. Am. Chem. Soc. 2004, 126, 698–699. 10.1021/ja036959e. PubMed DOI
Hobza P.; Kabeláč M.; Šponer J.; Mejzlík P.; Vondrášek J. Performance of Empirical Potentials (AMBER, CFF95, CVFF, CHARMM, OPLS, POLTEV), Semiempirical Quantum Chemical Methods (AM1, MNDO/M, PM3), and Ab Initio Hartree–Fock Method for Interaction of DNA Bases: Comparison with Nonempirical Beyond Hartree–Fock Results. J. Comput. Chem. 1997, 18, 1136–1150. 10.1002/(SICI)1096-987X(19970715)18:9<1136::AID-JCC3>3.0.CO;2-S. DOI
Sponer J.; Hobza P. Nonplanar Geometries of DNA Bases. Ab Initio Second-order Moeller-Plesset Study. J. Phys. Chem. 1994, 98, 3161–3164. 10.1021/j100063a019. DOI
Šponer J.; Mokdad A.; Šponer J. E.; Špačková N.; Leszczynski J.; Leontis N. B. Unique Tertiary and Neighbor Interactions Determine Conservation Patterns of Cis Watson–Crick A/G Base-pairs. J. Mol. Biol. 2003, 330, 967–978. 10.1016/S0022-2836(03)00667-3. PubMed DOI
Halgren T. A. Merck Molecular Force Field. II. MMFF94 van der Waals and Electrostatic Parameters for Intermolecular Interactions. J. Comput. Chem. 1996, 17, 520–552. 10.1002/(SICI)1096-987X(199604)17:5/6<520::AID-JCC2>3.0.CO;2-W. DOI
Hobza P.; Šponer J.; Cubero E.; Orozco M.; Luque F. J. C–H···O Contacts in the Adenine···Uracil Watson–Crick and Uracil···Uracil Nucleic Acid Base Pairs: Nonempirical ab Initio Study with Inclusion of Electron Correlation Effects. J. Phys. Chem. B 2000, 104, 6286–6292. 10.1021/jp0007134. DOI
Ryckaert J. P.; Ciccotti G.; Berendsen H. J. C. Numerical-Integration of Cartesian Equations of Motion of a System with Constraints - Molecular-Dynamics of N-Alkanes. J. Comput. Phys. 1977, 23, 327–341. 10.1016/0021-9991(77)90098-5. DOI
Pokorna P.; Krepl M.; Kruse H.; Sponer J. MD and QM/MM Study of the Quaternary HutP Homohexamer Complex with mRNA, L-histidine Ligand and Mg2+. J. Chem. Theory Comput. 2017, 13, 5658–5670. 10.1021/acs.jctc.7b00598. PubMed DOI
Zgarbova M.; Otyepka M.; Sponer J.; Hobza P.; Jurecka P. Large-scale Compensation of Errors in Pairwise-additive Empirical Force Fields: Comparison of AMBER Intermolecular Terms with Rigorous DFT-SAPT Calculations. Phys. Chem. Chem. Phys. 2010, 12, 10476–10493. 10.1039/c002656e. PubMed DOI
Sponer J.; Mladek A.; Spackova N.; Cang X.; Cheatham T. E. III; Grimme S. Relative Stability of Different DNA Guanine Quadruplex Stem Topologies Derived Using Large-Scale Quantum-Chemical Computations. J. Am. Chem. Soc. 2013, 135, 9785–9796. 10.1021/ja402525c. PubMed DOI PMC
Szabla R.; Havrila M.; Kruse H.; Šponer J. Comparative Assessment of Different RNA Tetranucleotides from the DFT-D3 and Force Field Perspective. J. Phys. Chem. B 2016, 120, 10635–10648. 10.1021/acs.jpcb.6b07551. PubMed DOI
Gkionis K.; Kruse H.; Šponer J. Derivation of Reliable Geometries in QM Calculations of DNA Structures: Explicit Solvent QM/MM and Restrained Implicit Solvent QM Optimizations of G-Quadruplexes. J. Chem. Theory Comput. 2016, 12, 2000–2016. 10.1021/acs.jctc.5b01025. PubMed DOI
Galindo-Murillo R.; Robertson J. C.; Zgarbova M.; Sponer J.; Otyepka M.; Jurecka P.; Cheatham T. E. Assessing the Current State of AMBER Force Field Modifications for DNA. J. Chem. Theory Comput. 2016, 12, 4114–4127. 10.1021/acs.jctc.6b00186. PubMed DOI PMC
Lopes P. E. M.; Huang J.; Shim J.; Luo Y.; Li H.; Roux B.; MacKerell A. D. Polarizable Force Field for Peptides and Proteins Based on the Classical Drude Oscillator. J. Chem. Theory Comput. 2013, 9, 5430–5449. 10.1021/ct400781b. PubMed DOI PMC
Ryde U. How Many Conformations Need To Be Sampled To Obtain Converged QM/MM Energies? The Curse of Exponential Averaging. J. Chem. Theory Comput. 2017, 13, 5745–5752. 10.1021/acs.jctc.7b00826. PubMed DOI
Šponer J.; Šponer J. E.; Mládek A.; Banáš P.; Jurečka P.; Otyepka M. How to Understand Quantum Chemical Computations on DNA and RNA Systems? A Practical Guide for Non-specialists. Methods 2013, 64, 3–11. 10.1016/j.ymeth.2013.05.025. PubMed DOI
Sponer J.; Sponer J. E.; Mladek A.; Jurecka P.; Banas P.; Otyepka M. Nature and Magnitude of Aromatic Base Stacking in DNA and RNA: Quantum Chemistry, Molecular Mechanics, and Experiment. Biopolymers 2013, 99, 978–988. PubMed
Chen A. A.; García A. E. High-resolution Reversible Folding of Hyperstable RNA Tetraloops Using Molecular Dynamics Simulations. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 16820–16825. 10.1073/pnas.1309392110. PubMed DOI PMC
Maffeo C.; Luan B.; Aksimentiev A. End-to-end Attraction of Duplex DNA. Nucleic Acids Res. 2012, 40, 3812–3821. 10.1093/nar/gkr1220. PubMed DOI PMC
Brown R. F.; Andrews C. T.; Elcock A. H. Stacking Free Energies of All DNA and RNA Nucleoside Pairs and Dinucleoside-Monophosphates Computed Using Recently Revised AMBER Parameters and Compared with Experiment. J. Chem. Theory Comput. 2015, 11, 2315–2328. 10.1021/ct501170h. PubMed DOI PMC
Jafilan S.; Klein L.; Hyun C.; Florián J. Intramolecular Base Stacking of Dinucleoside Monophosphate Anions in Aqueous Solution. J. Phys. Chem. B 2012, 116, 3613–3618. 10.1021/jp209986y. PubMed DOI PMC
Banáš P.; Mládek A.; Otyepka M.; Zgarbová M.; Jurečka P.; Svozil D.; Lankaš F.; Šponer J. Can We Accurately Describe the Structure of Adenine Tracts in B-DNA? Reference Quantum-Chemical Computations Reveal Overstabilization of Stacking by Molecular Mechanics. J. Chem. Theory Comput. 2012, 8, 2448–2460. 10.1021/ct3001238. PubMed DOI
Häse F.; Zacharias M. Free Energy Analysis and Mechanism of Base Pair Stacking in Nicked DNA. Nucleic Acids Res. 2016, 44, 7100–7108. PubMed PMC
Bergonzo C.; Cheatham T. E. Improved Force Field Parameters Lead to a Better Description of RNA Structure. J. Chem. Theory Comput. 2015, 11, 3969–3972. 10.1021/acs.jctc.5b00444. PubMed DOI
Izadi S.; Anandakrishnan R.; Onufriev A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871. 10.1021/jz501780a. PubMed DOI PMC
Havrila M.; Stadlbauer P.; Islam B.; Otyepka M.; Sponer J. Effect of Monovalent Ion Parameters on Molecular Dynamics Simulations of G-Quadruplexes. J. Chem. Theory Comput. 2017, 13, 3911–3926. 10.1021/acs.jctc.7b00257. PubMed DOI
Kuhrova P.; Best R.; Bottaro S.; Bussi G.; Sponer J.; Otyepka M.; Banas P. Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies. J. Chem. Theory Comput. 2016, 12, 4534–4548. 10.1021/acs.jctc.6b00300. PubMed DOI PMC
Cheatham T. E.; Cieplak P.; Kollman P. A. A Modified Version of the Cornell et al. Force Field with Improved Sugar Pucker Phases and Helical Repeat. J. Biomol. Struct. Dyn. 1999, 16, 845–862. 10.1080/07391102.1999.10508297. PubMed DOI
Réblová K.; Lankaš F.; Rázga F.; Krasovska M. V.; Koča J.; Šponer J. Structure, Dynamics, and Elasticity of Free 16s rRNA Helix 44 Studied by Molecular Dynamics Simulations. Biopolymers 2006, 82, 504–520. 10.1002/bip.20503. PubMed DOI
Zgarbová M.; Jurečka P.; Banáš P.; Havrila M.; Šponer J.; Otyepka M. Noncanonical α/γ Backbone Conformations in RNA and the Accuracy of Their Description by the AMBER Force Field. J. Phys. Chem. B 2017, 121, 2420–2433. 10.1021/acs.jpcb.7b00262. PubMed DOI
Banas P.; Hollas D.; Zgarbova M.; Jurecka P.; Orozco M.; Cheatham T. E.; Sponer J.; Otyepka M. Performance of Molecular Mechanics Force Fields for RNA Simulations: Stability of UUCG and GNRA Hairpins. J. Chem. Theory Comput. 2010, 6, 3836–3849. 10.1021/ct100481h. PubMed DOI PMC
Banas P.; Sklenovsky P.; Wedekind J. E.; Sponer J.; Otyepka M. Molecular Mechanism of preQ(1) Riboswitch Action: A Molecular Dynamics Study. J. Phys. Chem. B 2012, 116, 12721–12734. 10.1021/jp309230v. PubMed DOI PMC
Zgarbová M.; Luque F. J.; Šponer J.; Otyepka M.; Jurečka P. A Novel Approach for Deriving Force Field Torsion Angle Parameters Accounting for Conformation-Dependent Solvation Effects. J. Chem. Theory Comput. 2012, 8, 3232–3242. 10.1021/ct3001987. PubMed DOI
Yildirim I.; Stern H. A.; Kennedy S. D.; Tubbs J. D.; Turner D. H. Reparameterization of RNA chi Torsion Parameters for the AMBER Force Field and Comparison to NMR Spectra for Cytidine and Uridine. J. Chem. Theory Comput. 2010, 6, 1520–1531. 10.1021/ct900604a. PubMed DOI PMC
Besseova I.; Banas P.; Kuhrova P.; Kosinova P.; Otyepka M.; Sponer J. Simulations of A-RNA Duplexes. The Effect of Sequence, Solute Force Field, Water Model, and Salt Concentration. J. Phys. Chem. B 2012, 116, 9899–9916. 10.1021/jp3014817. PubMed DOI
Yildirim I.; Kennedy S. D.; Stern H. A.; Hart J. M.; Kierzek R.; Turner D. H. Revision of AMBER Torsional Parameters for RNA Improves Free Energy Predictions for Tetramer Duplexes with GC and iGiC Base Pairs. J. Chem. Theory Comput. 2012, 8, 172–181. 10.1021/ct200557r. PubMed DOI PMC
Bergonzo C.; Henriksen N. M.; Roe D. R.; Cheatham T. E. Highly Sampled Tetranucleotide and Tetraloop Motifs Enable Evaluation of Common RNA Force Fields. RNA 2015, 21, 1578–1590. 10.1261/rna.051102.115. PubMed DOI PMC
Havrila M.; Zgarbová M.; Jurečka P.; Banáš P.; Krepl M.; Otyepka M.; Šponer J. Microsecond-Scale MD Simulations of HIV-1 DIS Kissing-Loop Complexes Predict Bulged-In Conformation of the Bulged Bases and Reveal Interesting Differences between Available Variants of the AMBER RNA Force Fields. J. Phys. Chem. B 2015, 119, 15176–15190. 10.1021/acs.jpcb.5b08876. PubMed DOI
Aytenfisu A. H.; Spasic A.; Grossfield A.; Stern H. A.; Mathews D. H. Revised RNA Dihedral Parameters for the Amber Force Field Improve RNA Molecular Dynamics. J. Chem. Theory Comput. 2017, 13, 900–915. 10.1021/acs.jctc.6b00870. PubMed DOI PMC
Maier J. A.; Martinez C.; Kasavajhala K.; Wickstrom L.; Hauser K.; Simmerling C. ff14SB: Improving The Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. 10.1021/acs.jctc.5b00255. PubMed DOI PMC
Gil-Ley A.; Bottaro S.; Bussi G. Empirical Corrections to the Amber RNA Force Field with Target Metadynamics. J. Chem. Theory Comput. 2016, 12, 2790–2798. 10.1021/acs.jctc.6b00299. PubMed DOI PMC
Cesari A.; Gil-Ley A.; Bussi G. Combining Simulations and Solution Experiments as a Paradigm for RNA Force Field Refinement. J. Chem. Theory Comput. 2016, 12, 6192–6200. 10.1021/acs.jctc.6b00944. PubMed DOI
Wales D. J.; Yildirim I. Improving Computational Predictions of Single-Stranded RNA Tetramers with Revised α/γ Torsional Parameters for the Amber Force Field. J. Phys. Chem. B 2017, 121, 2989–2999. 10.1021/acs.jpcb.7b00819. PubMed DOI
Zgarbova M.; Javier-Luque F.; Sponer J.; Cheatham T. E. III; Otyepka M.; Jurecka P. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters. J. Chem. Theory Comput. 2013, 9, 2339–2354. 10.1021/ct400154j. PubMed DOI PMC
Mlynsky V.; Kuhrova P.; Zgarbova M.; Jurecka P.; Walter N. G.; Otyepka M.; Sponer J.; Banas P. Reactive Conformation of the Active Site in the Hairpin Ribozyme Achieved by Molecular Dynamics Simulations with epsilon/zeta Force Field Reparametrizations. J. Phys. Chem. B 2015, 119, 4220–4229. 10.1021/jp512069n. PubMed DOI
Ivani I.; Dans P. D.; Noy A.; Pérez A.; Faustino I.; Hospital A.; Walther J.; Andrio P.; Goñi R.; Balaceanu A.; et al. Parmbsc1: A Refined Force Field for DNA Simulations. Nat. Methods 2016, 13, 55–58. PubMed PMC
Zgarbová M.; Šponer J.; Otyepka M.; Cheatham T. E.; Galindo-Murillo R.; Jurečka P. Refinement of the Sugar–Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA. J. Chem. Theory Comput. 2015, 11, 5723–5736. 10.1021/acs.jctc.5b00716. PubMed DOI
Steinbrecher T.; Latzer J.; Case D. A. Revised AMBER Parameters for Bioorganic Phosphates. J. Chem. Theory Comput. 2012, 8, 4405–4412. 10.1021/ct300613v. PubMed DOI PMC
Darré L.; Ivani I.; Dans P. D.; Gómez H.; Hospital A.; Orozco M. Small Details Matter: The 2′-Hydroxyl as a Conformational Switch in RNA. J. Am. Chem. Soc. 2016, 138, 16355–16363. 10.1021/jacs.6b09471. PubMed DOI
Yang C.; Lim M.; Kim E.; Pak Y. Predicting RNA Structures via a Simple van der Waals Correction to an All-Atom Force Field. J. Chem. Theory Comput. 2017, 13, 395–399. 10.1021/acs.jctc.6b00808. PubMed DOI
Noel J. K.; Levi M.; Raghunathan M.; Lammert H.; Hayes R. L.; Onuchic J. N.; Whitford P. C. SMOG 2: A Versatile Software Package for Generating Structure-Based Models. PLoS Comput. Biol. 2016, 12, e100479410.1371/journal.pcbi.1004794. PubMed DOI PMC
Šponer J.; Krepl M.; Banáš P.; Kührová P.; Zgarbová M.; Jurečka P.; Havrila M.; Otyepka M. How to Understand Atomistic Molecular Dynamics Simulations of RNA and Protein–RNA Complexes?. Wiley Interdiscip. Rev.: RNA 2017, 8, e140510.1002/wrna.1405. PubMed DOI
Foloppe N.; MacKerell A. D. All-atom Empirical Force Field for Nucleic Acids: I. Parameter Optimization Based on Small Molecule and Condensed Phase Macromolecular Target Data. J. Comput. Chem. 2000, 21, 86–104. 10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO;2-G. DOI
MacKerell A. D.; Banavali N. K. All-atom Empirical Force Field for Nucleic Acids: II. Application to Molecular Dynamics Simulations of DNA and RNA in Solution. J. Comput. Chem. 2000, 21, 105–120. 10.1002/(SICI)1096-987X(20000130)21:2<105::AID-JCC3>3.0.CO;2-P. DOI
MacKerell A. D.; Wiorkiewicz-Kuczera J.; Karplus M. An All-atom Empirical Energy Function for the Simulation of Nucleic Acids. J. Am. Chem. Soc. 1995, 117, 11946–11975. 10.1021/ja00153a017. DOI
Van Wynsberghe A. W.; Cui Q. Comparison of Mode Analyses at Different Resolutions Applied to Nucleic Acid Systems. Biophys. J. 2005, 89, 2939–2949. 10.1529/biophysj.105.065664. PubMed DOI PMC
Deng N.-J.; Cieplak P. Free Energy Profile of RNA Hairpins: A Molecular Dynamics Simulation Study. Biophys. J. 2010, 98, 627–636. 10.1016/j.bpj.2009.10.040. PubMed DOI PMC
Faustino I.; Pérez A.; Orozco M. Toward a Consensus View of Duplex RNA Flexibility. Biophys. J. 2010, 99, 1876–1885. 10.1016/j.bpj.2010.06.061. PubMed DOI PMC
Lee T. S.; Lopez C. S.; Martick M.; Scott W. G.; York D. M. Insight into the Role of Mg in Hammerhead Ribozyme Catalysis from X-ray Crystallography and Molecular Dynamics Simulation. J. Chem. Theory Comput. 2007, 3, 325–327. 10.1021/ct6003142. PubMed DOI PMC
Martick M.; Lee T. S.; York D. M.; Scott W. G. Solvent Structure and Hammerhead Ribozyme Catalysis. Chem. Biol. 2008, 15, 332–342. 10.1016/j.chembiol.2008.03.010. PubMed DOI PMC
Bottaro S.; Banáš P.; Sponer J.; Bussi G. Free Energy Landscape of GAGA and UUCG RNA Tetraloops. J. Phys. Chem. Lett. 2016, 7, 4032–4038. 10.1021/acs.jpclett.6b01905. PubMed DOI
Gray P. G.; Kish L. Review: Survey Sampling. J. R. Stat. Soc. Ser. A-G. 1969, 132, 272–274. 10.2307/2343791. DOI
Dethoff E. A.; Petzold K.; Chugh J.; Casiano-Negroni A.; Al-Hashimi H. M. Visualizing Transient Low-populated Structures of RNA. Nature 2012, 491, 724–728. PubMed PMC
Bokinsky G.; Zhuang X. Single-molecule RNA Folding. Acc. Chem. Res. 2005, 38, 566–573. 10.1021/ar040142o. PubMed DOI
Haller A.; Souličre M. F.; Micura R. The Dynamic Nature of RNA as Key to Understanding Riboswitch Mechanisms. Acc. Chem. Res. 2011, 44, 1339–1348. 10.1021/ar200035g. PubMed DOI
Zhuang X.; Kim H.; Pereira M. J.; Babcock H. P.; Walter N. G.; Chu S. Correlating Structural Dynamics and Function in Single Ribozyme Molecules. Science 2002, 296, 1473–1476. 10.1126/science.1069013. PubMed DOI
Chodera J. D. A Simple Method for Automated Equilibration Detection in Molecular Simulations. J. Chem. Theory Comput. 2016, 12, 1799–1805. 10.1021/acs.jctc.5b00784. PubMed DOI PMC
Šponer J.; Bussi G.; Stadlbauer P.; Kührová P.; Banáš P.; Islam B.; Haider S.; Neidle S.; Otyepka M. Folding of Guanine Quadruplex Molecules–funnel-like Mechanism or Kinetic Partitioning? An Overview from MD Simulation Studies. Biochim. Biophys. Acta, Gen. Subj. 2017, 1861, 1246–1263. 10.1016/j.bbagen.2016.12.008. PubMed DOI
Chen S.-J.; Dill K. A. RNA Folding Energy Landscapes. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 646–651. 10.1073/pnas.97.2.646. PubMed DOI PMC
Ma H.; Proctor D. J.; Kierzek E.; Kierzek R.; Bevilacqua P. C.; Gruebele M. Exploring the Energy Landscape of a Small RNA Hairpin. J. Am. Chem. Soc. 2006, 128, 1523–1530. 10.1021/ja0553856. PubMed DOI
Zhang Q.; Al-Hashimi H. M. Extending the NMR Spatial Resolution Limit for RNA by Motional Couplings. Nat. Methods 2008, 5, 243–245. 10.1038/nmeth.1180. PubMed DOI
Chen S. J. RNA Folding: Conformational Statistics, Folding Kinetics, and Ion Electrostatics. Annu. Rev. Biophys. 2008, 37, 197–214. 10.1146/annurev.biophys.37.032807.125957. PubMed DOI PMC
Ditzler M. A.; Otyepka M.; Sponer J.; Walter N. G. Molecular Dynamics and Quantum Mechanics of RNA: Conformational and Chemical Change We Can Believe. Acc. Chem. Res. 2010, 43, 40–47. 10.1021/ar900093g. PubMed DOI PMC
Šponer J.; Banáš P.; Jurečka P.; Zgarbová M.; Kührová P.; Havrila M.; Krepl M.; Stadlbauer P.; Otyepka M. Molecular Dynamics Simulations of Nucleic Acids. From Tetranucleotides to the Ribosome. J. Phys. Chem. Lett. 2014, 5, 1771–1782. 10.1021/jz500557y. PubMed DOI
Hashem Y.; Auffinger P. A Short Guide for Molecular Dynamics Simulations of RNA Systems. Methods 2009, 47, 187–197. 10.1016/j.ymeth.2008.09.020. PubMed DOI
Zuckerman D. M. Equilibrium Sampling in Biomolecular Simulation. Annu. Rev. Biophys. 2011, 40, 41–62. 10.1146/annurev-biophys-042910-155255. PubMed DOI PMC
Abrams C.; Bussi G. Enhanced Sampling in Molecular Dynamics Using Metadynamics, Replica-Exchange, and Temperature-Acceleration. Entropy 2014, 16, 163–199. 10.3390/e16010163. DOI
Dellago C.; Hummer G. Computing Equilibrium Free Energies Using Non-Equilibrium Molecular Dynamics. Entropy 2014, 16, 41–61. 10.3390/e16010041. DOI
Bernardi R. C.; Melo M. C.; Schulten K. Enhanced Sampling Techniques in Molecular Dynamics Simulations of Biological Systems. Biochim. Biophys. Acta, Gen. Subj. 2015, 1850, 872–877. 10.1016/j.bbagen.2014.10.019. PubMed DOI PMC
Valsson O.; Tiwary P.; Parrinello M.. Enhancing Important Fluctuations: Rare Events and Metadynamics from a Conceptual Viewpoint. In Annual Review of Physical Chemistry; Johnson M. A., Martinez T. J., Eds.; Annual Reviews: Palo Alto, CA, 2016; Vol. 67, pp 159–184. PubMed
Phillips J. C.; Braun R.; Wang W.; Gumbart J.; Tajkhorshid E.; Villa E.; Chipot C.; Skeel R. D.; Kale L.; Schulten K. Scalable Molecular Dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. 10.1002/jcc.20289. PubMed DOI PMC
Eastman P.; Friedrichs M. S.; Chodera J. D.; Radmer R. J.; Bruns C. M.; Ku J. P.; Beauchamp K. A.; Lane T. J.; Wang L.-P.; Shukla D.; et al. OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance Molecular Simulation. J. Chem. Theory Comput. 2012, 9, 461–469. 10.1021/ct300857j. PubMed DOI PMC
Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. GROMACS: High Performance Molecular Simulations Through Multi-level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1, 19–25. 10.1016/j.softx.2015.06.001. DOI
Case D. A.; B R. M.; Botello-Smith W.; Cerutti D. S.; Cheatham T. E. III; Darden T. A.; Duke R. E.; Giese T. J.; Gohlke H.; Goetz A. W.; Homeyer N.; Izadi S.; Janowski P.; Kaus J.; Kovalenko A.; Lee T. S.; LeGrand S.; Li P.; Lin C.; Luchko T.; Luo R.; Madej B.; Mermelstein D.; Merz K. M.; Monard G.; Nguyen H.; Nguyen H. T.; Omelyan I.; Onufriev A.; Roe D. R.; Roitberg A.; Sagui C.; Simmerling C. L.; Swails J.; Walker R. C.; Wang J.; Wolf R. M.; Wu X.; Xiao L.; York D. M.; Kollman P. A.. AMBER 16; University of California: San Francisco, CA, 2016.
Salomon-Ferrer R.; Götz A. W.; Poole D.; Le Grand S.; Walker R. C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. J. Chem. Theory Comput. 2013, 9, 3878–3888. 10.1021/ct400314y. PubMed DOI
Gotz A. W.; Williamson M. J.; Xu D.; Poole D.; Le Grand S.; Walker R. C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. J. Chem. Theory Comput. 2012, 8, 1542–1555. 10.1021/ct200909j. PubMed DOI PMC
Le Grand S.; Götz A. W.; Walker R. C. SPFP: Speed without Compromise—A Mixed Precision Model for GPU Accelerated Molecular Dynamics Simulations. Comput. Phys. Commun. 2013, 184, 374–380. 10.1016/j.cpc.2012.09.022. DOI
Páll S.; Hess B. A Flexible Algorithm for Calculating Pair Interactions on SIMD Architectures. Comput. Phys. Commun. 2013, 184, 2641–2650. 10.1016/j.cpc.2013.06.003. DOI
Lindorff-Larsen K.; Piana S.; Dror R. O.; Shaw D. E. How fast-folding proteins fold. Science 2011, 334, 517–520. 10.1126/science.1208351. PubMed DOI
Pan A. C.; Weinreich T. M.; Piana S.; Shaw D. E. Demonstrating an Order-of-magnitude Sampling Enhancement in Molecular Dynamics Simulations of Complex Protein Systems. J. Chem. Theory Comput. 2016, 13, 1360–1367. 10.1021/acs.jctc.5b00913. PubMed DOI
Voelz V. A.; Jager M.; Zhu L.; Yao S. H.; Bakajin O.; Weiss S.; Lapidus L. J.; Pande V. S. Markov State Models of Millisecond Folder ACBP Reveals New Views of the Folding Reaction. Biophys. J. 2011, 100, 515.10.1016/j.bpj.2010.12.3015. DOI
Noé F.; Schütte C.; Vanden-Eijnden E.; Reich L.; Weikl T. R. Constructing the Equilibrium Ensemble of Folding Pathways from Short Off-equilibrium Simulations. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 19011–19016. 10.1073/pnas.0905466106. PubMed DOI PMC
Buch I.; Giorgino T.; De Fabritiis G. Complete Reconstruction of an Enzyme-inhibitor Binding Process by Molecular Dynamics Simulations. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 10184–10189. 10.1073/pnas.1103547108. PubMed DOI PMC
Qiao Q.; Bowman G. R.; Huang X. Dynamics of an Intrinsically Disordered Protein Reveal Metastable Conformations That Potentially Seed Aggregation. J. Am. Chem. Soc. 2013, 135, 16092–16101. 10.1021/ja403147m. PubMed DOI
Shukla D.; Meng Y.; Roux B.; Pande V. S. Activation Pathway of Src Kinase Reveals Intermediate States as Targets for Drug Design. Nat. Commun. 2014, 5, e339710.1038/ncomms4397. PubMed DOI PMC
Kohlhoff K. J.; Shukla D.; Lawrenz M.; Bowman G. R.; Konerding D. E.; Belov D.; Altman R. B.; Pande V. S. Cloud-based Simulations on Google Exacycle Reveal Ligand Modulation of GPCR Activation Pathways. Nat. Chem. 2014, 6, 15–21. 10.1038/nchem.1821. PubMed DOI PMC
Sadiq S. K.; Noé F.; De Fabritiis G. Kinetic Characterization of the Critical Step in HIV-1 Protease Maturation. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 20449–20454. 10.1073/pnas.1210983109. PubMed DOI PMC
Prinz J.-H.; Wu H.; Sarich M.; Keller B.; Senne M.; Held M.; Chodera J. D.; Schütte C.; Noé F. Markov Models of Molecular Kinetics: Generation and Validation. J. Chem. Phys. 2011, 134, e17410510.1063/1.3565032. PubMed DOI
Pérez-Hernández G.; Paul F.; Giorgino T.; Fabritiis G. D.; Noé F. Identification of Slow Molecular Order Parameters for Markov Model Construction. J. Chem. Phys. 2013, 139, e01510210.1063/1.4811489. PubMed DOI
Schwantes C. R.; Pande V. S. Improvements in Markov State Model Construction Reveal Many Non-Native Interactions in the Folding of NTL9. J. Chem. Theory Comput. 2013, 9, 2000–2009. 10.1021/ct300878a. PubMed DOI PMC
Bowman G. R.; Pande V. S.; Noé F. An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation. Adv. Exp. Med. Biol. 2014, 797, 1.10.1007/978-94-007-7606-7_1. PubMed DOI
Buchete N.-V.; Hummer G. Coarse Master Equations for Peptide Folding Dynamics. J. Phys. Chem. B 2008, 112, 6057–6069. 10.1021/jp0761665. PubMed DOI
Pérez-Hernández G.; Noé F. Hierarchical Time-Lagged Independent Component Analysis: Computing Slow Modes and Reaction Coordinates for Large Molecular Systems. J. Chem. Theory Comput. 2016, 12, 6118–6129. 10.1021/acs.jctc.6b00738. PubMed DOI
Naritomi Y.; Fuchigami S. Slow Dynamics in Protein Fluctuations Revealed by Time-structure Based Independent Component Analysis: The Case of Domain Motions. J. Chem. Phys. 2011, 134, e06510110.1063/1.3554380. PubMed DOI
Scherer M. K.; Trendelkamp-Schroer B.; Paul F.; Pérez-Hernández G.; Hoffmann M.; Plattner N.; Wehmeyer C.; Prinz J.-H.; Noé F. PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models. J. Chem. Theory Comput. 2015, 11, 5525–5542. 10.1021/acs.jctc.5b00743. PubMed DOI
Schütte C.; Fischer A.; Huisinga W.; Deuflhard P. A Direct Approach to Conformational Dynamics Based on Hybrid Monte Carlo. J. Comput. Phys. 1999, 151, 146–168. 10.1006/jcph.1999.6231. DOI
Deuflhard P.; Weber M. Robust Perron Cluster Analysis in Conformation Dynamics. Linear Algebra Appl. 2005, 398, 161–184. 10.1016/j.laa.2004.10.026. DOI
Röblitz S.; Weber M. Fuzzy Spectral Clustering by PCCA+: Application to Markov State Models and Data Classification. Adv. Data Anal. Classif. 2013, 7, 147–179. 10.1007/s11634-013-0134-6. DOI
Noé F.; Wu H.; Prinz J.-H.; Plattner N. Projected and Hidden Markov models for Calculating Kinetics and Metastable States of Complex Molecules. J. Chem. Phys. 2013, 139, e18411410.1063/1.4828816. PubMed DOI
Sinitskiy A. V.; Pande V. S.. Theoretical Restrictions on Longest Implicit Timescales in Markov State Models of Biomolecular Dynamics. e-Print archive, https://arxiv.org/abs/1708.03011 (accessed Nov 8, 2017). PubMed PMC
Doerr S.; De Fabritiis G. On-the-Fly Learning and Sampling of Ligand Binding by High-Throughput Molecular Simulations. J. Chem. Theory Comput. 2014, 10, 2064–2069. 10.1021/ct400919u. PubMed DOI
Swope W. C.; Pitera J. W.; Suits F. Describing Protein Folding Kinetics by Molecular Dynamics Simulations. 1. J. Phys. Chem. B 2004, 108, 6571–6581. 10.1021/jp037421y. DOI
Thirumalai D.; Klimov D. K.; Woodson S. A. Kinetic Partitioning Mechanism as a Unifying Theme in the Folding of Biomolecules. Theor. Chem. Acc. 1997, 96, 14–22. 10.1007/s002140050198. DOI
Thirumalai D.; O’Brien E. P.; Morrison G.; Hyeon C.. Theoretical Perspectives on Protein Folding. In Annual Review of Biophysics; Rees D. C., Dill K. A., Williamson J. R., Eds.; Annual Reviews: Palo Alto, CA, 2010; Vol. 39, pp 159–183. PubMed
Guo Z.; Thirumalai D. Kinetics of Protein Folding: Nucleation Mechanism, Time Scales, and Pathways. Biopolymers 1995, 36, 83–102. 10.1002/bip.360360108. DOI
Thirumalai D.; Lee N.; Woodson S. A.; Klimov D. K. Early Events in RNA Folding. Annu. Rev. Phys. Chem. 2001, 52, 751–762. 10.1146/annurev.physchem.52.1.751. PubMed DOI
Trendelkamp-Schroer B.; Wu H.; Paul F.; Noé F. Estimation and Uncertainty of Reversible Markov Models. J. Chem. Phys. 2015, 143, e17410110.1063/1.4934536. PubMed DOI
Huang X.; Bowman G. R.; Bacallado S.; Pande V. S. Rapid Equilibrium Sampling Initiated from Nonequilibrium Data. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 19765–19769. 10.1073/pnas.0909088106. PubMed DOI PMC
DePaul A. J.; Thompson E. J.; Patel S. S.; Haldeman K.; Sorin E. J. Equilibrium Conformational Dynamics in an RNA Tetraloop from Massively Parallel Molecular Dynamics. Nucleic Acids Res. 2010, 38, 4856–4867. 10.1093/nar/gkq134. PubMed DOI PMC
Pinamonti G.; Zhao J.; Condon D. E.; Paul F.; Noè F.; Turner D. H.; Bussi G. Predicting the Kinetics of RNA Oligonucleotides Using Markov State Models. J. Chem. Theory Comput. 2017, 13, 926–934. 10.1021/acs.jctc.6b00982. PubMed DOI PMC
Bottaro S.; Di Palma F.; Bussi G. The Role of Nucleobase Interactions in RNA Structure and Dynamics. Nucleic Acids Res. 2014, 42, 13306–13314. 10.1093/nar/gku972. PubMed DOI PMC
Pörschke D. Molecular States in Single-stranded Adenylate Chains by Relaxation Analysis. Biopolymers 1978, 17, 315–323. 10.1002/bip.1978.360170205. DOI
Xu X.; Yu T.; Chen S.-J. Understanding the Kinetic Mechanism of RNA Single Base Pair Formation. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 116–121. 10.1073/pnas.1517511113. PubMed DOI PMC
Sugita Y.; Okamoto Y. Replica-exchange Molecular Dynamics Method for Protein Folding. Chem. Phys. Lett. 1999, 314, 141–151. 10.1016/S0009-2614(99)01123-9. DOI
Kirkpatrick S.; Gelatt C. D.; Vecchi M. P. others, Optimization by simmulated annealing. Science 1983, 220, 671–680. 10.1126/science.220.4598.671. PubMed DOI
Sorin E. J.; Engelhardt M. A.; Herschlag D.; Pande V. S. RNA Simulations: Probing Hairpin Unfolding and the Dynamics of a GNRA Tetraloop. J. Mol. Biol. 2002, 317, 493–506. 10.1006/jmbi.2002.5447. PubMed DOI
Marinari E.; Parisi G. Simulated Tempering: A New Monte Carlo Scheme. Europhys. Lett. 1992, 19, 451–458. 10.1209/0295-5075/19/6/002. DOI
Park S.; Pande V. S. Choosing weights for simulated tempering. Phys. Rev. E 2007, 76, e01670310.1103/PhysRevE.76.016703. PubMed DOI
Swendsen R. H.; Wang J.-S. Replica Monte Carlo Simulation of Spin-glasses. Phys. Rev. Lett. 1986, 57, 2607–2609. 10.1103/PhysRevLett.57.2607. PubMed DOI
Hansmann U. H. Parallel tempering algorithm for conformational studies of biological molecules. Chem. Phys. Lett. 1997, 281, 140–150. 10.1016/S0009-2614(97)01198-6. DOI
Cheng X.; Cui G.; Hornak V.; Simmerling C. Modified Replica Exchange Simulation Methods for Local Structure Refinement. J. Phys. Chem. B 2005, 109, 8220–8230. 10.1021/jp045437y. PubMed DOI PMC
Zhuang Z.; Jaeger L.; Shea J. E. Probing the Structural Hierarchy and Energy Landscape of an RNA T-loop Hairpin. Nucleic Acids Res. 2007, 35, 6995–7002. 10.1093/nar/gkm719. PubMed DOI PMC
Deng N.-J.; Cieplak P. Molecular Dynamics and Free Energy Study of the Conformational Equilibria in the UUUU RNA Hairpin. J. Chem. Theory Comput. 2007, 3, 1435–1450. 10.1021/ct6003388. PubMed DOI
Villa A.; Widjajakusuma E.; Stock G. Molecular Dynamics Simulation of the Structure, Dynamics, and Thermostability of the RNA Hairpins uCACGg and cUUCGg. J. Phys. Chem. B 2008, 112, 134–142. 10.1021/jp0764337. PubMed DOI
Garcia A. E.; Paschek D. Simulation of the Pressure and Temperature Folding/Unfolding Equilibrium of a Small RNA Hairpin. J. Am. Chem. Soc. 2008, 130, 815–817. 10.1021/ja074191i. PubMed DOI
Luckow A.; Jha S.; Kim J.; Merzky A.; Schnor B. Adaptive Distributed Replica-exchange Simulations. Philos. Trans. R. Soc., A 2009, 367, 2595–2606. 10.1098/rsta.2009.0051. PubMed DOI
Vaiana A. C.; Sanbonmatsu K. Y. Stochastic Gating and Drug–Ribosome Interactions. J. Mol. Biol. 2009, 386, 648–661. 10.1016/j.jmb.2008.12.035. PubMed DOI PMC
Kührová P.; Banáš P.; Best R. B.; Šponer J.; Otyepka M. Computer Folding of RNA Tetraloops? Are We There Yet?. J. Chem. Theory Comput. 2013, 9, 2115–2125. 10.1021/ct301086z. PubMed DOI
Miner J. C.; Chen A. A.; García A. E. Free-energy Landscape of a Hyperstable RNA Tetraloop. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 6665–6670. 10.1073/pnas.1603154113. PubMed DOI PMC
Bottaro S.; Gil-Ley A.; Bussi G. RNA Folding Pathways in Stop Motion. Nucleic Acids Res. 2016, 44, 5883–5891. 10.1093/nar/gkw239. PubMed DOI PMC
Zhang Y.; Zhao X.; Mu Y. Conformational Transition Map of an RNA GCAA Tetraloop Explored by Replica-exchange Molecular Dynamics Simulation. J. Chem. Theory Comput. 2009, 5, 1146–1154. 10.1021/ct8004276. PubMed DOI
Zuo G.; Li W.; Zhang J.; Wang J.; Wang W. Folding of a Small RNA Hairpin Based on Simulation with Replica Exchange Molecular Dynamics. J. Phys. Chem. B 2010, 114, 5835–5839. 10.1021/jp904573r. PubMed DOI
Beck D. A. C.; White G. W. N.; Daggett V. Exploring the Energy Landscape of Protein Folding Using Replica-exchange and Conventional Molecular Dynamics Simulations. J. Struct. Biol. 2007, 157, 514–523. 10.1016/j.jsb.2006.10.002. PubMed DOI PMC
Sindhikara D.; Meng Y.; Roitberg A. E. Exchange Frequency in Replica Exchange Molecular Dynamics. J. Chem. Phys. 2008, 128, e02410310.1063/1.2816560. PubMed DOI
Bussi G. A Simple Asynchronous Replica-exchange Implementation. Nuovo Cimento C 2009, 32, 61–65.
Yu T.-Q.; Lu J.; Abrams C. F.; Vanden-Eijnden E. Multiscale Implementation of Infinite-swap Replica Exchange Molecular Dynamics. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 11744–11749. 10.1073/pnas.1605089113. PubMed DOI PMC
Kofke D. A. On the Acceptance Probability of Replica-exchange Monte Carlo Trials. J. Chem. Phys. 2002, 117, 6911–6914. 10.1063/1.1507776. DOI
Trebst S.; Troyer M.; Hansmann U. H. Optimized Parallel Tempering Simulations of Proteins. J. Chem. Phys. 2006, 124, e17490310.1063/1.2186639. PubMed DOI
Patriksson A.; van der Spoel D. A Temperature Predictor for Parallel Tempering Simulations. Phys. Chem. Chem. Phys. 2008, 10, 2073–2077. 10.1039/b716554d. PubMed DOI
Prakash M. K.; Barducci A.; Parrinello M. Replica Temperatures for Uniform Exchange and Efficient Roundtrip Times in Explicit Solvent Parallel Tempering Simulations. J. Chem. Theory Comput. 2011, 7, 2025–2027. 10.1021/ct200208h. PubMed DOI
Stelzl L. S.; Hummer G. Kinetics from Replica Exchange Molecular Dynamics Simulations. J. Chem. Theory Comput. 2017, 13, 3927–3935. 10.1021/acs.jctc.7b00372. PubMed DOI
Kumar S.; Rosenberg J. M.; Bouzida D.; Swendsen R. H.; Kollman P. A. The Weighted Histogram Analysis Method for Free-energy Calculations on Biomolecules. I. The Method. J. Comput. Chem. 1992, 13, 1011–1021. 10.1002/jcc.540130812. DOI
Chodera J. D.; Swope W. C.; Pitera J. W.; Seok C.; Dill K. A. Use of the Weighted Histogram Analysis Method for the Analysis of Simulated and Parallel Tempering Simulations. J. Chem. Theory Comput. 2007, 3, 26–41. 10.1021/ct0502864. PubMed DOI
Flyvbjerg H.; Petersen H. G. Error Estimates on Averages of Correlated Data. J. Chem. Phys. 1989, 91, 461–466. 10.1063/1.457480. DOI
Grossfield A.; Zuckerman D. M. Quantifying Uncertainty and Sampling Quality in Biomolecular Simulations. Annu. Rep. Comput. Chem. 2009, 5, 23–48. 10.1016/S1574-1400(09)00502-7. PubMed DOI PMC
Henriksen N. M.; Roe D. R.; Cheatham T. E. Reliable Oligonucleotide Conformational Ensemble Generation in Explicit Solvent for Force Field Assessment Using Reservoir Replica Exchange Molecular Dynamics Simulations. J. Phys. Chem. B 2013, 117, 4014–4027. 10.1021/jp400530e. PubMed DOI PMC
Gil-Ley A.; Bussi G. Enhanced Conformational Sampling Using Replica Exchange with Collective-variable Tempering. J. Chem. Theory Comput. 2015, 11, 1077–1085. 10.1021/ct5009087. PubMed DOI PMC
Bonomi M.; Parrinello M. Enhanced Sampling in the Well-tempered Ensemble. Phys. Rev. Lett. 2010, 104, e19060110.1103/PhysRevLett.104.190601. PubMed DOI
Ballard A. J.; Jarzynski C. Replica Exchange with Nonequilibrium Switches. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 12224–12229. 10.1073/pnas.0900406106. PubMed DOI PMC
Deighan M.; Bonomi M.; Pfaendtner J. Efficient Simulation of Explicitly Solvated Proteins in the Well-Tempered Ensemble. J. Chem. Theory Comput. 2012, 8, 2189–2192. 10.1021/ct300297t. PubMed DOI
Fukunishi H.; Watanabe O.; Takada S. On the Hamiltonian Replica Exchange Method for Efficient Sampling of Biomolecular Systems: Application to Protein Structure Prediction. J. Chem. Phys. 2002, 116, e905810.1063/1.1472510. DOI
Liu P.; Kim B.; Friesner R. A.; Berne B. J. Replica Exchange with Solute Tempering: A Method for Sampling Biological Systems in Explicit Water. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 13749–13754. 10.1073/pnas.0506346102. PubMed DOI PMC
Wang L.; Friesner R. A.; Berne B. J. Replica Exchange with Solute Scaling: A More Efficient Version of Replica Exchange with Solute Tempering (REST2). J. Phys. Chem. B 2011, 115, 9431–9438. 10.1021/jp204407d. PubMed DOI PMC
Affentranger R.; Tavernelli I.; Di Iorio E. E. A novel Hamiltonian Replica Exchange MD Protocol to Enhance Protein Conformational Space Sampling. J. Chem. Theory Comput. 2006, 2, 217–228. 10.1021/ct050250b. PubMed DOI
Bussi G. Hamiltonian Replica Exchange in GROMACS: A Flexible Implementation. Mol. Phys. 2014, 112, 379–384. 10.1080/00268976.2013.824126. DOI
Hamelberg D.; Mongan J.; McCammon J. A. Accelerated Molecular Dynamics: A Promising and Efficient Simulation Method for Biomolecules. J. Chem. Phys. 2004, 120, 11919–11929. 10.1063/1.1755656. PubMed DOI
Roe D. R.; Bergonzo C.; Cheatham T. E. Evaluation of Enhanced Sampling Provided by Accelerated Molecular Dynamics with Hamiltonian Replica Exchange Methods. J. Phys. Chem. B 2014, 118, 3543–3552. 10.1021/jp4125099. PubMed DOI PMC
Miao Y.; Feher V. A.; McCammon J. A. Gaussian Accelerated Molecular Dynamics: Unconstrained Enhanced Sampling and Free Energy Calculation. J. Chem. Theory Comput. 2015, 11, 3584–3595. 10.1021/acs.jctc.5b00436. PubMed DOI PMC
Bergonzo C.; Henriksen N. M.; Roe D. R.; Swails J. M.; Roitberg A. E.; Cheatham T. E. Multidimensional Replica Exchange Molecular Dynamics Yields a Converged Ensemble of an RNA Tetranucleotide. J. Chem. Theory Comput. 2014, 10, 492–499. 10.1021/ct400862k. PubMed DOI PMC
Min D.; Li H.; Li G.; Berg B. A.; Fenley M. O.; Yang W. Efficient Sampling of Ion Motions in Molecular Dynamics Simulations on DNA: Variant Hamiltonian Replica Exchange Method. Chem. Phys. Lett. 2008, 454, 391–395. 10.1016/j.cplett.2008.02.055. DOI
Curuksu J.; Zacharias M. Enhanced Conformational Sampling of Nucleic Acids by a New Hamiltonian Replica Exchange Molecular Dynamics Approach. J. Chem. Phys. 2009, 130, e10411010.1063/1.3086832. PubMed DOI
Simmerling C.; Miller J. L.; Kollman P. A. Combined Locally Enhanced Sampling and Particle Mesh Ewald as a Strategy to Locate the Experimental Structure of a Nonhelical Nucleic Acid. J. Am. Chem. Soc. 1998, 120, 7149–7155. 10.1021/ja9727023. DOI
Cheng X. L.; Hornak V.; Simmerling C. Improved Conformational Sampling Through an Efficient Combination of Mean-field Simulation Approaches. J. Phys. Chem. B 2004, 108, 426–437. 10.1021/jp034505y. DOI
Reblova K.; Fadrna E.; Sarzynska J.; Kulinski T.; Kulhanek P.; Ennifar E.; Koca J.; Sponer J. Conformations of Flanking Bases in HIV-1 RNA DIS Kissing Complexes Studied by Molecular Dynamics. Biophys. J. 2007, 93, 3932–3949. 10.1529/biophysj.107.110056. PubMed DOI PMC
Koplin J.; Mu Y.; Richter C.; Schwalbe H.; Stock G. Structure and Dynamics of an RNA Tetraloop: A Joint Molecular Dynamics and NMR Study. Structure 2005, 13, 1255–1267. 10.1016/j.str.2005.05.015. PubMed DOI
Torrie G. M.; Valleau J. P. Nonphysical Sampling Distributions in Monte Carlo Free-energy Estimation: Umbrella Sampling. J. Comput. Phys. 1977, 23, 187–199. 10.1016/0021-9991(77)90121-8. DOI
Souaille M.; Roux B. Extension to the Weighted Histogram Analysis Method: Combining Umbrella Sampling with Free Energy Calculations. Comput. Phys. Commun. 2001, 135, 40–57. 10.1016/S0010-4655(00)00215-0. DOI
Norberg J.; Nilsson L. Solvent Influence on Base Stacking. Biophys. J. 1998, 74, 394–402. 10.1016/S0006-3495(98)77796-3. PubMed DOI PMC
Hart K.; Nystrom B.; Ohman M.; Nilsson L. Molecular Dynamics Simulations and Free Energy Calculations of Base Flipping in dsRNA. RNA 2005, 11, 609–618. 10.1261/rna.7147805. PubMed DOI PMC
Curuksu J.; Sponer J.; Zacharias M. Elbow Flexibility of the Kt38 RNA Kink-Turn Motif Investigated by Free-Energy Molecular Dynamics Simulations. Biophys. J. 2009, 97, 2004–2013. 10.1016/j.bpj.2009.07.031. PubMed DOI PMC
Di Palma F.; Bottaro S.; Bussi G. Kissing Loop Interaction in Adenine Riboswitch: Insights from Umbrella Sampling Simulations. BMC Bioinf. 2015, 16, 1–9. 10.1186/1471-2105-16-S9-S6. PubMed DOI PMC
Allnér O.; Nilsson L.; Villa A. Loop–loop Interaction in an Adenine-sensing Riboswitch: A Molecular Dynamics Study. RNA 2013, 19, 916–926. 10.1261/rna.037549.112. PubMed DOI PMC
Sun Z.; Wang X.; Zhang J. Z. H. Protonation-dependent Base Flipping in the Catalytic Triad of a Small RNA. Chem. Phys. Lett. 2017, 684, 239–244. 10.1016/j.cplett.2017.07.003. DOI
Kästner J.; Thiel W. Bridging the Gap Between Thermodynamic Integration and Umbrella Sampling Provides a Novel Analysis Method: ″Umbrella integration. J. Chem. Phys. 2005, 123, e14410410.1063/1.2052648. PubMed DOI
Kunsch H. R. The Jackknife and the Bootstrap for General Stationary Observations. Ann. Stat. 1989, 17, 1217–1241. 10.1214/aos/1176347265. DOI
Neale C.; Rodinger T.; Pomes R. Equilibrium Exchange Enhances the Convergence Rate of Umbrella Sampling. Chem. Phys. Lett. 2008, 460, 375–381. 10.1016/j.cplett.2008.05.099. DOI
Zhu F.; Hummer G. Convergence and Error Estimation in Free Energy Calculations Using the Weighted Histogram Analysis Method. J. Comput. Chem. 2012, 33, 453–465. 10.1002/jcc.21989. PubMed DOI PMC
Murata K.; Sugita Y.; Okamoto Y. Free Energy Calculations for DNA Base Stacking by Replica-exchange Umbrella Sampling. Chem. Phys. Lett. 2004, 385, 1–7. 10.1016/j.cplett.2003.10.159. DOI
Radak B. K.; Romanus M.; Lee T.-S.; Chen H.; Huang M.; Treikalis A.; Balasubramanian V.; Jha S.; York D. M. Characterization of the Three-Dimensional Free Energy Manifold for the Uracil Ribonucleoside from Asynchronous Replica Exchange Simulations. J. Chem. Theory Comput. 2015, 11, 373–377. 10.1021/ct500776j. PubMed DOI PMC
Zeller F.; Zacharias M. Adaptive Biasing Combined with Hamiltonian Replica Exchange to Improve Umbrella Sampling Free Energy Simulations. J. Chem. Theory Comput. 2014, 10, 703–710. 10.1021/ct400689h. PubMed DOI
Huang M.; Giese T. J.; Lee T.-S.; York D. M. Improvement of DNA and RNA Sugar Pucker Profiles from Semiempirical Quantum Methods. J. Chem. Theory Comput. 2014, 10, 1538–1545. 10.1021/ct401013s. PubMed DOI PMC
Stofer E.; Chipot C.; Lavery R. Free Energy Calculations of Watson-Crick Base Pairing in Aqueous Solution. J. Am. Chem. Soc. 1999, 121, 9503–9508. 10.1021/ja991092z. DOI
Grubmüller H.; Heymann B.; Tavan P. Ligand Binding: Molecular Mechanics Calculation of the Streptavidin-biotin Rupture Force. Science 1996, 271, 997–999. 10.1126/science.271.5251.997. PubMed DOI
Jarzynski C. Nonequilibrium Equality for Free Energy Differences. Phys. Rev. Lett. 1997, 78, 2690–2693. 10.1103/PhysRevLett.78.2690. DOI
Colizzi F.; Bussi G. RNA Unwinding from Reweighted Pulling Simulations. J. Am. Chem. Soc. 2012, 134, 5173–5179. 10.1021/ja210531q. PubMed DOI
Di Palma F.; Colizzi F.; Bussi G. Ligand-induced Stabilization of the Aptamer Terminal Helix in the Add Adenine Riboswitch. RNA 2013, 19, 1517–1524. 10.1261/rna.040493.113. PubMed DOI PMC
Schlitter J.; Engels M.; Krüger P.; Jacoby E.; Wollmer A. Targeted Molecular Dynamics Simulation of Conformational Change-application to the T ↔ R Transition in Insulin. Mol. Simul. 1993, 10, 291–308. 10.1080/08927029308022170. DOI
Aci S.; Mazier S.; Genest D. Conformational Pathway for the Kissing Complex-->Extended Dimer Transition of the SL1 Stem-loop from Genomic HIV-1 RNA as Monitored by Targeted Molecular Dynamics Techniques. J. Mol. Biol. 2005, 351, 520–530. 10.1016/j.jmb.2005.06.009. PubMed DOI
Gore J.; Ritort F.; Bustamante C. Bias and Error in Estimates of Equilibrium Free-energy Differences from Nonequilibrium Measurements. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 12564–12569. 10.1073/pnas.1635159100. PubMed DOI PMC
Minh D. D. L.; Adib A. B. Optimized Free Energies from Bidirectional Single-molecule Force Spectroscopy. Phys. Rev. Lett. 2008, 100, e18060210.1103/PhysRevLett.100.180602. PubMed DOI PMC
Do T. N.; Carloni P.; Varani G.; Bussi G. RNA/Peptide Binding Driven by Electrostatics—Insight from Bidirectional Pulling Simulation. J. Chem. Theory Comput. 2013, 9, 1720–1730. 10.1021/ct3009914. PubMed DOI
Huber T.; Torda A. E.; van Gunsteren W. F. Local Elevation: A Method for Improving the Searching Properties of Molecular Dynamics Simulation. J. Comput.-Aided Mol. Des. 1994, 8, 695–708. 10.1007/BF00124016. PubMed DOI
Grubmüller H. Predicting Slow Structural Transitions in Macromolecular Systems: Conformational Flooding. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 1995, 52, e289310.1103/PhysRevE.52.2893. PubMed DOI
Darve E.; Pohorille A. Calculating Free Energies Using Average Force. J. Chem. Phys. 2001, 115, 9169–9183. 10.1063/1.1410978. DOI
Laio A.; Parrinello M. Escaping Free-energy Minima. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 12562–12566. 10.1073/pnas.202427399. PubMed DOI PMC
Barducci A.; Bussi G.; Parrinello M. Well-Tempered Metadynamics: A Smoothly Converging and Tunable Free-Energy Method. Phys. Rev. Lett. 2008, 100, e02060310.1103/PhysRevLett.100.020603. PubMed DOI
Valsson O.; Parrinello M. Variational Approach to Enhanced Sampling and Free Energy Calculations. Phys. Rev. Lett. 2014, 113, e09060110.1103/PhysRevLett.113.090601. PubMed DOI
Babin V.; Roland C.; Sagui C. Adaptively Biased Molecular Dynamics for Free Energy Calculations. J. Chem. Phys. 2008, 128, 134101.10.1063/1.2844595. PubMed DOI
Branduardi D.; Bussi G.; Parrinello M. Metadynamics with Adaptive Gaussians. J. Chem. Theory Comput. 2012, 8, 2247–2254. 10.1021/ct3002464. PubMed DOI
Laio A.; Gervasio F. L. Metadynamics: A Method to Simulate Rare Events and Reconstruct the Free Energy in Biophysics, Chemistry and Material Science. Rep. Prog. Phys. 2008, 71, 126601.10.1088/0034-4885/71/12/126601. DOI
Haldar S.; Kuhrova P.; Banas P.; Spiwok V.; Sponer J.; Hobza P.; Otyepka M. Insights into Stability and Folding of GNRA and UNCG Tetra loops Revealed by Microsecond Molecular Dynamics and Well-Tempered Metadynamics. J. Chem. Theory Comput. 2015, 11, 3866–3877. 10.1021/acs.jctc.5b00010. PubMed DOI
Bussi G.; Branduardi D. Free-Energy Calculations with Metadynamics: Theory and Practice. In Reviews in Computational Chemistry Volume 28. John Wiley & Sons, Inc 2015, 1–49. 10.1002/9781118889886.ch1. DOI
Salvalaglio M.; Tiwary P.; Parrinello M. Assessing the Reliability of the Dynamics Reconstructed from Metadynamics. J. Chem. Theory Comput. 2014, 10, 1420–1425. 10.1021/ct500040r. PubMed DOI
Tiwary P.; Berne B. J. Spectral Gap Optimization of Order Parameters for Sampling Complex Molecular Systems. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 2839–2844. 10.1073/pnas.1600917113. PubMed DOI PMC
Tiwary P.; Parrinello M. A Time-Independent Free Energy Estimator for Metadynamics. J. Phys. Chem. B 2015, 119, 736–742. 10.1021/jp504920s. PubMed DOI
Bonomi M.; Branduardi D.; Bussi G.; Camilloni C.; Provasi D.; Raiteri P.; Donadio D.; Marinelli F.; Pietrucci F.; Broglia R. A.; et al. PLUMED: A Portable Plugin for Free-energy Calculations with Molecular Dynamics. Comput. Phys. Commun. 2009, 180, 1961–1972. 10.1016/j.cpc.2009.05.011. DOI
Tribello G. A.; Bonomi M.; Branduardi D.; Camilloni C.; Bussi G. PLUMED 2: New Feathers for an Old Bird. Comput. Phys. Commun. 2014, 185, 604–613. 10.1016/j.cpc.2013.09.018. DOI
Fiorin G.; Klein M. L.; Hénin J. Using Collective Variables to Drive Molecular Dynamics Simulations. Mol. Phys. 2013, 111, 3345–3362. 10.1080/00268976.2013.813594. DOI
Raiteri P.; Laio A.; Gervasio F. L.; Micheletti C.; Parrinello M. Efficient Reconstruction of Complex Free Energy Landscapes by Multiple Walkers Metadynamics. J. Phys. Chem. B 2006, 110, 3533–3539. 10.1021/jp054359r. PubMed DOI
Hošek P.; Toulcová D.; Bortolato A.; Spiwok V. Altruistic Metadynamics: Multisystem Biased Simulation. J. Phys. Chem. B 2016, 120, 2209–2215. 10.1021/acs.jpcb.6b00087. PubMed DOI
Mlýnský V.; Bussi G. Understanding In-line Probing Experiments by Modeling Cleavage of Nonreactive RNA Nucleotides. RNA 2017, 23, 712–720. 10.1261/rna.060442.116. PubMed DOI PMC
White A. D.; Dama J. F.; Voth G. A. Designing Free Energy Surfaces that Match Experimental Data with Metadynamics. J. Chem. Theory Comput. 2015, 11, 2451–2460. 10.1021/acs.jctc.5b00178. PubMed DOI
Marinelli F.; Faraldo-Gómez J. D. Ensemble-Biased Metadynamics: A Molecular Simulation Method to Sample Experimental Distributions. Biophys. J. 2015, 108, 2779–2782. 10.1016/j.bpj.2015.05.024. PubMed DOI PMC
Stadlbauer P.; Mazzanti L.; Cragnolini T.; Wales D. J.; Derreumaux P.; Pasquali S.; Šponer J. Coarse-Grained Simulations Complemented by Atomistic Molecular Dynamics Provide New Insights into Folding and Unfolding of Human Telomeric G-Quadruplexes. J. Chem. Theory Comput. 2016, 12, 6077–6097. 10.1021/acs.jctc.6b00667. PubMed DOI
Geissler P. L.; Dellago C.; Chandler D. Chemical Dynamics of the Protonated Water Trimer Analyzed by Transition Path Sampling. Phys. Chem. Chem. Phys. 1999, 1, 1317–1322. 10.1039/a808871c. DOI
Palazzesi F.; Valsson O.; Parrinello M. Conformational Entropy as Collective Variable for Proteins. J. Phys. Chem. Lett. 2017, 8, 4752–4756. 10.1021/acs.jpclett.7b01770. PubMed DOI
Sultan M. M.; Pande V. S. tICA-Metadynamics: Accelerating Metadynamics by Using Kinetically Selected Collective Variables. J. Chem. Theory Comput. 2017, 13, 2440–2447. 10.1021/acs.jctc.7b00182. PubMed DOI
Ferrarotti M. J.; Bottaro S.; Pérez-Villa A.; Bussi G. Accurate Multiple Time Step in Biased Molecular Simulations. J. Chem. Theory Comput. 2015, 11, 139–146. 10.1021/ct5007086. PubMed DOI
Kabsch W. A Solution for the Best Rotation to Relate Two Sets of Vectors. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976, 32, 922–923. 10.1107/S0567739476001873. DOI
Parisien M.; Cruz J. A.; Westhof E.; Major F. New Metrics for Comparing and Assessing Discrepancies between RNA 3D Structures and Models. RNA 2009, 15, 1875–1885. 10.1261/rna.1700409. PubMed DOI PMC
Branduardi D.; Gervasio F. L.; Parrinello M. From A to B in Free Energy Space. J. Chem. Phys. 2007, 126, 054103.10.1063/1.2432340. PubMed DOI
Pietrucci F.; Laio A. A Collective Variable for the Efficient Exploration of Protein Beta-sheet Structures: Application to SH3 and GB1. J. Chem. Theory Comput. 2009, 5, 2197–2201. 10.1021/ct900202f. PubMed DOI
Cunha R. A.; Bussi G. Unravelling Mg2+-RNA Binding with Atomistic Molecular Dynamics. RNA 2017, 23, 628–638. 10.1261/rna.060079.116. PubMed DOI PMC
Deng Y.; Roux B. Computations of Standard Binding Free Energies with Molecular Dynamics Simulations. J. Phys. Chem. B 2009, 113, 2234–2246. 10.1021/jp807701h. PubMed DOI PMC
Woo H.-J.; Roux B. Calculation of Absolute Protein–ligand Binding Free Energy from Computer Simulations. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 6825–6830. 10.1073/pnas.0409005102. PubMed DOI PMC
Allen T. W.; Andersen O. S.; Roux B. Energetics of Ion Conduction through the Gramicidin Channel. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 117–122. 10.1073/pnas.2635314100. PubMed DOI PMC
Limongelli V.; Bonomi M.; Parrinello M. Funnel Metadynamics as Accurate Binding Free-energy Method. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 6358–6363. 10.1073/pnas.1303186110. PubMed DOI PMC
Bussi G.; Gervasio F. L.; Laio A.; Parrinello M. Free-energy Landscape for β Hairpin Folding from Combined Parallel Tempering and Metadynamics. J. Am. Chem. Soc. 2006, 128, 13435–13441. 10.1021/ja062463w. PubMed DOI
Yang C.; Kulkarni M.; Lim M.; Pak Y. In silico direct folding of thrombin-binding aptamer G-quadruplex at all-atom level. Nucleic Acids Res. 2017, 10.1093/nar/gkx1079. PubMed DOI PMC
Piana S.; Laio A. A Bias-exchange Approach to Protein Folding. J. Phys. Chem. B 2007, 111, 4553–4559. 10.1021/jp067873l. PubMed DOI
Pfaendtner J.; Bonomi M. Efficient Sampling of High-Dimensional Free-Energy Landscapes with Parallel Bias Metadynamics. J. Chem. Theory Comput. 2015, 11, 5062–5067. 10.1021/acs.jctc.5b00846. PubMed DOI
Marinelli F.; Fabio P.; Alessandro L.; Stefano P. A Kinetic Model of Trp-Cage Folding from Multiple Biased Molecular Dynamics Simulations. PLoS Comput. Biol. 2009, 5, 1–18. 10.1371/journal.pcbi.1000452. PubMed DOI PMC
Camilloni C.; Cavalli A.; Vendruscolo M. Replica-Averaged Metadynamics. J. Chem. Theory Comput. 2013, 9, 5610–5617. 10.1021/ct4006272. PubMed DOI
Borkar A. N.; Bardaro M. F.; Camilloni C.; Aprile F. A.; Varani G.; Vendruscolo M. Structure of a Low-population Binding Intermediate in Protein-RNA Recognition. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 7171–7176. 10.1073/pnas.1521349113. PubMed DOI PMC
Borkar A. N.; Vallurupalli P.; Camilloni C.; Kay L. E.; Vendruscolo M. Simultaneous NMR Characterisation of Multiple Minima in the Free Energy Landscape of an RNA UUCG Tetraloop. Phys. Chem. Chem. Phys. 2017, 19, 2797–2804. 10.1039/C6CP08313G. PubMed DOI PMC
Camilloni C.; Vendruscolo M. A Tensor-Free Method for the Structural and Dynamical Refinement of Proteins using Residual Dipolar Couplings. J. Phys. Chem. B 2015, 119, 653–661. 10.1021/jp5021824. PubMed DOI
Wu H.; Paul F.; Wehmeyer C.; Noé F. Multiensemble Markov Models of Molecular Thermodynamics and Kinetics. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, E3221–E3230. 10.1073/pnas.1525092113. PubMed DOI PMC
Stelzl L. S.; Kells A.; Rosta E.; Hummer G. Dynamic Histogram Analysis to Determine Free Energies and Rates from Biased Simulations. J. Chem. Theory Comput. 2017, 13, 6328–6342. 10.1021/acs.jctc.7b00373. PubMed DOI
Sulc P.; Romano F.; Ouldridge T. E.; Doye J. P.; Louis A. A. A Nucleotide-level Coarse-grained Model of RNA. J. Chem. Phys. 2014, 140, 235102.10.1063/1.4881424. PubMed DOI
Matek C.; Sulc P.; Randisi F.; Doye J. P.; Louis A. A. Coarse-grained Modelling of Supercoiled RNA. J. Chem. Phys. 2015, 143, 243122.10.1063/1.4933066. PubMed DOI
Straatsma T. P.; Berendsen H. J. C. Free Energy of Ionic Hydration: Analysis of a Thermodynamic Integration Technique to Evaluate Free Energy Differences by Molecular Dynamics Simulations. J. Chem. Phys. 1988, 89, 5876–5886. 10.1063/1.455539. DOI
Shirts M. R.; Mobley D. L.; Chodera J. D.. Alchemical Free Energy Calculations: Ready for Prime Time? In Annual Reports in Computational Chemistry; Spellmeyer D. C., Wheeler R., Eds.; Elsevier: New York, 2007; Vol. 3, Chapter 4, pp 41–59.
Joung I. S.; Cheatham T. E. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B 2008, 112, 9020–9041. 10.1021/jp8001614. PubMed DOI PMC
Pearlman D. A.; Kollman P. A. The Lag between the Hamiltonian and the System Configuration in Free Energy Perturbation Calculations. J. Chem. Phys. 1989, 91, 7831–7839. 10.1063/1.457251. DOI
Zwanzig R. W. High-Temperature Equation of State by a Perturbation Method. J. Chem. Phys. 1954, 22, 1420–1426. 10.1063/1.1740409. DOI
Kollman P. Free-Energy Calculations - Applications to Chemical and Biochemical Phenomena. Chem. Rev. 1993, 93, 2395–2417. 10.1021/cr00023a004. DOI
Mark A. E. Free Energy Perturbation Calculations. Encyclopedia of computational chemistry 2002, 2, 1.10.1002/0470845015.cfa010. DOI
Bennett C. H. Efficient Estimation of Free Energy Differences from Monte Carlo Data. J. Comput. Phys. 1976, 22, 245–268. 10.1016/0021-9991(76)90078-4. DOI
Meng Y.; Sabri Dashti D.; Roitberg A. E. Computing Alchemical Free Energy Differences with Hamiltonian Replica Exchange Molecular Dynamics (H-REMD) Simulations. J. Chem. Theory Comput. 2011, 7, 2721–2727. 10.1021/ct200153u. PubMed DOI PMC
Sakuraba S.; Asai K.; Kameda T. Predicting RNA Duplex Dimerization Free-Energy Changes upon Mutations Using Molecular Dynamics Simulations. J. Phys. Chem. Lett. 2015, 6, 4348–4351. 10.1021/acs.jpclett.5b01984. PubMed DOI
Simonson T. Free Energy of Particle Insertion. Mol. Phys. 1993, 80, 441–447. 10.1080/00268979300102371. DOI
Beutler T. C.; Mark A. E.; Vanschaik R. C.; Gerber P. R.; Vangunsteren W. F. Avoiding Singularities and Numerical Instabilities in Free-Energy Calculations Based on Molecular Simulations. Chem. Phys. Lett. 1994, 222, 529–539. 10.1016/0009-2614(94)00397-1. DOI
Yildirim I.; Stern H. A.; Sponer J.; Spackova N.; Turner D. H. Effects of Restrained Sampling Space and Nonplanar Amino Groups on Free-Energy Predictions for RNA with Imino and Sheared Tandem GA Base Pairs Flanked by GC, CG, iGiC or iCIG Base Pairs. J. Chem. Theory Comput. 2009, 5, 2088–2100. 10.1021/ct800540c. PubMed DOI PMC
Sarzynska J.; Nilsson L.; Kulinski T. Effects of Base Substitutions in an RNA Hairpin from Molecular Dynamics and Free Energy Simulations. Biophys. J. 2003, 85, 3445–3459. 10.1016/S0006-3495(03)74766-3. PubMed DOI PMC
Krepl M.; Otyepka M.; Banas P.; Sponer J. Effect of Guanine to Inosine Substitution on Stability of Canonical DNA and RNA Duplexes: Molecular Dynamics Thermodynamics Integration Study. J. Phys. Chem. B 2013, 117, 1872–1879. 10.1021/jp311180u. PubMed DOI
Krepl M.; Cléry A.; Blatter M.; Allain F. H. T.; Sponer J. Synergy between NMR Measurements and MD Simulations of Protein/RNA Complexes: Application to the RRMs, the Most Common RNA Recognition Motifs. Nucleic Acids Res. 2016, 44, 6452–6470. 10.1093/nar/gkw438. PubMed DOI PMC
Krepl M.; Blatter M.; Cléry A.; Damberger F. F.; Allain F. H. T.; Sponer J. Structural Study of the Fox-1 RRM Protein Hydration Reveals a Role for Key Water Molecules in RRM-RNA Recognition. Nucleic Acids Res. 2017, 45, 8046–8063. 10.1093/nar/gkx418. PubMed DOI PMC
Kleinjung J.; Fraternali F. Design and Application of Implicit Solvent Models in Biomolecular Simulations. Curr. Opin. Struct. Biol. 2014, 25, 126–134. 10.1016/j.sbi.2014.04.003. PubMed DOI PMC
Kollman P. A.; Massova I.; Reyes C.; Kuhn B.; Huo S.; Chong L.; Lee M.; Lee T.; Duan Y.; Wang W.; et al. Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models. Acc. Chem. Res. 2000, 33, 889–897. 10.1021/ar000033j. PubMed DOI
Špačková N.; Cheatham T. E.; Ryjáček F.; Lankaš F.; van Meervelt L.; Hobza P.; Šponer J. Molecular Dynamics Simulations and Thermodynamics Analysis of DNA–Drug Complexes. Minor Groove Binding between 4‘,6-Diamidino-2-phenylindole and DNA Duplexes in Solution. J. Am. Chem. Soc. 2003, 125, 1759–1769. 10.1021/ja025660d. PubMed DOI
Islam B.; Stadlbauer P.; Neidle S.; Haider S.; Sponer J. Can We Execute Reliable MM-PBSA Free Energy Computations of Relative Stabilities of Different Guanine Quadruplex Folds?. J. Phys. Chem. B 2016, 120, 2899–2912. 10.1021/acs.jpcb.6b01059. PubMed DOI
Genheden S.; Ryde U. The MM/PBSA and MM/GBSA Methods to Estimate Ligand-binding Affinities. Expert Opin. Drug Discovery 2015, 10, 449–461. 10.1517/17460441.2015.1032936. PubMed DOI PMC
Tomasi J.; Mennucci B.; Cammi R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. 10.1021/cr9904009. PubMed DOI
Klamt A. The COSMO and COSMO-RS Solvation Models. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011, 1, 699–709. 10.1002/wcms.56. DOI
Hou T.; Wang J.; Li Y.; Wang W. Assessing the Performance of the MM/PBSA and MM/GBSA Methods. 1. The Accuracy of Binding Free Energy Calculations Based on Molecular Dynamics Simulations. J. Chem. Inf. Model. 2011, 51, 69–82. 10.1021/ci100275a. PubMed DOI PMC
Khabiri M.; Freddolino P. L. Deficiencies in Molecular Dynamics Simulation-Based Prediction of Protein–DNA Binding Free Energy Landscapes. J. Phys. Chem. B 2017, 121, 5151–5161. 10.1021/acs.jpcb.6b12450. PubMed DOI PMC
Noid W. G. Perspective: Coarse-grained Models for Biomolecular Systems. J. Chem. Phys. 2013, 139, 090901.10.1063/1.4818908. PubMed DOI
Tschöp W.; Kremer K.; Batoulis J.; Bürger T.; Hahn O. Simulation of Polymer Melts. I. Coarse-graining Procedure for Polycarbonates. Acta Polym. 1998, 49, 61–74. 10.1002/(SICI)1521-4044(199802)49:2/3<61::AID-APOL61>3.0.CO;2-V. DOI
Müller-Plathe F. Coarse-Graining in Polymer Simulation: From the Atomistic to the Mesoscopic Scale and Back. ChemPhysChem 2002, 3, 754–769. 10.1002/1439-7641(20020916)3:9<754::AID-CPHC754>3.0.CO;2-U. PubMed DOI
Reith D.; Pütz M.; Müller-Plathe F. Deriving Effective Mesoscale Potentials from Atomistic Simulations. J. Comput. Chem. 2003, 24, 1624–1636. 10.1002/jcc.10307. PubMed DOI
Lyubartsev A. P.; Laaksonen A. Calculation of Effective Interaction Potentials from Radial Distribution Functions: A Reverse Monte Carlo Approach. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 1995, 52, 3730–3737. 10.1103/PhysRevE.52.3730. PubMed DOI
Lyubartsev A. P.; Laaksonen A. Osmotic and Activity Coefficients from Effective Potentials for Hydrated Ions. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 1997, 55, 5689–5696. 10.1103/PhysRevE.55.5689. DOI
Sippl M. J. Calculation of Conformational Ensembles from Potentials of Mean Force: An Approach to the Knowledge-based Prediction of Local Structures in Globular Proteins. J. Mol. Biol. 1990, 213, 859–883. 10.1016/S0022-2836(05)80269-4. PubMed DOI
Sippl M. J. Boltzmann’s Principle, Knowledge-based Mean Fields and Protein Folding. An Approach to the Computational Determination of Protein Structures. J. Comput.-Aided Mol. Des. 1993, 7, 473–501. 10.1007/BF02337562. PubMed DOI
Marrink S. J.; de Vries A. H.; Mark A. E. Coarse Grained Model for Semiquantitative Lipid Simulations. J. Phys. Chem. B 2004, 108, 750–760. 10.1021/jp036508g. DOI
Marrink S. J.; Tieleman D. P. Perspective on the Martini model. Chem. Soc. Rev. 2013, 42, 6801–6822. 10.1039/c3cs60093a. PubMed DOI
Wagner J. W.; Dama J. F.; Durumeric A. E. P.; Voth G. A. On the Representability Problem and the Physical Meaning of Coarse-grained Models. J. Chem. Phys. 2016, 145, 044108.10.1063/1.4959168. PubMed DOI
Denesyuk N. A.; Thirumalai D. Coarse-grained Model for Predicting RNA Folding Thermodynamics. J. Phys. Chem. B 2013, 117, 4901–4911. 10.1021/jp401087x. PubMed DOI
Boniecki M. J.; Lach G.; Dawson W. K.; Tomala K.; Lukasz P.; Soltysinski T.; Rother K. M.; Bujnicki J. M. SimRNA: A Coarse-grained Method for RNA Folding Simulations and 3D Structure Prediction. Nucleic Acids Res. 2016, 44, e63.10.1093/nar/gkv1479. PubMed DOI PMC
Dawson W. K.; Maciejczyk M.; Jankowska E. J.; Bujnicki J. M. Coarse-grained Modeling of RNA 3D Structure. Methods 2016, 103, 138–156. 10.1016/j.ymeth.2016.04.026. PubMed DOI
Cao S.; Chen S.-J. Predicting Structures and Stabilities for H-type Pseudoknots with Interhelix Loops. RNA 2009, 15, 696–706. 10.1261/rna.1429009. PubMed DOI PMC
Cao S.; Chen S.-J. Predicting RNA Folding Thermodynamics with a Reduced Chain Representation Model. RNA 2005, 11, 1884–1897. 10.1261/rna.2109105. PubMed DOI PMC
Cao S.; Chen S.-J. Predicting RNA Pseudoknot Folding Thermodynamics. Nucleic Acids Res. 2006, 34, 2634–2652. 10.1093/nar/gkl346. PubMed DOI PMC
Cao S.; Chen S.-J. Structure and Stability of RNA/RNA Kissing Complex: With Application to HIV Dimerization Initiation Signal. RNA 2011, 17, 2130–2143. 10.1261/rna.026658.111. PubMed DOI PMC
Cao S.; Chen S.-J. Physics-based de novo Prediction of RNA 3D Structures. J. Phys. Chem. B 2011, 115, 4216–4226. 10.1021/jp112059y. PubMed DOI PMC
Denesyuk N. A.; Thirumalai D. Crowding Promotes the Switch from Hairpin to Pseudoknot Conformation in Human Telomerase RNA. J. Am. Chem. Soc. 2011, 133, 11858–11861. 10.1021/ja2035128. PubMed DOI
Ding F.; Sharma S.; Chalasani P.; Demidov V. V.; Broude N. E.; Dokholyan N. V. Ab Initio RNA Folding by Discrete Molecular Dynamics: From Structure Prediction to Folding Mechanisms. RNA 2008, 14, 1164–1173. 10.1261/rna.894608. PubMed DOI PMC
Cragnolini T.; Laurin Y.; Derreumaux P.; Pasquali S. Coarse-Grained HiRE-RNA Model for ab Initio RNA Folding beyond Simple Molecules, Including Noncanonical and Multiple Base Pairings. J. Chem. Theory Comput. 2015, 11, 3510–3522. 10.1021/acs.jctc.5b00200. PubMed DOI
Cragnolini T.; Derreumaux P.; Pasquali S. Coarse-grained Simulations of RNA and DNA Duplexes. J. Phys. Chem. B 2013, 117, 8047–8060. 10.1021/jp400786b. PubMed DOI
Pasquali S.; Derreumaux P. HiRE-RNA: A High Resolution Coarse-grained Energy Model for RNA. J. Phys. Chem. B 2010, 114, 11957–11966. 10.1021/jp102497y. PubMed DOI
Jost D.; Everaers R. Prediction of RNA Multiloop and Pseudoknot Conformations from a Lattice-based, Coarse-grain Tertiary Structure Model. J. Chem. Phys. 2010, 132, 095101.10.1063/1.3330906. PubMed DOI
He Y.; Maciejczyk M.; Oldziej S.; Scheraga H. A.; Liwo A. Mean-field Interactions Between Nucleic-acid-base Dipoles Can Drive the Formation of a Double Helix. Phys. Rev. Lett. 2013, 110, e09810110.1103/PhysRevLett.110.098101. PubMed DOI PMC
He Y.; Liwo A.; Scheraga H. A. Optimization of a Nucleic Acids United-RESidue 2-Point model (NARES-2P) with a Maximum-likelihood Approach. J. Chem. Phys. 2015, 143, 243111.10.1063/1.4932082. PubMed DOI PMC
Mustoe A. M.; Al-Hashimi H. M.; Brooks C. L. III Coarse Grained Models Reveal Essential Contributions of Topological Constraints to the Conformational Free Energy of RNA Bulges. J. Phys. Chem. B 2014, 118, 2615–2627. 10.1021/jp411478x. PubMed DOI PMC
Bell D. R.; Cheng S. Y.; Salazar H.; Ren P. Capturing RNA Folding Free Energy with Coarse-Grained Molecular Dynamics Simulations. Sci. Rep. 2017, 7, 45812.10.1038/srep45812. PubMed DOI PMC
Xia Z.; Bell D. R.; Shi Y.; Ren P. RNA 3D Structure Prediction by Using a Coarse-grained Model and Experimental Data. J. Phys. Chem. B 2013, 117, 3135–3144. 10.1021/jp400751w. PubMed DOI
Xia Z.; Gardner D. P.; Gutell R. R.; Ren P. Coarse-grained Model for Simulation of RNA Three-dimensional Structures. J. Phys. Chem. B 2010, 114, 13497–13506. 10.1021/jp104926t. PubMed DOI PMC
Uusitalo J. J.; Ingólfsson H. I.; Akhshi P.; Tieleman D. P.; Marrink S. J. Martini Coarse-Grained Force Field: Extension to DNA. J. Chem. Theory Comput. 2015, 11, 3932–3945. 10.1021/acs.jctc.5b00286. PubMed DOI
Uusitalo J. J.; Ingólfsson H. I.; Marrink S. J.; Faustino I. Martini Coarse-Grained Force Field: Extension to RNA. Biophys. J. 2017, 113, 246–256. 10.1016/j.bpj.2017.05.043. PubMed DOI PMC
Malhotra A.; Tan R. K.; Harvey S. C. Modeling Large RNAs and Ribonucleoprotein Particles Using Molecular Mechanics Techniques. Biophys. J. 1994, 66, 1777–1795. 10.1016/S0006-3495(94)80972-5. PubMed DOI PMC
Tan R. K. Z.; Petrov A. S.; Harvey S. C. YUP: A Molecular Simulation Program for Coarse-Grained and Multiscaled Models. J. Chem. Theory Comput. 2006, 2, 529–540. 10.1021/ct050323r. PubMed DOI PMC
Jonikas M. A.; Radmer R. J.; Laederach A.; Das R.; Pearlman S.; Herschlag D.; Altman R. B. Coarse-grained Modeling of Large RNA Molecules with Knowledge-based Potentials and Structural Filters. RNA 2009, 15, 189–199. 10.1261/rna.1270809. PubMed DOI PMC
Kerpedjiev P.; Höner zu Siederdissen C.; Hofacker I. L. Predicting RNA 3D Structure Using a Coarse-grain Helix-centered Model. RNA 2015, 21, 1110–1121. 10.1261/rna.047522.114. PubMed DOI PMC
Kim N.; Zahran M.; Schlick T. Computational Prediction of Riboswitch Tertiary Structures Including Pseudoknots by RAGTOP. Methods Enzymol. 2015, 553, 115–135. 10.1016/bs.mie.2014.10.054. PubMed DOI
Bernauer J.; Huang X.; Sim A. Y.; Levitt M. Fully Differentiable Coarse-grained and All-atom Knowledge-based Potentials for RNA Structure Evaluation. RNA 2011, 17, 1066–1075. 10.1261/rna.2543711. PubMed DOI PMC
Li J.; Zhang J.; Wang J.; Li W.; Wang W. Structure Prediction of RNA Loops with a Probabilistic Approach. PLoS Comput. Biol. 2016, 12, e1005032.10.1371/journal.pcbi.1005032. PubMed DOI PMC
Capriotti E.; Norambuena T.; Marti-Renom M. A.; Melo F. All-atom Knowledge-based Potential for RNA Structure Prediction and Assessment. Bioinformatics 2011, 27, 1086–1093. 10.1093/bioinformatics/btr093. PubMed DOI
Poblete S.; Bottaro S.; Bussi G. A Nucleobase-centered Coarse-grained Representation for Structure Prediction of RNA Motifs. Nucleic Acids Res. 2017, 10.1093/nar/gkx1269. PubMed DOI PMC
Setny P.; Zacharias M. Elastic Network Models of Nucleic Acids Flexibility. J. Chem. Theory Comput. 2013, 9, 5460–5470. 10.1021/ct400814n. PubMed DOI
Pinamonti G.; Bottaro S.; Micheletti C.; Bussi G. Elastic Network Models for RNA: A Comparative Assessment with Molecular Dynamics and SHAPE Experiments. Nucleic Acids Res. 2015, 43, 7260–7269. 10.1093/nar/gkv708. PubMed DOI PMC
Bahar I.; Jernigan R. L. Vibrational Dynamics of Transfer RNAs: Comparison of the Free and Synthetase-bound Forms. J. Mol. Biol. 1998, 281, 871–884. 10.1006/jmbi.1998.1978. PubMed DOI
Wang Y.; Rader A. J.; Bahar I.; Jernigan R. L. Global Ribosome Motions Revealed with Elastic Network Model. J. Struct. Biol. 2004, 147, 302–314. 10.1016/j.jsb.2004.01.005. PubMed DOI
Kurkcuoglu O.; Kurkcuoglu Z.; Doruker P.; Jernigan R. L. Collective Dynamics of the Ribosomal Tunnel Revealed by Elastic Network Modeling. Proteins: Struct., Funct., Genet. 2009, 75, 837–845. 10.1002/prot.22292. PubMed DOI PMC
Tama F.; Valle M.; Frank J.; Brooks C. L. Dynamic Reorganization of the Functionally Active Ribosome Explored by Normal Mode Analysis and Cryo-Electron Microscopy. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 9319–9323. 10.1073/pnas.1632476100. PubMed DOI PMC
Wang Y.; Jernigan R. L. Comparison of tRNA Motions in the Free and Ribosomal Bound Structures. Biophys. J. 2005, 89, 3399–3409. 10.1529/biophysj.105.064840. PubMed DOI PMC
Zimmermann M. T.; Jernigan R. L. Elastic Network Models Capture the Motions Apparent within Ensembles of RNA Structures. RNA 2014, 20, 792–804. 10.1261/rna.041269.113. PubMed DOI PMC
Li C.; Lv D.; Zhang L.; Yang F.; Wang C.; Su J.; Zhang Y. Approach to the Unfolding and Folding Dynamics of add A-riboswitch upon Adenine Dissociation Using a Coarse-grained Elastic Network Model. J. Chem. Phys. 2016, 145, 014104.10.1063/1.4954992. PubMed DOI PMC
González Ŕ. L.; Teixidó, J.; Borrell, J. I.; Estrada-Tejedor, R., On the Applicability of Elastic Network Models for the Study of RNA CUG Trinucleotide Repeat Overexpansion. PLoS One 2016, 11, e0152049.10.1371/journal.pone.0152049. PubMed DOI PMC
Beššeová I.; Réblová K.; Leontis N. B.; Šponer J. Molecular Dynamics Simulations Suggest that RNA Three-way Junctions Can Act as Flexible RNA Structural Elements in the Ribosome. Nucleic Acids Res. 2010, 38, 6247–6264. 10.1093/nar/gkq414. PubMed DOI PMC
Durand P.; Trinquier G.; Sanejouand Y.-H. A New Approach for Determining Low-frequency Normal Modes in Macromolecules. Biopolymers 1994, 34, 759–771. 10.1002/bip.360340608. DOI
Fuglebakk E.; Reuter N.; Hinsen K. Evaluation of Protein Elastic Network Models Based on an Analysis of Collective Motions. J. Chem. Theory Comput. 2013, 9, 5618–5628. 10.1021/ct400399x. PubMed DOI
Hori N.; Takada S. Coarse-Grained Structure-Based Model for RNA-Protein Complexes Developed by Fluctuation Matching. J. Chem. Theory Comput. 2012, 8, 3384–3394. 10.1021/ct300361j. PubMed DOI
Benítez A. A.; Cifre J. G. H.; Bańos F. G. D.; de la Torre J. G. Prediction of Solution Properties and Dynamics of RNAs by Means of Brownian Dynamics Simulation of Coarse-grained Models: Ribosomal 5S RNA and Phenylalanine Transfer RNA. BMC Biophys. 2015, 8, e1110.1186/s13628-015-0025-7. PubMed DOI PMC
Tinoco I.; Uhlenbeck O. C.; Levine M. D. Estimation of Secondary Structure in Ribonucleic Acids. Nature 1971, 230, 362–367. 10.1038/230362a0. PubMed DOI
Serra M. J.; Turner D. H. Predicting Thermodynamic Properties of RNA. Methods Enzymol. 1995, 259, 242–261. 10.1016/0076-6879(95)59047-1. PubMed DOI
Xia T.; SantaLucia J.; Burkard M. E.; Kierzek R.; Schroeder S. J.; Jiao X.; Cox C.; Turner D. H. Thermodynamic Parameters for an Expanded Nearest-Neighbor Model for Formation of RNA Duplexes with Watson–Crick Base Pairs. Biochemistry 1998, 37, 14719–14735. 10.1021/bi9809425. PubMed DOI
Mathews D. H.; Disney M. D.; Childs J. L.; Schroeder S. J.; Zuker M.; Turner D. H. Incorporating Chemical Modification Constraints into a Dynamic Programming Algorithm for Prediction of RNA Secondary Structure. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 7287–7292. 10.1073/pnas.0401799101. PubMed DOI PMC
Walter A. E.; Turner D. H. Sequence Dependence of Stability for Coaxial Stacking of RNA Helixes with Watson-Crick Base Paired Interfaces. Biochemistry 1994, 33, 12715–12719. 10.1021/bi00208a024. PubMed DOI
Walter A. E.; Turner D. H.; Kim J.; Lyttle M. H.; Müller P.; Mathews D. H.; Zuker M. Coaxial Stacking of Helixes Enhances Binding of Oligoribonucleotides and Improves Predictions of RNA Folding. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 9218–9222. 10.1073/pnas.91.20.9218. PubMed DOI PMC
Lu Z. J.; Turner D. H.; Mathews D. H. A Set of Nearest Neighbor Parameters for Predicting the Enthalpy Change of RNA Secondary Structure Formation. Nucleic Acids Res. 2006, 34, 4912–4924. 10.1093/nar/gkl472. PubMed DOI PMC
Zuker M. Mfold Web Server for Nucleic Acid Folding and Hybridization Prediction. Nucleic Acids Res. 2003, 31, 3406–3415. 10.1093/nar/gkg595. PubMed DOI PMC
Ueda Y.; Taketomi H.; Go̅ N. Studies on Protein Folding, Unfolding, and Fluctuations by Computer Simulation. II. A. Three-dimensional Lattice Model of Lysozyme. Biopolymers 1978, 17, 1531–1548. 10.1002/bip.1978.360170612. DOI
Hills R.; Brooks C. Insights from Coarse-Grained Go̅ Models for Protein Folding and Dynamics. Int. J. Mol. Sci. 2009, 10, 889–905. 10.3390/ijms10030889. PubMed DOI PMC
Hyeon C.; Thirumalai D. Mechanical Unfolding of RNA Hairpins. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 6789–6794. 10.1073/pnas.0408314102. PubMed DOI PMC
Hyeon C.; Thirumalai D. Forced-Unfolding and Force-Quench Refolding of RNA Hairpins. Biophys. J. 2006, 90, 3410–3427. 10.1529/biophysj.105.078030. PubMed DOI PMC
Hyeon C.; Thirumalai D. Mechanical Unfolding of RNA: From Hairpins to Structures with Internal Multiloops. Biophys. J. 2007, 92, 731–743. 10.1529/biophysj.106.093062. PubMed DOI PMC
Lin J.-C.; Thirumalai D. Relative Stability of Helices Determines the Folding Landscape of Adenine Riboswitch Aptamers. J. Am. Chem. Soc. 2008, 130, 14080–14081. 10.1021/ja8063638. PubMed DOI
Manning G. S. Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions I. Colligative Properties. J. Chem. Phys. 1969, 51, 924–933. 10.1063/1.1672157. DOI
Weiner S. J.; Kollman P. A.; Nguyen D. T.; Case D. A. An All Atom Force Field for Simulations of Proteins and Nucleic Acids. J. Comput. Chem. 1986, 7, 230–252. 10.1002/jcc.540070216. PubMed DOI
SantaLucia J. Jr; Hicks D. The Thermodynamics of DNA Structural Motifs. Annu. Rev. Biophys. Biomol. Struct. 2004, 33, 415–440. 10.1146/annurev.biophys.32.110601.141800. PubMed DOI
Daher M.; Mustoe A. M.; Morriss-Andrews A.; Brooks Iii C. L.; Walter N. G. Tuning RNA Folding and Function through Rational Design of Junction Topology. Nucleic Acids Res. 2017, 45, 9706–9715. 10.1093/nar/gkx614. PubMed DOI PMC
Marrink S. J.; Risselada H. J.; Yefimov S.; Tieleman D. P.; de Vries A. H. The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations. J. Phys. Chem. B 2007, 111, 7812–7824. 10.1021/jp071097f. PubMed DOI
Monticelli L.; Kandasamy S. K.; Periole X.; Larson R. G.; Tieleman D. P.; Marrink S.-J. The MARTINI Coarse-Grained Force Field: Extension to Proteins. J. Chem. Theory Comput. 2008, 4, 819–834. 10.1021/ct700324x. PubMed DOI
López C. A.; Rzepiela A. J.; de Vries A. H.; Dijkhuizen L.; Hünenberger P. H.; Marrink S. J. Martini Coarse-Grained Force Field: Extension to Carbohydrates. J. Chem. Theory Comput. 2009, 5, 3195–3210. 10.1021/ct900313w. PubMed DOI
Bayrak C. S.; Kim N.; Schlick T. Using Sequence Signatures and Kink-turn Motifs in Knowledge-based Statistical Potentials for RNA Structure Prediction. Nucleic Acids Res. 2017, 45, 5414–5422. 10.1093/nar/gkx045. PubMed DOI PMC
Das R.; Karanicolas J.; Baker D. Atomic Accuracy in Predicting and Designing Noncanonical RNA. Nat. Methods 2010, 7, 291–294. 10.1038/nmeth.1433. PubMed DOI PMC
Magnus M.; Boniecki M. J.; Dawson W.; Bujnicki J. M. SimRNAweb: A Web Server for RNA 3D Structure Modeling with Optional Restraints. Nucleic Acids Res. 2016, 44, W315–W319. 10.1093/nar/gkw279. PubMed DOI PMC
Frellsen J.; Moltke I.; Thiim M.; Mardia K. V.; Ferkinghoff-Borg J.; Hamelryck T. A Probabilistic Model of RNA Conformational Space. PLoS Comput. Biol. 2009, 5, e1000406.10.1371/journal.pcbi.1000406. PubMed DOI PMC
Krokhotin A.; Houlihan K.; Dokholyan N. V. iFoldRNA v2: Folding RNA with Constraints. Bioinformatics 2015, 31, 2891–2893. 10.1093/bioinformatics/btv221. PubMed DOI PMC
Xu X.; Zhao P.; Chen S.-J. Vfold: A web server for RNA Structure and Folding Thermodynamics Prediction. PLoS One 2014, 9, e107504.10.1371/journal.pone.0107504. PubMed DOI PMC
Cruz J. A.; Blanchet M.-F.; Boniecki M.; Bujnicki J. M.; Chen S.-J.; Cao S.; Das R.; Ding F.; Dokholyan N. V.; Flores S. C.; et al. RNA-Puzzles: A CASP-like Evaluation of RNA Three-dimensional Structure Prediction. RNA 2012, 18, 610–625. 10.1261/rna.031054.111. PubMed DOI PMC
Miao Z.; Adamiak R. W.; Antczak M.; Batey R. T.; Becka A. J.; Biesiada M.; Boniecki M. J.; Bujnicki J.; Chen S.-J.; Cheng C. Y.; et al. RNA-Puzzles Round III: 3D RNA Structure Prediction of Five Riboswitches and One Ribozyme. RNA 2017, 23, 655–672. 10.1261/rna.060368.116. PubMed DOI PMC
Miao Z.; Adamiak R. W.; Blanchet M.-F.; Boniecki M.; Bujnicki J. M.; Chen S.-J.; Cheng C.; Chojnowski G.; Chou F.-C.; Cordero P.; et al. RNA-Puzzles Round II: Assessment of RNA Structure Prediction Programs Applied to Three Large RNA Structures. RNA 2015, 21, 1066–1084. 10.1261/rna.049502.114. PubMed DOI PMC
Flores S. C.; Sherman M. A.; Bruns C. M.; Eastman P.; Altman R. B. Fast Flexible Modeling of RNA Structure Using Internal Coordinates. IEEE/ACM Trans. Comput. Biol. Bioinf. 2011, 8, 1247–1257. 10.1109/TCBB.2010.104. PubMed DOI PMC
Parisien M.; Major F. The MC-Fold and MC-Sym Pipeline Infers RNA Structure from Sequence Data. Nature 2008, 452, 51–55. 10.1038/nature06684. PubMed DOI
Sijenyi F.; Saro P.; Ouyang Z.; Damm-Ganamet K.; Wood M.; Jiang J.; SantaLucia J.. The RNA Folding Problems: Different Levels of sRNA Structure Prediction. In RNA 3D Structure Analysis and Prediction; Leontis N., Westhof E., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2012; pp 91–117.
Rother M.; Rother K.; Puton T.; Bujnicki J. M. RNA Tertiary Structure Prediction with ModeRNA. Briefings Bioinf. 2011, 12, 601–613. 10.1093/bib/bbr050. PubMed DOI
Tirion M. M. Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis. Phys. Rev. Lett. 1996, 77, 1905–1908. 10.1103/PhysRevLett.77.1905. PubMed DOI
Bahar I.; Lezon T. R.; Yang L.-W.; Eyal E. Global Dynamics of Proteins: Bridging Between Structure and Function. Annu. Rev. Biophys. 2010, 39, 23–42. 10.1146/annurev.biophys.093008.131258. PubMed DOI PMC
Fuglebakk E.; Tiwari S. P.; Reuter N. Comparing the Intrinsic Dynamics of Multiple Protein Structures Using Elastic Network Models. Biochim. Biophys. Acta, Gen. Subj. 2015, 1850, 911–922. 10.1016/j.bbagen.2014.09.021. PubMed DOI
Hinsen K. Analysis of Domain Motions by Approximate Normal Mode Calculations. Proteins: Struct., Funct., Genet. 1998, 33, 417–429. 10.1002/(SICI)1097-0134(19981115)33:3<417::AID-PROT10>3.0.CO;2-8. PubMed DOI
Atilgan A. R.; Durell S. R.; Jernigan R. L.; Demirel M. C.; Keskin O.; Bahar I. Anisotropy of Fluctuation Dynamics of Proteins with an Elastic Network Model. Biophys. J. 2001, 80, 505–515. 10.1016/S0006-3495(01)76033-X. PubMed DOI PMC
Micheletti C.; Carloni P.; Maritan A. Accurate and Efficient Description of Protein Vibrational Dynamics: Comparing Molecular Dynamics and Gaussian Models. Proteins: Struct., Funct., Genet. 2004, 55, 635–645. 10.1002/prot.20049. PubMed DOI
Delarue M.; Sanejouand Y. H. Simplified Normal Mode Analysis of Conformational Transitions in DNA-dependent Polymerases: the Elastic Network Model. J. Mol. Biol. 2002, 320, 1011–1024. 10.1016/S0022-2836(02)00562-4. PubMed DOI
McGinnis J. L.; Dunkle J. A.; Cate J. H.; Weeks K. M. The Mechanisms of RNA SHAPE Chemistry. J. Am. Chem. Soc. 2012, 134, 6617–6624. 10.1021/ja2104075. PubMed DOI PMC
Chu J. W.; Izveko S.; Voth G. A. The Multiscale Challenge for Biomolecular Systems: Coarse-grained Modeling. Mol. Simul. 2006, 32, 211–218. 10.1080/08927020600612221. DOI
Ermak D. L.; McCammon J. A. Brownian Dynamics with Hydrodynamic Interactions. J. Chem. Phys. 1978, 69, 1352–1360. 10.1063/1.436761. DOI
Rotne J.; Prager S. Variational Treatment of Hydrodynamic Interaction in Polymers. J. Chem. Phys. 1969, 50, 4831–4837. 10.1063/1.1670977. DOI
Auffinger P.; Westhof E. Simulations of the Molecular Dynamics of Nucleic Acids. Curr. Opin. Struct. Biol. 1998, 8, 227–236. 10.1016/S0959-440X(98)80044-4. PubMed DOI
Hermann T.; Auffinger P.; Scott W. G.; Westhof E. Evidence for a Hydroxide Ion Bridging Two Magnesium Ions at the Active Site of the Hammerhead Ribozyme. Nucleic Acids Res. 1997, 25, 3421–3427. PubMed PMC
Sgrignani J.; Magistrato A. The Structural Role of Mg2+ Ions in a Class I RNA Polymerase Ribozyme: A Molecular Simulation Study. J. Phys. Chem. B 2012, 116, 2259–2268. 10.1021/jp206475d. PubMed DOI
Reblova K.; Spackova N.; Stefl R.; Csaszar K.; Koca J.; Leontis N. B.; Sponer J. Non-Watson-Crick Basepairing and Hydration in RNA Motifs: Molecular Dynamics of 5S rRNA Loop E. Biophys. J. 2003, 84, 3564–3582. 10.1016/S0006-3495(03)75089-9. PubMed DOI PMC
Auffinger P.; Bielecki L.; Westhof E. Symmetric K+ and Mg2+ Ion-Binding Sites in the 5 S rRNA Loop E Inferred from Molecular Dynamics Simulations. J. Mol. Biol. 2004, 335, 555–571. 10.1016/j.jmb.2003.10.057. PubMed DOI
Auffinger P.; Bielecki L.; Westhof E. The Mg2+ Binding Sites of the 5S rRNA Loop E Motif as Investigated by Molecular Dynamics Simulations. Chem. Biol. 2003, 10, 551–561. 10.1016/S1074-5521(03)00121-2. PubMed DOI
Reblova K.; Spackova N.; Koca J.; Leontis N. B.; Sponer J. Long-residency Hydration, Cation Binding, and Dynamics of Loop E/helix IV rRNA-L25 Protein Complex. Biophys. J. 2004, 87, 3397–3412. 10.1529/biophysj.104.047126. PubMed DOI PMC
Casalino L.; Palermo G.; Abdurakhmonova N.; Rothlisberger U.; Magistrato A. Development of Site-specific Mg2+-RNA Force Field Parameters: A Dream or Reality? Guidelines from Combined Molecular Dynamics and Quantum Mechanics Simulations. J. Chem. Theory Comput. 2017, 13, 340–352. 10.1021/acs.jctc.6b00905. PubMed DOI
Reblova K.; Spackova N.; Sponer J. E.; Koca J.; Sponer J. Molecular Dynamics Simulations of RNA Kissing-Loop Motifs Reveal Structural Dynamics and Formation of Cation-Binding Pockets. Nucleic Acids Res. 2003, 31, 6942–6952. 10.1093/nar/gkg880. PubMed DOI PMC
Bergonzo C.; Hall K. B.; Cheatham T. E. Divalent Ion Dependent Conformational Changes in an RNA Stem-Loop Observed by Molecular Dynamics. J. Chem. Theory Comput. 2016, 12, 3382–3389. 10.1021/acs.jctc.6b00173. PubMed DOI PMC
Bergonzo C.; Hall K. B.; Cheatham T. E. Stem-Loop V of Varkud Satellite RNA Exhibits Characteristics of the Mg2+ Bound Structure in the Presence of Monovalent Ions. J. Phys. Chem. B 2015, 119, 12355–12364. 10.1021/acs.jpcb.5b05190. PubMed DOI PMC
Sun L. Z.; Zhang D.; Chen S. J.. Theory and Modeling of RNA Structure and Interactions with Metal Ions and Small Molecules. In Annual Review of Biophysics; Dill K. A., Ed.; Annual Review: Palo Alto, CA, 2017; Vol. 46, pp 227–246. PubMed PMC
Rangan P.; Woodson S. A. Structural Requirement for Mg2+ Binding in the Group I Intron Core. J. Mol. Biol. 2003, 329, 229–238. 10.1016/S0022-2836(03)00430-3. PubMed DOI
Draper D. E.; Grilley D.; Soto A. M. Ions and RNA Folding. Annu. Rev. Biophys. Biomol. Struct. 2005, 34, 221–243. 10.1146/annurev.biophys.34.040204.144511. PubMed DOI
Woodson S. A.; Ions Metal; Folding R. N. A. A Highly Charged Topic With a Dynamic Future. Curr. Opin. Chem. Biol. 2005, 9, 104–109. 10.1016/j.cbpa.2005.02.004. PubMed DOI
Chu V. B.; Bai Y.; Lipfert J.; Herschlag D.; Doniach S. A Repulsive Field: Advances in the Electrostatics of the Ion Atmosphere. Curr. Opin. Chem. Biol. 2008, 12, 619–625. 10.1016/j.cbpa.2008.10.010. PubMed DOI PMC
Auffinger P.; Grover N.; Westhof E. Metal Ion Binding to RNA. In Structural and Catalytic Roles of Metal Ions in RNA. Royal Society of Chemistry 2011, Vol. 9, 1–36. 10.1039/9781849732512-00001. PubMed DOI
Bowman J. C.; Lenz T. K.; Hud N. V.; Williams L. D. Cations in Charge: Magnesium Ions in RNA Folding and Catalysis. Curr. Opin. Struct. Biol. 2012, 22, 262–272. 10.1016/j.sbi.2012.04.006. PubMed DOI
Auffinger P.; D’Ascenzo L.; Ennifar E.. Sodium and Potassium Interactions with Nucleic Acids. In The Alkali Metal Ions: Their Role for Life; Sigel A., Sigel H., Sigel O. R. K., Eds.; Springer International Publishing: Cham, 2016; pp 167–201. PubMed
Heilman-Miller S. L.; Thirumalai D.; Woodson S. A. Role of Counterion Condensation in Folding of the Tetrahymena Ribozyme. I. Equilibrium Stabilization by Cations. J. Mol. Biol. 2001, 306, 1157–1166. 10.1006/jmbi.2001.4437. PubMed DOI
Heilman-Miller S. L.; Pan J.; Thirumalai D.; Woodson S. A. Role of Counterion Condensation in Folding of the Tetrahymena Ribozyme II. Counterion-dependence of Folding Kinetics. J. Mol. Biol. 2001, 309, 57–68. 10.1006/jmbi.2001.4660. PubMed DOI
Lipfert J.; Doniach S.; Das R.; Herschlag D.. Understanding Nucleic Acid-Ion Interactions. In Annual Review of Biochemistry; Kornberg R. D., Ed.; Annual Reviews: Palo Alto, CA, 2014; Vol. 83, pp 813–841. PubMed PMC
Krasovska M. V.; Sefcikova J.; Reblova K.; Schneider B.; Walter N. G.; Sponer J. Cations and Hydration in Catalytic RNA: Molecular Dynamics of the Hepatitis Delta Virus Ribozyme. Biophys. J. 2006, 91, 626–638. 10.1529/biophysj.105.079368. PubMed DOI PMC
Allner O.; Nilsson L.; Villa A. Magnesium Ion-Water Coordination and Exchange in Biomolecular Simulations. J. Chem. Theory Comput. 2012, 8, 1493–1502. 10.1021/ct3000734. PubMed DOI
Bleuzen A.; Pittet P.-A.; Helm L.; Merbach A. E. Water Exchange on Magnesium(II) in Aqueous Solution: A Variable Temperature and Pressure 17O NMR Study. Magn. Reson. Chem. 1997, 35, 765–773. 10.1002/(SICI)1097-458X(199711)35:11<765::AID-OMR169>3.0.CO;2-F. DOI
Cowan J. A. Coordination Chemistry of Magnesium Ions and 5S rRNA (Escherichia coli): Binding Parameters, Ligand Symmetry, and Implications for Activity. J. Am. Chem. Soc. 1991, 113, 675–676. 10.1021/ja00002a046. DOI
Krepl M.; Reblova K.; Koca J.; Sponer J. Bioinformatics and Molecular Dynamics Simulation Study of L1 Stalk Non-Canonical rRNA Elements: Kink-Turns, Loops, and Tetraloops. J. Phys. Chem. B 2013, 117, 5540–5555. 10.1021/jp401482m. PubMed DOI
Krepl M.; Havrila M.; Stadlbauer P.; Banas P.; Otyepka M.; Pasulka J.; Stefl R.; Sponer J. Can We Execute Stable Microsecond-Scale Atomistic Simulations of Protein-RNA Complexes?. J. Chem. Theory Comput. 2015, 11, 1220–1243. 10.1021/ct5008108. PubMed DOI
Pan F.; Roland C.; Sagui C. Ion Distributions Around Left- and Right-handed DNA and RNA Duplexes: A Comparative Study. Nucleic Acids Res. 2014, 42, 13981–13996. 10.1093/nar/gku1107. PubMed DOI PMC
Nakano S.-i.; Cerrone A. L.; Bevilacqua P. C. Mechanistic Characterization of the HDV Genomic Ribozyme: Classifying the Catalytic and Structural Metal Ion Sites within a Multichannel Reaction Mechanism. Biochemistry 2003, 42, 2982–2994. 10.1021/bi026815x. PubMed DOI
Nakano S.-i.; Proctor D. J.; Bevilacqua P. C. Mechanistic Characterization of the HDV Genomic Ribozyme: Assessing the Catalytic and Structural Contributions of Divalent Metal Ions within a Multichannel Reaction Mechanism. Biochemistry 2001, 40, 12022–12038. 10.1021/bi011253n. PubMed DOI
Klein D. J.; Moore P. B.; Steitz T. A. The Contribution of Metal Ions to the Structural Stability of the Large Ribosomal Subunit. RNA 2004, 10, 1366–1379. 10.1261/rna.7390804. PubMed DOI PMC
Leonarski F.; D’Ascenzo L.; Auffinger P. Binding of Metals to Purine N7 Nitrogen Atoms and Implications for Nucleic Acids: A CSD Survey. Inorg. Chim. Acta 2016, 452, 82–89. 10.1016/j.ica.2016.04.005. DOI
Leonarski F.; D’Ascenzo L.; Auffinger P. Mg2+ Ions: Do They Bind to Nucleobase Nitrogens?. Nucleic Acids Res. 2017, 45, 987–1004. 10.1093/nar/gkw1175. PubMed DOI PMC
Murray J. B.; Seyhan A. A.; Walter N. G.; Burke J. M.; Scott W. G. The Hammerhead, Hairpin and VS Ribozymes Are Catalytically Proficient In Monovalent Cations Alone. Chem. Biol. 1998, 5, 587–595. 10.1016/S1074-5521(98)90116-8. PubMed DOI
Fedor M. J. Structure and Function of the Hairpin Ribozyme. J. Mol. Biol. 2000, 297, 269–291. 10.1006/jmbi.2000.3560. PubMed DOI
Johnson-Buck A. E.; McDowell S. E.; Walter N. G. Metal Ions: Supporting Actors in the Playbook of Small Ribozymes. Metal ions in life sciences 2011, 9, 175–196. 10.1039/9781849732512-00175. PubMed DOI PMC
Steitz T. A.; Steitz J. A. A General Two-metal-ion Mechanism for Catalytic RNA. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 6498–6502. 10.1073/pnas.90.14.6498. PubMed DOI PMC
Toor N.; Keating K. S.; Taylor S. D.; Pyle A. M. Crystal Structure of a Self-Spliced Group II Intron. Science 2008, 320, 77–82. 10.1126/science.1153803. PubMed DOI PMC
Hsiao C.; Williams L. D. A Recurrent Magnesium-binding Motif Provides a Framework For the Ribosomal Peptidyl Transferase Center. Nucleic Acids Res. 2009, 37, 3134–3142. 10.1093/nar/gkp119. PubMed DOI PMC
Klein D. J.; Schmeing T. M.; Moore P. B.; Steitz T. A. The Kink-Turn: A New RNA Secondary Structure Motif. EMBO J. 2001, 20, 4214–4221. PubMed PMC
Razga F.; Koca J.; Sponer J.; Leontis N. B. Hinge-Like Motions in RNA Kink-Turns: The Role of the Second A-Minor Motif and Nominally Unpaired Bases. Biophys. J. 2005, 88, 3466–3485. 10.1529/biophysj.104.054916. PubMed DOI PMC
Matsumura S.; Ikawa Y.; Inoue T. Biochemical Characterization of the Kink-turn RNA Motif. Nucleic Acids Res. 2003, 31, 5544–5551. 10.1093/nar/gkg760. PubMed DOI PMC
Goody T. A.; Melcher S. E.; Norman D. G.; Lilley D. M. J. The Kink-Turn Motif in RNA is Dimorphic, and Metal Ion-Dependent. RNA 2004, 10, 254–264. 10.1261/rna.5176604. PubMed DOI PMC
Dallas A.; Moore P. B. The Loop E-loop D Region of Escherichia coli 5S rRNA: The Solution Structure Reveals an Unusual Loop That May Be Important For Binding Ribosomal Proteins. Structure 1997, 5, 1639–1653. 10.1016/S0969-2126(97)00311-0. PubMed DOI
Stoldt M.; Wöhnert J.; Ohlenschläger O.; Görlach M.; Brown L. R. The NMR Structure of the 5S rRNA E-domain–protein L25 Complex Shows Preformed and Induced Recognition. EMBO J. 1999, 18, 6508–6521. 10.1093/emboj/18.22.6508. PubMed DOI PMC
Correll C. C.; Freeborn B.; Moore P. B.; Steitz T. A. Metals, Motifs, and Recognition in the Crystal Structure of a 5S rRNA Domain. Cell 1997, 91, 705–712. 10.1016/S0092-8674(00)80457-2. PubMed DOI
Correll C. C.; Wool I. G.; Munishkin A. The Two Faces of the Escherichia coli 23 S rRNA Sarcin/ricin Domain: The Structure at 1.11 Å Resolution. J. Mol. Biol. 1999, 292, 275–287. 10.1006/jmbi.1999.3072. PubMed DOI
Szewczak A. A.; Moore P. B. The Sarcin/Ricin Loop, a Modular RNA. J. Mol. Biol. 1995, 247, 81–98. 10.1006/jmbi.1994.0124. PubMed DOI
Spackova N.; Sponer J. Molecular Dynamics Simulations of Sarcin-ricin rRNA Motif. Nucleic Acids Res. 2006, 34, 697–708. 10.1093/nar/gkj470. PubMed DOI PMC
Orlov S. N.; Hamet P. Intracellular Monovalent Ions as Second Messengers. J. Membr. Biol. 2006, 210, 161–172. 10.1007/s00232-006-0857-9. PubMed DOI
Ku D.; Akera T.; Tobin T.; Brody T. M. Effects of Monovalent Cations on Cardiac Na+, K+-ATPase Activity and on Contractile Force. Naunyn-Schmiedeberg's Arch. Pharmacol. 1975, 290, 113–131. 10.1007/BF00510545. PubMed DOI
Hurwitz C.; Rosano C. L. The Intracellular Concentration of Bound and Unbound Magnesium Ions in Escherichia coli. J. Biol. Chem. 1967, 242, 3719–3722. PubMed
Vink R.; McIntosh T. K.; Demediuk P.; Weiner M. W.; Faden A. I. Decline in Intracellular Free Mg2+ is Associated with Irreversible Tissue Injury after Brain Trauma. J. Biol. Chem. 1988, 263, 757–761. PubMed
Sun L.-Z.; Chen S.-J. Monte Carlo Tightly Bound Ion Model: Predicting Ion-Binding Properties of RNA with Ion Correlations and Fluctuations. J. Chem. Theory Comput. 2016, 12, 3370–3381. 10.1021/acs.jctc.6b00028. PubMed DOI PMC
Denesyuk N. A.; Thirumalai D. How do Metal Ions Direct Ribozyme Folding?. Nat. Chem. 2015, 7, 793–801. 10.1038/nchem.2330. PubMed DOI
Šponer J.; Sabat M.; Gorb L.; Leszczynski J.; Lippert B.; Hobza P. The Effect of Metal Binding to the N7 Site of Purine Nucleotides on Their Structure, Energy, and Involvement in Base Pairing. J. Phys. Chem. B 2000, 104, 7535–7544. 10.1021/jp001711m. DOI
Gkionis K.; Kruse H.; Platts J. A.; Mladek A.; Koca J.; Sponer J. Ion Binding to Quadruplex DNA Stems. Comparison of MM and QM Descriptions Reveals Sizable Polarization Effects Not Included in Contemporary Simulations. J. Chem. Theory Comput. 2014, 10, 1326–1340. 10.1021/ct4009969. PubMed DOI
Muñoz J.; Sponer J.; Hobza P.; Orozco M.; Luque F. J. Interactions of Hydrated Mg2+ Cation with Bases, Base Pairs, and Nucleotides. Electron Topology, Natural Bond Orbital, Electrostatic, and Vibrational Study. J. Phys. Chem. B 2001, 105, 6051–6060. 10.1021/jp010486l. DOI
Gresh N.; Šponer J. E.; Špačková N. a.; Leszczynski, J.; Šponer, J., Theoretical Study of Binding of Hydrated Zn(II) and Mg(II) Cations to 5‘-Guanosine Monophosphate. Toward Polarizable Molecular Mechanics for DNA and RNA. J. Phys. Chem. B 2003, 107, 8669–8681. 10.1021/jp022659s. DOI
Gresh N.; Cisneros G. A.; Darden T. A.; Piquemal J.-P. Anisotropic, Polarizable Molecular Mechanics Studies of Inter- and Intramolecular Interactions and Ligand–Macromolecule Complexes. A Bottom-Up Strategy. J. Chem. Theory Comput. 2007, 3, 1960–1986. 10.1021/ct700134r. PubMed DOI PMC
Li P.; Merz K. M. Metal Ion Modeling Using Classical Mechanics. Chem. Rev. 2017, 117, 1564–1686. 10.1021/acs.chemrev.6b00440. PubMed DOI PMC
Babu C. S.; Dudev T.; Casareno R.; Cowan J. A.; Lim C. A Combined Experimental and Theoretical Study of Divalent Metal Ion Selectivity and Function in Proteins: Application to E. coli Ribonuclease H1. J. Am. Chem. Soc. 2003, 125, 9318–9328. 10.1021/ja034956w. PubMed DOI
Rulíšek L.; Šponer J. Outer-Shell and Inner-Shell Coordination of Phosphate Group to Hydrated Metal Ions (Mg2+, Cu2+, Zn2+, Cd2+) in the Presence and Absence of Nucleobase. The Role of Nonelectrostatic Effects. J. Phys. Chem. B 2003, 107, 1913–1923. 10.1021/jp027058f. DOI
Šponer J.; Burda J. V.; Sabat M.; Leszczynski J.; Hobza P. Interaction between the Guanine–Cytosine Watson–Crick DNA Base Pair and Hydrated Group IIa (Mg2+, Ca2+, Sr2+, Ba2+) and Group IIb (Zn2+, Cd2+, Hg2+) Metal Cations. J. Phys. Chem. A 1998, 102, 5951–5957. 10.1021/jp980769m. DOI
Mackerell A. D. Empirical Force Fields for Biological Macromolecules: Overview and Issues. J. Comput. Chem. 2004, 25, 1584–1604. 10.1002/jcc.20082. PubMed DOI
Lamoureux G.; Roux B. t., Modeling Induced Polarization with Classical Drude Oscillators: Theory and Molecular Dynamics Simulation Algorithm. J. Chem. Phys. 2003, 119, 3025–3039. 10.1063/1.1589749. DOI
Bock C. W.; Katz A. K.; Markham G. D.; Glusker J. P. Manganese as a Replacement for Magnesium and Zinc: Functional Comparison of the Divalent Ions. J. Am. Chem. Soc. 1999, 121, 7360–7372. 10.1021/ja9906960. DOI
Lamoureux G.; Roux B. Absolute Hydration Free Energy Scale for Alkali and Halide Ions Established from Simulations with a Polarizable Force Field. J. Phys. Chem. B 2006, 110, 3308–3322. 10.1021/jp056043p. PubMed DOI
Grossfield A.; Ren P.; Ponder J. W. Ion Solvation Thermodynamics from Simulation with a Polarizable Force Field. J. Am. Chem. Soc. 2003, 125, 15671–15682. 10.1021/ja037005r. PubMed DOI
Perera L.; Berkowitz M. L. Many-body Effects in Molecular Dynamics Simulations of Na+(H2O)n and Cl–(H2O)n Clusters. J. Chem. Phys. 1991, 95, 1954–1963. 10.1063/1.460992. DOI
Sponer J.; Spackova N. Molecular Dynamics Simulations and Their Application to Four-stranded DNA. Methods 2007, 43, 278–290. 10.1016/j.ymeth.2007.02.004. PubMed DOI PMC
Gresh N.; Naseem-Khan S.; Lagardère L.; Piquemal J.-P.; Sponer J. E.; Sponer J. Channeling through Two Stacked Guanine Quartets of One and Two Alkali Cations in the Li+, Na+, K+, and Rb+ Series. Assessment of the Accuracy of the SIBFA Anisotropic Polarizable Molecular Mechanics Potential. J. Phys. Chem. B 2017, 121, 3997–4014. 10.1021/acs.jpcb.7b01836. PubMed DOI
Spackova N.; Berger I.; Sponer J. Nanosecond Molecular Dynamics Simulations of Parallel and Antiparallel Guanine Quadruplex DNA Molecules. J. Am. Chem. Soc. 1999, 121, 5519–5534. 10.1021/ja984449s. DOI
Anwander E. H. S.; Probst M. M.; Rode B. M. The Influence of Li+, Na+, Mg2+, Ca2+, and Zn2+ Ions on the Hydrogen Bonds of the Watson–Crick Base Pairs. Biopolymers 1990, 29, 757–769. 10.1002/bip.360290410. PubMed DOI
Sigel R. K. O.; Freisinger E.; Lippert B. Effects of N7-methylation, N7-platination, and C8-hydroxylation of Guanine on H-bond Formation with Cytosine: Platinum Coordination Strengthens the Watson-Crick Pair. JBIC, J. Biol. Inorg. Chem. 2000, 5, 287–299. 10.1007/PL00010657. PubMed DOI
K. O. Sigel R.; Lippert B. PtII Coordination to Guanine-N7: Enhancement of the Stability of the Watson-Crick Base Pair with Cytosine. Chem. Commun. 1999, 0, 2167–2168. 10.1039/a902650i. DOI
Nakano S.-i.; Fujimoto M.; Hara H.; Sugimoto N. Nucleic Acid Duplex Stability: Influence of Base Composition on Cation Effects. Nucleic Acids Res. 1999, 27, 2957–2965. PubMed PMC
Yu H.; Whitfield T. W.; Harder E.; Lamoureux G.; Vorobyov I.; Anisimov V. M.; MacKerell A. D.; Roux B. Simulating Monovalent and Divalent Ions in Aqueous Solution Using a Drude Polarizable Force Field. J. Chem. Theory Comput. 2010, 6, 774–786. 10.1021/ct900576a. PubMed DOI PMC
Li P.; Merz K. M. Taking into Account the Ion-Induced Dipole Interaction in the Nonbonded Model of Ions. J. Chem. Theory Comput. 2014, 10, 289–297. 10.1021/ct400751u. PubMed DOI PMC
Li P.; Song L. F.; Merz K. M. Parameterization of Highly Charged Metal Ions Using the 12–6-4 LJ-Type Nonbonded Model in Explicit Water. J. Phys. Chem. B 2015, 119, 883–895. 10.1021/jp505875v. PubMed DOI PMC
Panteva M. T.; Giambaşu G. M.; York D. M. Force Field for Mg2+, Mn2+, Zn2+, and Cd2+ Ions That Have Balanced Interactions with Nucleic Acids. J. Phys. Chem. B 2015, 119, 15460–15470. 10.1021/acs.jpcb.5b10423. PubMed DOI PMC
Duarte F.; Bauer P.; Barrozo A.; Amrein B. A.; Purg M.; Åqvist J.; Kamerlin S. C. L. Force Field Independent Metal Parameters Using a Nonbonded Dummy Model. J. Phys. Chem. B 2014, 118, 4351–4362. 10.1021/jp501737x. PubMed DOI PMC
Oelschlaeger P.; Klahn M.; Beard W. A.; Wilson S. H.; Warshel A. Magnesium-cationic Dummy Atom Molecules Enhance Representation of DNA Polymerase β in Molecular Dynamics Simulations: Improved Accuracy in Studies of Structural Features and Mutational Effects. J. Mol. Biol. 2007, 366, 687–701. 10.1016/j.jmb.2006.10.095. PubMed DOI PMC
Jiang Y.; Zhang H.; Tan T. Rational Design of Methodology-Independent Metal Parameters Using a Nonbonded Dummy Model. J. Chem. Theory Comput. 2016, 12, 3250–3260. 10.1021/acs.jctc.6b00223. PubMed DOI
Saxena A.; García A. E. Multisite Ion Model in Concentrated Solutions of Divalent Cations (MgCl2 and CaCl2): Osmotic Pressure Calculations. J. Phys. Chem. B 2015, 119, 219–227. 10.1021/jp507008x. PubMed DOI PMC
Fyta M.; Kalcher I.; Dzubiella J.; Vrbka L.; Netz R. R. Ionic Force Field Optimization Based on Single-ion and Ion-pair Solvation Properties. J. Chem. Phys. 2010, 132, 024911.10.1063/1.3292575. PubMed DOI
Auffinger P.; Cheatham T. E.; Vaiana A. C. Spontaneous Formation of KCl Aggregates in Biomolecular Simulations: A Force Field Issue?. J. Chem. Theory Comput. 2007, 3, 1851–1859. 10.1021/ct700143s. PubMed DOI
Ponomarev S. Y.; Thayer K. M.; Beveridge D. L. Ion Motions in Molecular Dynamics Simulations on DNA. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 14771–14775. 10.1073/pnas.0406435101. PubMed DOI PMC
Várnai P.; Zakrzewska K. DNA and Its Counterions: A Molecular Dynamics Study. Nucleic Acids Res. 2004, 32, 4269–4280. 10.1093/nar/gkh765. PubMed DOI PMC
Lemkul J. A.; Lakkaraju S. K.; MacKerell A. D. Characterization of Mg2+ Distributions around RNA in Solution. ACS Omega 2016, 1, 680–688. 10.1021/acsomega.6b00241. PubMed DOI PMC
Aqvist J. Ion Water Interaction Potentials Derived from Free-Energy Perturbation Simulations. J. Phys. Chem. 1990, 94, 8021–8024. 10.1021/j100384a009. DOI
Kumar P. K. R.; Kumarevel T.; Mizuno H. Structural Basis of HutP-mediated Transcription Anti-termination. Curr. Opin. Struct. Biol. 2006, 16, 18–26. 10.1016/j.sbi.2006.01.005. PubMed DOI
Li P.; Roberts B. P.; Chakravorty D. K.; Merz K. M. Rational Design of Particle Mesh Ewald Compatible Lennard-Jones Parameters for + 2 Metal Cations in Explicit Solvent. J. Chem. Theory Comput. 2013, 9, 2733–2748. 10.1021/ct400146w. PubMed DOI PMC
Berendsen H. J. C.; Grigera J. R.; Straatsma T. P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91, 6269–6271. 10.1021/j100308a038. DOI
Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. 10.1063/1.445869. DOI
Chen A. A.; Pappu R. V. Parameters of Monovalent Ions in the AMBER-99 Forcefield: Assessment of Inaccuracies and Proposed Improvements. J. Phys. Chem. B 2007, 111, 11884–11887. 10.1021/jp0765392. PubMed DOI
Panteva M. T.; Giambaşu G. M.; York D. M. Comparison of Structural, Thermodynamic, Kinetic and Mass Transport Properties of Mg2+ Ion Models Commonly Used in Biomolecular Simulations. J. Comput. Chem. 2015, 36, 970–982. 10.1002/jcc.23881. PubMed DOI PMC
Darden T.; York D.; Pedersen L. Particle Mesh Ewald - An N.Log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089.10.1063/1.464397. DOI
Chen A. A.; Draper D. E.; Pappu R. V. Molecular Simulation Studies of Monovalent Counterion-Mediated Interactions in a Model RNA Kissing Loop. J. Mol. Biol. 2009, 390, 805–819. 10.1016/j.jmb.2009.05.071. PubMed DOI PMC
Chen A. A.; Marucho M.; Baker N. A.; Pappu R. V.. Simulations of RNA Interactions with Monovalent Ions. Methods in Enzymology; Academic Press: New York, 2009; Vol. 469, Chapter 20, pp 411–432. PubMed
Kirmizialtin S.; Pabit Suzette A.; Meisburger Steve P.; Pollack L.; Elber R. RNA and Its Ionic Cloud: Solution Scattering Experiments and Atomically Detailed Simulations. Biophys. J. 2012, 102, 819–828. 10.1016/j.bpj.2012.01.013. PubMed DOI PMC
Kirmizialtin S.; Elber R. Computational Exploration of Mobile Ion Distributions around RNA Duplex. J. Phys. Chem. B 2010, 114, 8207–8220. 10.1021/jp911992t. PubMed DOI PMC
Siegfried N. A.; Kierzek R.; Bevilacqua P. C. Role of Unsatisfied Hydrogen Bond Acceptors in RNA Energetics and Specificity. J. Am. Chem. Soc. 2010, 132, 5342–5344. 10.1021/ja9107726. PubMed DOI
Hünenberger P. H.; McCammon J. A. Ewald Artifacts in Computer Simulations of Ionic Solvation and Ion–ion Interaction: A Continuum Electrostatics Study. J. Chem. Phys. 1999, 110, 1856–1872. 10.1063/1.477873. DOI
Rook M. S.; Treiber D. K.; Williamson J. R. An Optimal Mg2+ Concentration for Kinetic Folding of the Tetrahymena Ribozyme. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 12471–12476. 10.1073/pnas.96.22.12471. PubMed DOI PMC
Islam B.; Stadlbauer P.; Krepl M.; Koca J.; Neidle S.; Haider S.; Sponer J. Extended Molecular Dynamics of a C-kit Promoter Quadruplex. Nucleic Acids Res. 2015, 43, 8673–8693. 10.1093/nar/gkv785. PubMed DOI PMC
Perego C.; Salvalaglio M.; Parrinello M. Molecular Dynamics Simulations of Solutions at Constant Chemical Potential. J. Chem. Phys. 2015, 142, 144113.10.1063/1.4917200. PubMed DOI
Fiala R.; Špačková N.; Foldynová-Trantírková S.; Šponer J.; Sklenář V.; Trantírek L. NMR Cross-Correlated Relaxation Rates Reveal Ion Coordination Sites in DNA. J. Am. Chem. Soc. 2011, 133, 13790–13793. 10.1021/ja202397p. PubMed DOI
Sychrovský V.; Šponer J.; Hobza P. Theoretical Calculation of the NMR Spin–Spin Coupling Constants and the NMR Shifts Allow Distinguishability between the Specific Direct and the Water-Mediated Binding of a Divalent Metal Cation to Guanine. J. Am. Chem. Soc. 2004, 126, 663–672. 10.1021/ja036942w. PubMed DOI
Kowerko D.; König S. L. B.; Skilandat M.; Kruschel D.; Hadzic M. C. A. S.; Cardo L.; Sigel R. K. O. Cation-induced Kinetic Heterogeneity of the Intron–exon Recognition in Single Group II Introns. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 3403–3408. 10.1073/pnas.1322759112. PubMed DOI PMC
Auffinger P.; Bielecki L.; Westhof E. Anion Binding to Nucleic Acids. Structure 2004, 12, 379–388. 10.1016/j.str.2004.02.015. PubMed DOI
Ferre-D’Amare A. R.; Zhou K.; Doudna J. A. Crystal Structure of a Hepatitis Delta Virus Ribozyme. Nature 1998, 395, 567–574. 10.1038/26912. PubMed DOI
Ke A.; Zhou K.; Ding F.; Cate J. H. D.; Doudna J. A. A Conformational Switch Controls Hepatitis Delta Virus Ribozyme Catalysis. Nature 2004, 429, 201–205. 10.1038/nature02522. PubMed DOI
D’Ascenzo L.; Auffinger P.. Anions in Nucleic Acid Crystallography. In Nucleic Acid Crystallography: Methods and Protocols; Ennifar E., Ed.; Springer: New York, 2016; pp 337–351. PubMed
Ennifar E.; Walter P.; Dumas P. A Crystallographic Study of the Binding of 13 Metal Ions to Two Related RNA Duplexes. Nucleic Acids Res. 2003, 31, 2671–2682. PubMed PMC
Ennifar E.; Walter P.; Ehresmann B.; Ehresmann C.; Dumas P. Crystal Structures of Coaxially Stacked Kissing Complexes of the HIV-1 RNA Dimerization Initiation Site. Nat. Struct. Biol. 2001, 8, 1064–1068. 10.1038/nsb727. PubMed DOI
Ennifar E.; Dumas P. Polymorphism of Bulged-out Residues in HIV-1 RNA DIS Kissing Complex and Structure Comparison with Solution Studies. J. Mol. Biol. 2006, 356, 771–782. 10.1016/j.jmb.2005.12.022. PubMed DOI
Ke A.; Ding F.; Batchelor J. D.; Doudna J. A. Structural Roles of Monovalent Cations in the HDV Ribozyme. Structure 2007, 15, 281–287. 10.1016/j.str.2007.01.017. PubMed DOI
Zheng H.; Shabalin I. G.; Handing K. B.; Bujnicki J. M.; Minor W. Magnesium-binding Architectures in RNA Crystal Structures: Validation, Binding Preferences, Classification and Motif Detection. Nucleic Acids Res. 2015, 43, 3789–3801. 10.1093/nar/gkv225. PubMed DOI PMC
Jacobson D. R.; Saleh O. A. Quantifying the Ion Atmosphere of Unfolded, Single-stranded Nucleic Acids Using Equilibrium Dialysis and Single-molecule Methods. Nucleic Acids Res. 2016, 44, 3763–3771. 10.1093/nar/gkw196. PubMed DOI PMC
Giambaşu George M.; Luchko T.; Herschlag D.; York Darrin M.; Case David A Ion Counting from Explicit-Solvent Simulations and 3D-RISM. Biophys. J. 2014, 106, 883–894. 10.1016/j.bpj.2014.01.021. PubMed DOI PMC
Razga F.; Zacharias M.; Reblova K.; Koca J.; Sponer J. RNA Kink-Turns as Molecular Elbows: Hydration, Cation Binding, and Large-Scale Dynamics. Structure 2006, 14, 825–835. 10.1016/j.str.2006.02.012. PubMed DOI
Sklenovsky P.; Florova P.; Banas P.; Reblova K.; Lankas F.; Otyepka M.; Sponer J. Understanding RNA Flexibility Using Explicit Solvent Simulations: The Ribosomal and Group I Intron Reverse Kink-Turn Motifs. J. Chem. Theory Comput. 2011, 7, 2963–2980. 10.1021/ct200204t. PubMed DOI
Kuehrova P.; Otyepka M.; Sponer J.; Banas P. Are Waters around RNA More than Just a Solvent? - An Insight from Molecular Dynamics Simulations. J. Chem. Theory Comput. 2014, 10, 401–411. 10.1021/ct400663s. PubMed DOI
Bergonzo C.; Cheatham T. E. Mg2+ Binding Promotes SLV as a Scaffold in Varkud Satellite Ribozyme SLI-SLV Kissing Loop Junction. Biophys. J. 2017, 113, 313–320. 10.1016/j.bpj.2017.06.008. PubMed DOI PMC
Campbell D. O.; Bouchard P.; Desjardins G.; Legault P. NMR Structure of Varkud Satellite Ribozyme Stem–Loop V in the Presence of Magnesium Ions and Localization of Metal-Binding Sites. Biochemistry 2006, 45, 10591–10605. 10.1021/bi0607150. PubMed DOI
Hayatshahi H. S.; Bergonzo C. Cheatham Iii, T. E., Investigating the Ion Dependence of the First Unfolding Step of GTPase-Associating Center Ribosomal RNA. J. Biomol. Struct. Dyn. 2017, 1–11. 10.1080/07391102.2016.1274272. PubMed DOI
Hayatshahi H. S.; Roe D. R.; Galindo-Murillo R.; Hall K. B.; Cheatham T. E. Computational Assessment of Potassium and Magnesium Ion Binding to a Buried Pocket in GTPase-Associating Center RNA. J. Phys. Chem. B 2017, 121, 451–462. 10.1021/acs.jpcb.6b08764. PubMed DOI PMC
Drozdetski A. V.; Tolokh I. S.; Pollack L.; Baker N.; Onufriev A. V. Opposing Effects of Multivalent Ions on the Flexibility of DNA and RNA. Phys. Rev. Lett. 2016, 117, e02810110.1103/PhysRevLett.117.028101. PubMed DOI PMC
Siegbahn P. E. M.; Blomberg M. R. A. Transition-Metal Systems in Biochemistry Studied by High-Accuracy Quantum Chemical Methods. Chem. Rev. 2000, 100, 421–438. 10.1021/cr980390w. PubMed DOI
Cramer C. J.; Truhlar D. G. Density Functional Theory for Transition Metals and Transition Metal Chemistry. Phys. Chem. Chem. Phys. 2009, 11, 10757–10816. 10.1039/b907148b. PubMed DOI
Blomberg M. R. A.; Borowski T.; Himo F.; Liao R.-Z.; Siegbahn P. E. M. Quantum Chemical Studies of Mechanisms for Metalloenzymes. Chem. Rev. 2014, 114, 3601–3658. 10.1021/cr400388t. PubMed DOI
Yildirim I.; Stern H. A.; Tubbs J. D.; Kennedy S. D.; Turner D. H. Benchmarking AMBER Force Fields for RNA: Comparisons to NMR Spectra for Single-Stranded r(GACC) Are Improved by Revised chi Torsions. J. Phys. Chem. B 2011, 115, 9261–9270. 10.1021/jp2016006. PubMed DOI PMC
Tubbs J. D.; Condon D. E.; Kennedy S. D.; Hauser M.; Bevilacqua P. C.; Turner D. H. The Nuclear Magnetic Resonance of CCCC RNA Reveals a Right-handed Helix, and Revised Parameters for AMBER Force Field Torsions Improve Structural Predictions from Molecular Dynamics. Biochemistry 2013, 52, 996–1010. 10.1021/bi3010347. PubMed DOI PMC
Condon D. E.; Kennedy S. D.; Mort B. C.; Kierzek R.; Yildirim I.; Turner D. H. Stacking in RNA: NMR of Four Tetramers Benchmark Molecular Dynamics. J. Chem. Theory Comput. 2015, 11, 2729–2742. 10.1021/ct501025q. PubMed DOI PMC
Zagrovic B.; Van Gunsteren W. F. Comparing Atomistic Simulation Data with the NMR Experiment: How Much Can NOEs Actually Tell Us?. Proteins 2006, 63, 210–218. 10.1002/prot.20872. PubMed DOI
Best R. B.; Lindorff-Larsen K.; DePristo M. A.; Vendruscolo M. Relation Between Native Ensembles and Experimental Structures of Proteins. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 10901–10906. 10.1073/pnas.0511156103. PubMed DOI PMC
Schrodt M. V.; Andrews C. T.; Elcock A. H. Large-Scale Analysis of 48 DNA and 48 RNA Tetranucleotides Studied by 1 μs Explicit-Solvent Molecular Dynamics Simulations. J. Chem. Theory Comput. 2015, 11, 5906–5917. 10.1021/acs.jctc.5b00899. PubMed DOI PMC
Horn H. W.; Swope W. C.; Pitera J. W.; Madura J. D.; Dick T. J.; Hura G. L.; Head-Gordon T. Development of an Improved Four-site Water Model for Biomolecular Simulations: TIP4P-Ew. J. Chem. Phys. 2004, 120, 9665–9678. 10.1063/1.1683075. PubMed DOI
Woese C. R.; Winker S.; Gutell R. R. Architecture of Ribosomal-RNA - Constraints on the Sequence of Tetra-Loops. Proc. Natl. Acad. Sci. U. S. A. 1990, 87, 8467–8471. 10.1073/pnas.87.21.8467. PubMed DOI PMC
Thapar R.; Denmon A. P.; Nikonowicz E. P. Recognition Modes of RNA Tetraloops and Tetraloop-like Motifs by RNA-binding Proteins. Wiley Interdiscip. Rev.: RNA 2014, 5, 49–67. 10.1002/wrna.1196. PubMed DOI PMC
Svoboda P.; Cara A. D. Hairpin RNA: A Secondary Structure of Primary Importance. Cell. Mol. Life Sci. 2006, 63, 901–908. 10.1007/s00018-005-5558-5. PubMed DOI PMC
Uhlenbeck O. C.; Tetraloops; Folding R. N. A. Nature 1990, 346, 613–614. 10.1038/346613a0. PubMed DOI
Quigley G. J.; Rich A. Structural Domains of Transfer RNA Molecules. Science 1976, 194, 796–806. 10.1126/science.790568. PubMed DOI
Jucker F. M.; Pardi A. GNRA Tetraloops Make a U-turn. RNA 1995, 1, 219–222. PubMed PMC
Pley H. W.; Flaherty K. M.; McKay D. B. Three-dimensional Structure of a Hammerhead Ribozyme. Nature 1994, 372, 68–74. 10.1038/372068a0. PubMed DOI
Stallings S. C.; Moore P. B. The Structure of an Essential Splicing Element: Stem Loop IIa from Yeast U2 snRNA. Structure 1997, 5, 1173–1185. 10.1016/S0969-2126(97)00268-2. PubMed DOI
Puglisi E. V.; Puglisi J. D. HIV-1 A-rich RNA Loop Mimics the tRNA Anticodon Structure. Nat. Struct. Biol. 1998, 5, 1033–1036. 10.1038/4141. PubMed DOI
Puglisi J.; Tan R.; Calnan B.; Frankel A. Williamson, Conformation of the TAR RNA-arginine Complex by NMR Spectroscopy. Science 1992, 257, 76–80. 10.1126/science.1621097. PubMed DOI
Varani G. Exceptionally Stable Nucleic-Acid Hairpins. Annu. Rev. Biophys. Biomol. Struct. 1995, 24, 379–404. 10.1146/annurev.bb.24.060195.002115. PubMed DOI
Chauhan S.; Woodson S. A. Tertiary Interactions Determine the Accuracy of RNA Folding. J. Am. Chem. Soc. 2008, 130, 1296–1303. 10.1021/ja076166i. PubMed DOI PMC
Cheong C.; Varani G.; Tinoco I. Solution Structure of an Unusually Stable RNA Hairpin, 5GGAC (UUCG) GUCC. Nature 1990, 346, 680–682. 10.1038/346680a0. PubMed DOI
Varani G.; Cheong C.; Tinoco I. Jr Structure of an Unusually Stable RNA Hairpin. Biochemistry 1991, 30, 3280–3289. 10.1021/bi00227a016. PubMed DOI
Hyeon C.; Thirumalai D. Multiple Probes Are Required to Explore and Control the Rugged Energy Landscape of RNA Hairpins. J. Am. Chem. Soc. 2008, 130, 1538–1539. 10.1021/ja0771641. PubMed DOI
Antao V. P.; Lai S. Y.; Tinoco I. A Thermodynamic Study of Unusually Stable RNA and DNA Hairpins. Nucleic Acids Res. 1991, 19, 5901–5905. 10.1093/nar/19.21.5901. PubMed DOI PMC
SantaLucia J. Jr; Kierzek R.; Turner D. H. Context Dependence of Hydrogen Bond Free Energy Revealed by Substitutions in an RNA Hairpin. Science 1992, 256, 217–219. 10.1126/science.1373521. PubMed DOI
Antao V. P.; Tinoco I. Thermodynamic Parameters for Loop Formation in RNA and DNA Hairpin Tetraloops. Nucleic Acids Res. 1992, 20, 819–824. 10.1093/nar/20.4.819. PubMed DOI PMC
Leulliot N.; Abdelkafi M.; Turpin P.-Y.; Ghomi M.; Baumruk V.; Namane A.; Gouyette C.; Huynh-Dinh T. Unusual Nucleotide Conformations in GNRA and UNCG Type Tetraloop Hairpins: Evidence from Raman Markers Assignments. Nucleic Acids Res. 1999, 27, 1398–1404. PubMed PMC
Menger M.; Eckstein F.; Porschke D. Dynamics of the RNA Hairpin GNRA Tetraloop. Biochemistry 2000, 39, 4500–4507. 10.1021/bi992297n. PubMed DOI
Proctor D. J.; Ma H.; Kierzek E.; Kierzek R.; Gruebele M.; Bevilacqua P. C. Folding Thermodynamics and Kinetics of YNMG RNA Hairpins: Specific Incorporation of 8-bromoguanosine Leads to Stabilization by Enhancement of the Folding Rate. Biochemistry 2004, 43, 14004–14014. 10.1021/bi048213e. PubMed DOI
Zhao L.; Xia T. Direct Revelation of Multiple Conformations in RNA by Femtosecond Dynamics. J. Am. Chem. Soc. 2007, 129, 4118–4119. 10.1021/ja068391q. PubMed DOI
Johnson J. E. Jr; Hoogstraten C. G. Extensive Backbone Dynamics in the GCAA RNA Tetraloop Analyzed Using 13C NMR Spin Relaxation and Specific Isotope Labeling. J. Am. Chem. Soc. 2008, 130, 16757–16769. 10.1021/ja805759z. PubMed DOI PMC
Stancik A. L.; Brauns E. B. Rearrangement of Partially Ordered Stacked Conformations Contributes to the Rugged Energy Landscape of a Small RNA Hairpin. Biochemistry 2008, 47, 10834–10840. 10.1021/bi801170c. PubMed DOI
Sheehy J. P.; Davis A. R.; Znosko B. M. Thermodynamic Characterization of Naturally Occurring RNA Tetraloops. RNA 2010, 16, 417–429. 10.1261/rna.1773110. PubMed DOI PMC
Mohan S.; Hsiao C.; Bowman J. C.; Wartell R.; Williams L. D. RNA Tetraloop Folding Reveals Tension between Backbone Restraints and Molecular Interactions. J. Am. Chem. Soc. 2010, 132, 12679–12689. 10.1021/ja104387k. PubMed DOI
Fürtig B.; Schnieders R.; Richter C.; Zetzsche H.; Keyhani S.; Helmling C.; Kovacs H.; Schwalbe H. Direct 13C-detected NMR Experiments for Mapping and Characterization of Hydrogen Bonds in RNA. J. Biomol. NMR 2016, 64, 207–221. 10.1007/s10858-016-0021-5. PubMed DOI
Sripakdeevong P.; Cevec M.; Chang A. T.; Erat M. C.; Ziegeler M.; Zhao Q.; Fox G. E.; Gao X.; Kennedy S. D.; Kierzek R.; et al. Structure Determination of Noncanonical RNA Motifs Guided by 1H NMR Chemical Shifts. Nat. Nat. Methods 2014, 11, 413–416. 10.1038/nmeth.2876. PubMed DOI PMC
Zhang W.; Chen S.-J. RNA Hairpin-folding Kinetics. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 1931–1936. 10.1073/pnas.032443099. PubMed DOI PMC
Zichi D. A. Molecular Dynamics of RNA with the OPLS Force Field. Aqueous Simulation of a Hairpin Containing a Tetranucleotide Loop. J. Am. Chem. Soc. 1995, 117, 2957–2969. 10.1021/ja00116a001. DOI
Sorin E. J.; Rhee Y. M.; Nakatani B. J.; Pande V. S. Insights into Nucleic Acid Conformational Dynamics from Massively Parallel Stochastic Simulations. Biophys. J. 2003, 85, 790–803. 10.1016/S0006-3495(03)74520-2. PubMed DOI PMC
Sorin E. J.; Rhee Y. M.; Pande V. S. Does Water Play a Structural Role in the Folding of Small Nucleic Acids?. Biophys. J. 2005, 88, 2516–2524. 10.1529/biophysj.104.055087. PubMed DOI PMC
Woese C. R.; Gutell R.; Gupta R.; Noller H. F. Detailed Analysis of the Higher-order Structure of 16S-like Ribosomal Ribonucleic Acids. Microbiol. Mol. Biol. Rev. 1983, 47, 621–669. PubMed PMC
Tuerk C.; Gauss P.; Thermes C.; Groebe D. R.; Gayle M.; Guild N.; Stormo G.; Daubentoncarafa Y.; Uhlenbeck O. C.; Tinoco I.; et al. CUUCGG Hairpins - Extraordinarily Stable RNA Secondary Structures Associated with Various Biochemical Processes. Proc. Natl. Acad. Sci. U. S. A. 1988, 85, 1364–1368. 10.1073/pnas.85.5.1364. PubMed DOI PMC
Keating K. S.; Toor N.; Pyle A. M. The GANC Tetraloop: A Novel Motif in the Group IIC Intron Structure. J. Mol. Biol. 2008, 383, 475–481. 10.1016/j.jmb.2008.08.043. PubMed DOI PMC
Butcher S. E.; Dieckmann T.; Feigon J. Solution Structure of the Conserved 16 S-like Ribosomal RNA UGAA Tetraloop. J. Mol. Biol. 1997, 268, 348–358. 10.1006/jmbi.1997.0964. PubMed DOI
Wu H.; Yang P. K.; Butcher S. E.; Kang S.; Chanfreau G.; Feigon J. A Novel Family of RNA Tetraloop Structure Forms the Recognition Site for Saccharomyces Cerevisiae RNase III. EMBO J. 2001, 20, 7240–7249. PubMed PMC
DeJong E. S.; Marzluff W. F.; Nikonowicz E. P. NMR Structure and Ddynamics of the RNA-binding Site for the Histone mRNA Stem-loop Binding Protein. RNA 2002, 8, 83–96. 10.1017/S1355838202013869. PubMed DOI PMC
Zanier K.; Luyten I.; Crombie C.; Muller B.; Schümperli D.; Linge J. P.; Nilges M.; Sattler M. Structure of the Histone mRNA Hairpin Required for Cell Cycle Regulation of Histone Gene Expression. RNA 2002, 8, 29–46. 10.1017/S1355838202014061. PubMed DOI PMC
Ennifar E.; Nikulin A.; Tishchenko S.; Serganov A.; Nevskaya N.; Garber M.; Ehresmann B.; Ehresmann C.; Nikonov S.; Dumas P. The Crystal Structure of UUCG Tetraloop. J. Mol. Biol. 2000, 304, 35–42. 10.1006/jmbi.2000.4204. PubMed DOI
Heus H. A.; Pardi A. Structural Features that Give Rise to the Unusual Stability of RNA Hairpins Containing GNRA Loops. Science 1991, 253, 191–194. 10.1126/science.1712983. PubMed DOI
D’Ascenzo L.; Leonarski F.; Vicens Q.; Auffinger P. Revisiting GNRA and UNCG folds: U-turns versus Z-turns in RNA hairpin loops. RNA 2017, 23, 259–269. 10.1261/rna.059097.116. PubMed DOI PMC
Hall K. B. Mighty Tiny. RNA 2015, 21, 630–631. 10.1261/rna.050567.115. PubMed DOI PMC
Auffinger P.; Westhof E. Molecular Dynamics Simulations of Nucleic Acids. Encyclopedia of computational chemistry 1997, 8, 227–236. 10.1002/0470845015.cma022. PubMed DOI
Zacharias M. Simulation of the Structure and Dynamics of Nonhelical RNA Motifs. Curr. Opin. Struct. Biol. 2000, 10, 311–317. 10.1016/S0959-440X(00)00089-0. PubMed DOI
Kara M.; Zacharias M. Theoretical Studies of Nucleic Acids Folding. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014, 4, 116–126. 10.1002/wcms.1146. DOI
Jucker F. M.; Heus H. A.; Yip P. F.; Moors E. H.; Pardi A. A Network of Heterogeneous Hydrogen Bonds in GNRA Tetraloops. J. Mol. Biol. 1996, 264, 968–980. 10.1006/jmbi.1996.0690. PubMed DOI
Bothe J. R.; Nikolova E. N.; Eichhorn C. D.; Chugh J.; Hansen A. L.; Al-Hashimi H. M. Characterizing RNA Dynamics at Atomic Resolution Using Solution-state NMR Spectroscopy. Nat. Nat. Methods 2011, 8, 919–931. 10.1038/nmeth.1735. PubMed DOI PMC
Zhao B.; Zhang Q. Characterizing Excited Conformational States of RNA by NMR Spectroscopy. Curr. Opin. Struct. Biol. 2015, 30, 134–146. 10.1016/j.sbi.2015.02.011. PubMed DOI PMC
Bottaro S.; Lindorff-Larsen K. Mapping the Universe of RNA Tetraloop Folds. Biophys. J. 2017, 113, 257–267. 10.1016/j.bpj.2017.06.011. PubMed DOI PMC
Sarkar K.; Meister K.; Sethi A.; Gruebele M. Fast Folding of an RNA Tetraloop on a Rugged Energy Landscape Detected by a Stacking-Sensitive Probe. Biophys. J. 2009, 97, 1418–1427. 10.1016/j.bpj.2009.06.035. PubMed DOI PMC
Ewald P. P. Ewald Summation. Ann. Phys. 1921, 369, 253–287. 10.1002/andp.19213690304. DOI
Auffinger P.; LouiseMay S.; Westhof E. Molecular Dynamics Simulations of the Anticodon Hairpin of tRNA(Asp): Structuring Effects of C-H Center Dot Center Dot Center Dot O Hydrogen Bonds and of Long-range Hydration Forces. J. Am. Chem. Soc. 1996, 118, 1181–1189. 10.1021/ja952494j. DOI
Auffinger P.; Louisemay S.; Westhof E. Multiple Molecular-Dynamics Simulations of the Anticodon Loop of tRNA(Asp) in Aqueous-Solution with Counterious. J. Am. Chem. Soc. 1995, 117, 6720–6726. 10.1021/ja00130a011. DOI
Cheatham T. E.; Miller J. L.; Fox T.; Darden T. A.; Kollman P. A. Molecular Dynamics Simulations on Solvated Biomolecular Systems: The Particle Mesh Ewald Method Leads to Stable Trajectories of DNA, RNA, and Proteins. J. Am. Chem. Soc. 1995, 117, 4193–4194. 10.1021/ja00119a045. DOI
Allain F. H. T.; Varani G. Structure of the P1 Helix from Group-I Self-Splicing Introns. J. Mol. Biol. 1995, 250, 333–353. 10.1006/jmbi.1995.0381. PubMed DOI
Miller J. L.; Kollman P. A. Theoretical Studies of an Exceptionally Stable RNA Tetraloop: Observation of Convergence from an Incorrect NMR Structure to the Correct One Using Unrestrained Molecular Dynamics. J. Mol. Biol. 1997, 270, 436–450. 10.1006/jmbi.1997.1113. PubMed DOI
Williams D. J.; Hall K. B. Unrestrained Stochastic Dynamics Simulations of the UUCG Tetraloop Using an Implicit Solvation Model. Biophys. J. 1999, 76, 3192–3205. 10.1016/S0006-3495(99)77471-0. PubMed DOI PMC
Williams D. J.; Hall K. B. Experimental and Theoretical Studies of the Effects of Deoxyribose Substitutions on the Stability of the UUCG Tetraloop. J. Mol. Biol. 2000, 297, 251–265. 10.1006/jmbi.2000.3547. PubMed DOI
Williams D. J.; Hall K. B. Experimental and Computational Studies of the G[UUCG]C RNA Tetraloop. J. Mol. Biol. 2000, 297, 1045–1061. 10.1006/jmbi.2000.3623. PubMed DOI
Still W. C.; Tempczyk A.; Hawley R. C.; Hendrickson T. Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics. J. Am. Chem. Soc. 1990, 112, 6127–6129. 10.1021/ja00172a038. DOI
Srinivasan J.; Cheatham T. E.; Cieplak P.; Kollman P. A.; Case D. A. Continuum Solvent Studies of the Stability of DNA, RNA, and Phosphoramidate-DNA Helices. J. Am. Chem. Soc. 1998, 120, 9401–9409. 10.1021/ja981844+. DOI
Vorobjev Y. N.; Almagro J. C.; Hermans J. Discrimination between Native and Intentionally Misfolded Conformations of Proteins: ES/IS, A New Method for Calculating Conformational Free Energy that Uses Both Dynamics Simulations with an Explicit Solvent and an Implicit Solvent Continuum Model. Proteins 1998, 32, 399–413. 10.1002/(SICI)1097-0134(19980901)32:4<399::AID-PROT1>3.0.CO;2-C. PubMed DOI
Jayaram B.; Sprous D.; Young M. A.; Beveridge D. L. Free Energy Analysis of the Conformational Preferences of A and B Forms of DNA in Solution. J. Am. Chem. Soc. 1998, 120, 10629–10633. 10.1021/ja981307p. DOI
Srinivasan J.; Miller J.; Kollman P. A.; Case D. A. Continuum Solvent Studies of the Stability of RNA Hairpin Loops and Helices. J. Biomol. Struct. Dyn. 1998, 16, 671–682. 10.1080/07391102.1998.10508279. PubMed DOI
van Gunsteren W. F.; Mark A. E. On the Interpretation of Biochemical Data by Molecular Dynamics Computer Simulation. Eur. J. Biochem. 1992, 204, 947–961. 10.1111/j.1432-1033.1992.tb16716.x. PubMed DOI
Singh S. B.; Kollman P. A. Understanding the Thermodynamic Stability of an RNA Hairpin and Its Mutant. Biophys. J. 1996, 70, 1940–1948. 10.1016/S0006-3495(96)79758-8. PubMed DOI PMC
Villa A.; Stock G. What NMR Relaxation Can Tell Us about the Internal Motion of an RNA Hairpin: A Molecular Dynamics Simulation Study. J. Chem. Theory Comput. 2006, 2, 1228–1236. 10.1021/ct600160z. PubMed DOI
Ferner J.; Villa A.; Duchardt E.; Widjajakusuma E.; Wöhnert J.; Stock G.; Schwalbe H.; NMR M. D. Studies of the Temperature-dependent Dynamics of RNA YNMG-tetraloops. Nucleic Acids Res. 2008, 36, 1928–1940. 10.1093/nar/gkm1183. PubMed DOI PMC
Bowman G. R.; Huang X.; Yao Y.; Sun J.; Carlsson G.; Guibas L. J.; Pande V. S. Structural Insight into RNA Hairpin Folding Intermediates. J. Am. Chem. Soc. 2008, 130, 9676–9678. 10.1021/ja8032857. PubMed DOI PMC
Chakraborty D.; Collepardo-Guevara R.; Wales D. J. Energy Landscapes, Folding Mechanisms, and Kinetics of RNA Tetraloop Hairpins. J. Am. Chem. Soc. 2014, 136, 18052–18061. 10.1021/ja5100756. PubMed DOI
Giambaşu G. M.; York D. M.; Case D. A. Structural Fidelity and NMR Relaxation Analysis in a Prototype RNA Hairpin. RNA 2015, 21, 963–974. 10.1261/rna.047357.114. PubMed DOI PMC
Duchardt E.; Schwalbe H. Residue Specific Ribose and Nucleobase Dynamics of the cUUCGg RNA Tetraloop Motif by MNMR 13C Relaxation. J. Biomol. NMR 2005, 32, 295–308. 10.1007/s10858-005-0659-x. PubMed DOI
Juneja A.; Villa A.; Nilsson L. Elucidating the Relation between Internal Motions and Dihedral Angles in an RNA Hairpin Using Molecular Dynamics. J. Chem. Theory Comput. 2014, 10, 3532–3540. 10.1021/ct500203m. PubMed DOI
Fürtig B.; Richter C.; Wöhnert J.; Schwalbe H. NMR Spectroscopy of RNA. ChemBioChem 2003, 4, 936–962. 10.1002/cbic.200300700. PubMed DOI
Ode H.; Matsuo Y.; Neya S.; Hoshino T. Force Field Parameters for Rotation Around chi Torsion Axis in Nucleic Acids. J. Comput. Chem. 2008, 29, 2531–2542. 10.1002/jcc.21006. PubMed DOI
Wales D. J. Discrete Path Sampling. Mol. Phys. 2002, 100, 3285–3305. 10.1080/00268970210162691. DOI
Nozinovic S.; Furtig B.; Jonker H. R. A.; Richter C.; Schwalbe H. High-Resolution NMR Structure of an RNA Model System: The 14-mer cUUCGg Tetraloop Hairpin RNA. Nucleic Acids Res. 2010, 38, 683–694. 10.1093/nar/gkp956. PubMed DOI PMC
Stadlbauer P.; Sponer J.; Costanzo G.; Di Mauro E.; Pino S.; Sponer J. E. Tetraloop-like Geometries Could Form the Basis of the Catalytic Activity of the Most Ancient Ribooligonucleotides. Chem. - Eur. J. 2015, 21, 3596–3604. 10.1002/chem.201406140. PubMed DOI
Major F.; Turcotte M.; Gautheret D.; Lapalme G.; Fillion E.; Cedergren R. The Combination of Symbolic and Numerical Computation for Three-dimensional Modeling of RNA. Science 1991, 253, 1255–1260. 10.1126/science.1716375. PubMed DOI
Maier A.; Sklenar H.; Kratky H. F.; Renner A.; Schuster P. Force Field Based Conformational Analysis of RNA Structural Motifs: GNRA Tetraloops and Their Pyrimidine Relatives. Eur. Biophys. J. 1999, 28, 564–573. 10.1007/s002490050238. PubMed DOI
Rhee Y. M.; Pande V. S. Multiplexed-replica Exchange Molecular Dynamics Method for Protein Folding Simulation. Biophys. J. 2003, 84, 775–786. 10.1016/S0006-3495(03)74897-8. PubMed DOI PMC
Moazed D.; Stern S.; Noller H. F. Rapid Chemical Probing of Conformation in 16 S Ribosomal RNA and 30 S Ribosomal Subunits Using Primer Extension. J. Mol. Biol. 1986, 187, 399–416. 10.1016/0022-2836(86)90441-9. PubMed DOI
Michel F.; Westhof E. Modelling of the Three-dimensional Architecture of Group I Catalytic Introns Based on Comparative Sequence Analysis. J. Mol. Biol. 1990, 216, 585–610. 10.1016/0022-2836(90)90386-Z. PubMed DOI
Havrila M.; Reblova K.; Zirbel C. L.; Leontis N. B.; Sponer J. lsosteric and Nonisosteric Base Pairs in RNA Motifs: Molecular Dynamics and Bioinformatics Study of the Sarcin Ricin Internal Loop. J. Phys. Chem. B 2013, 117, 14302–14319. 10.1021/jp408530w. PubMed DOI PMC
Lilley D. M. J. Structures of Helical Junctions in Nucleic Acids. Q. Rev. Biophys. 2000, 33, 109–159. 10.1017/S0033583500003590. PubMed DOI
Mathews D. H.; Turner D. H. Experimentally Derived Nearest-Neighbor Parameters for the Stability of RNA Three- and Four-Way Multibranch Loops. Biochemistry 2002, 41, 869–880. 10.1021/bi011441d. PubMed DOI
Lescoute A.; Westhof E. Topology of Three-way Junctions in Folded RNAs. RNA 2006, 12, 83–93. 10.1261/rna.2208106. PubMed DOI PMC
Laing C.; Schlick T. Analysis of Four-Way Junctions in RNA Structures. J. Mol. Biol. 2009, 390, 547–559. 10.1016/j.jmb.2009.04.084. PubMed DOI PMC
Bindewald E.; Hayes R.; Yingling Y. G.; Kasprzak W.; Shapiro B. A. RNAJunction: A Database of RNA Junctions and Kissing Loops for Three-dimensional Structural Analysis and Nanodesign. Nucleic Acids Res. 2008, 36, D392–D397. 10.1093/nar/gkm842. PubMed DOI PMC
Laing C.; Jung S.; Iqbal A.; Schlick T. Tertiary Motifs Revealed in Analyses of Higher-Order RNA Junctions. J. Mol. Biol. 2009, 393, 67–82. 10.1016/j.jmb.2009.07.089. PubMed DOI PMC
Laing C.; Jung S.; Kim N.; Elmetwaly S.; Zahran M.; Schlick T. Predicting Helical Topologies in RNA Junctions as Tree Graphs. PLoS One 2013, 8, e71947.10.1371/journal.pone.0071947. PubMed DOI PMC
Shu D.; Shu Y.; Haque F.; Abdelmawla S.; Guo P. X. Thermodynamically Stable RNA Three-way Junction for Constructing Multifunctional Nanoparticles for Delivery of Therapeutics. Nat. Nanotechnol. 2011, 6, 658–667. 10.1038/nnano.2011.105. PubMed DOI PMC
Cate J. H.; Gooding A. R.; Podell E.; Zhou K.; Golden B. L.; Szewczak A. A.; Kundrot C. E.; Cech T. R.; Doudna J. A. RNA Tertiary Structure Mediation by Adenosine Platforms. Science 1996, 273, 1696–1699. 10.1126/science.273.5282.1696. PubMed DOI
Basu S.; P. Rambo R.; Strauss-Soukup J.; H.Cate J.; R. Ferre-Damare A.; Strobel S. A.; Doudna J. A. A Specific Monovalent Metal Ion Integral to the AA Platform of the RNA Tetraloop Receptor. Nat. Struct. Biol. 1998, 5, 986–992. 10.1038/2960. PubMed DOI
Correll C. C.; Beneken J.; Plantinga M. J.; Lubbers M.; Chan Y.-L. The Common and the Distinctive Features of the Bulged-G Motif Based on a 1.04 Å Resolution RNA Structure. Nucleic Acids Res. 2003, 31, 6806–6818. 10.1093/nar/gkg908. PubMed DOI PMC
Lu X.-J.; Olson W. K.; Bussemaker H. J. The RNA Backbone Plays a Crucial Role in Mediating the Intrinsic Stability of the GpU Dinucleotide Platform and the GpUpA/GpA Miniduplex. Nucleic Acids Res. 2010, 38, 4868–4876. 10.1093/nar/gkq155. PubMed DOI PMC
Mladek A.; Sponer J. E.; Kulhanek P.; Lu X. J.; Olson W. K.; Sponer J. Understanding the Sequence Preference of Recurrent RNA Building Blocks Using Quantum Chemistry: The Intrastrand RNA Dinucleotide Platform. J. Chem. Theory Comput. 2012, 8, 335–347. 10.1021/ct200712b. PubMed DOI PMC
Vallurupalli P.; Moore P. B. The Solution Structure of the Loop E Region of the 5 S rRNA from Spinach Chloroplasts. J. Mol. Biol. 2003, 325, 843–856. 10.1016/S0022-2836(02)01270-6. PubMed DOI
Nomenclature for Incompletely Specified Bases in Nucleic Acid Sequences. Recommendations 1984. Biochem. J. 1985, 229, 281–286. 10.1042/bj2290281. PubMed DOI PMC
Šponer J.; Leszczyński J.; Hobza P. Nature of Nucleic Acid–Base Stacking: Nonempirical ab Initio and Empirical Potential Characterization of 10 Stacked Base Dimers. Comparison of Stacked and H-Bonded Base Pairs. J. Phys. Chem. 1996, 100, 5590–5596. 10.1021/jp953306e. DOI
Šponer J. E.; Špačková N. a.; Kulhánek P.; Leszczynski J.; Šponer J. Non-Watson–Crick Base Pairing in RNA. Quantum Chemical Analysis of the cis Watson–Crick/Sugar Edge Base Pair Family. J. Phys. Chem. A 2005, 109, 2292–2301. 10.1021/jp050132k. PubMed DOI
Pan Y.; MacKerell A. D. Jr Altered Structural Fluctuations in Duplex RNA Versus DNA: A Conformational Switch Involving Base Pair Opening. Nucleic Acids Res. 2003, 31, 7131–7140. 10.1093/nar/gkg941. PubMed DOI PMC
Snoussi K.; Leroy J. L. Imino Proton Exchange and Base-Pair Kinetics in RNA Duplexes. Biochemistry 2001, 40, 8898–8904. 10.1021/bi010385d. PubMed DOI
Pan Y.; Priyakumar U. D.; MacKerell A. D. Conformational Determinants of Tandem GU Mismatches in RNA: Insights from Molecular Dynamics Simulations and Quantum Mechanical Calculations. Biochemistry 2005, 44, 1433–1443. 10.1021/bi047932q. PubMed DOI
Halder S.; Bhattacharyya D. Structural Stability of Tandemly Occurring Noncanonical Basepairs within Double Helical Fragments: Molecular Dynamics Studies of Functional RNA. J. Phys. Chem. B 2010, 114, 14028–14040. 10.1021/jp102835t. PubMed DOI
Halder S.; Bhattacharyya D. Structural Variations of Single and Tandem Mismatches in RNA Duplexes: A Joint MD Simulation and Crystal Structure Database Analysis. J. Phys. Chem. B 2012, 116, 11845–11856. 10.1021/jp305628v. PubMed DOI
Freier S. M.; Kierzek R.; Jaeger J. A.; Sugimoto N.; Caruthers M. H.; Neilson T.; Turner D. H. Improved Free-energy Parameters for Predictions of RNA Duplex Stability. Proc. Natl. Acad. Sci. U. S. A. 1986, 83, 9373–9377. 10.1073/pnas.83.24.9373. PubMed DOI PMC
Jaeger J. A.; Turner D. H.; Zuker M. Improved Predictions of Secondary Structures for RNA. Proc. Natl. Acad. Sci. U. S. A. 1989, 86, 7706–7710. 10.1073/pnas.86.20.7706. PubMed DOI PMC
Turner D. H.; Mathews D. H. NNDB: The Nearest Neighbor Parameter Database for Predicting Stability of Nucleic Acid Secondary Structure. Nucleic Acids Res. 2010, 38, D280–D282. 10.1093/nar/gkp892. PubMed DOI PMC
McDowell J. A.; Turner D. H. Investigation of the Structural Basis for Thermodynamic Stabilities of Tandem GU Mismatches: Solution Structure of (rGAGGUCUC)2 by Two-Dimensional NMR and Simulated Annealing. Biochemistry 1996, 35, 14077–14089. 10.1021/bi9615710. PubMed DOI
Chen G.; Znosko B. M.; Jiao X.; Turner D. H. Factors Affecting Thermodynamic Stabilities of RNA 3 × 3 Internal Loops. Biochemistry 2004, 43, 12865–12876. 10.1021/bi049168d. PubMed DOI
Chen G.; Znosko B. M.; Kennedy S. D.; Krugh T. R.; Turner D. H. Solution Structure of an RNA Internal Loop with Three Consecutive Sheared GA Pairs. Biochemistry 2005, 44, 2845–2856. 10.1021/bi048079y. PubMed DOI
Chen G.; Kierzek R.; Yildirim I.; Krugh T. R.; Turner D. H.; Kennedy S. D. Stacking Effects on Local Structure in RNA: Changes in the Structure of Tandem GA Pairs when Flanking GC Pairs Are Replaced by isoG–isoC Pairs. J. Phys. Chem. B 2007, 111, 6718–6727. 10.1021/jp068732m. PubMed DOI PMC
Shankar N.; Xia T.; Kennedy S. D.; Krugh T. R.; Mathews D. H.; Turner D. H. NMR Reveals the Absence of Hydrogen Bonding in Adjacent UU and AG Mismatches in an Isolated Internal Loop from Ribosomal RNA. Biochemistry 2007, 46, 12665–12678. 10.1021/bi700802s. PubMed DOI
Shankar N.; Kennedy S. D.; Chen G.; Krugh T. R.; Turner D. H. The NMR Structure of an Internal Loop from 23S Ribosomal RNA Differs from Its Structure in Crystals of 50S Ribosomal Subunits. Biochemistry 2006, 45, 11776–11789. 10.1021/bi0605787. PubMed DOI PMC
Réblová K.; Střelcová Z.; Kulhánek P.; Beššeová I.; Mathews D. H.; Van Nostrand K.; Yildirim I.; Turner D. H.; Šponer J. An RNA Molecular Switch: Intrinsic Flexibility of 23S rRNA Helices 40 and 68 5′-UAA/5′-GAN Internal Loops Studied by Molecular Dynamics Methods. J. Chem. Theory Comput. 2010, 6, 910–929. 10.1021/ct900440t. PubMed DOI PMC
Hammond N. B.; Tolbert B. S.; Kierzek R.; Turner D. H.; Kennedy S. D. RNA Internal Loops with Tandem AG Pairs: The Structure of the 5′GAGU/3′UGAG Loop Can Be Dramatically Different from Others, Including 5′AAGU/3′UGAA. Biochemistry 2010, 49, 5817–5827. 10.1021/bi100332r. PubMed DOI PMC
Lerman Y. V.; Kennedy S. D.; Shankar N.; Parisien M.; Major F.; Turner D. H. NMR Structure of a 4 × 4 Nucleotide RNA Internal Loop from an R2 Retrotransposon: Identification of a Three Purine–purine Sheared Pair Motif and Comparison to MC-SYM Predictions. RNA 2011, 17, 1664–1677. 10.1261/rna.2641911. PubMed DOI PMC
Yildirim I.; Turner D. H. RNA Challenges for Computational Chemists. Biochemistry 2005, 44, 13225–13234. 10.1021/bi051236o. PubMed DOI PMC
Van Nostrand K. P.; Kennedy S. D.; Turner D. H.; Mathews D. H. Molecular Mechanics Investigation of an Adenine–Adenine Non-Canonical Pair Conformational Change. J. Chem. Theory Comput. 2011, 7, 3779–3792. 10.1021/ct200223q. PubMed DOI PMC
Morgado C. A.; Svozil D.; Turner D. H.; Sponer J. Understanding the Role of Base Stacking in Nucleic Acids. MD and QM Analysis of Tandem GA Base Pairs in RNA Duplexes. Phys. Chem. Chem. Phys. 2012, 14, 12580–12591. 10.1039/c2cp40556c. PubMed DOI
Aytenfisu A. H.; Spasic A.; Seetin M. G.; Serafini J.; Mathews D. H. Modified Amber Force Field Correctly Models the Conformational Preference for Tandem GA pairs in RNA. J. Chem. Theory Comput. 2014, 10, 1292–1301. 10.1021/ct400861g. PubMed DOI PMC
Huguet J. M.; Bizarro C. V.; Forns N.; Smith S. B.; Bustamante C.; Ritort F. Single-molecule Derivation of Salt Dependent Base-pair Free Energies in DNA. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 15431–15436. 10.1073/pnas.1001454107. PubMed DOI PMC
Mosayebi M.; Romano F.; Ouldridge T. E.; Louis A. A.; Doye J. P. K. The Role of Loop Stacking in the Dynamics of DNA Hairpin Formation. J. Phys. Chem. B 2014, 118, 14326–14335. 10.1021/jp510061f. PubMed DOI
Sponer J.; Morgado C. A.; Svozil D. Comment on ″Computational Model for Predicting Experimental RNA and DNA Nearest-Neighbor Free Energy Rankings. J. Phys. Chem. B 2012, 116, 8331–8332. 10.1021/jp300659f. PubMed DOI
Siegfried N. A.; Metzger S. L.; Bevilacqua P. C. Folding Cooperativity in RNA and DNA is Dependent on Position in the Helix. Biochemistry 2007, 46, 172–181. 10.1021/bi061375l. PubMed DOI
Spasic A.; Serafini J.; Mathews D. H. The Amber ff99 Force Field Predicts Relative Free Energy Changes for RNA Helix Formation. J. Chem. Theory Comput. 2012, 8, 2497–2505. 10.1021/ct300240k. PubMed DOI PMC
Westhof E. Water: An Integral Part of Nucleic Acid Structure. Annu. Rev. Biophys. Biophys. Chem. 1988, 17, 125–144. 10.1146/annurev.bb.17.060188.001013. PubMed DOI
Schneider B.; Cohen D. M.; Schleifer L.; Srinivasan A. R.; Olson W. K.; Berman H. M. A Systematic Method for Studying the Spatial Distribution of Water Molecules Around Nucleic Acid Bases. Biophys. J. 1993, 65, 2291–2303. 10.1016/S0006-3495(93)81306-7. PubMed DOI PMC
Schneider B.; Berman H. M. Hydration of the DNA Bases Is Local. Biophys. J. 1995, 69, 2661–2669. 10.1016/S0006-3495(95)80136-0. PubMed DOI PMC
Egli M.; Portmann S.; Usman N. RNA Hydration: A Detailed Look. Biochemistry 1996, 35, 8489–8494. 10.1021/bi9607214. PubMed DOI
Auffinger P.; Hashem Y. SwS: A Solvation Web Service for Nucleic Acids. Bioinformatics 2007, 23, 1035–1037. 10.1093/bioinformatics/btm067. PubMed DOI
Auffinger P.; Westhof E. Hydration of RNA Base Pairs. J. Biomol. Struct. Dyn. 1998, 16, 693–707. 10.1080/07391102.1998.10508281. PubMed DOI
Kirillova S.; Carugo O. Hydration Sites of Unpaired RNA Bases: A Statistical Analysis of the PDB Structures. BMC Struct. Biol. 2011, 11, 1–12. 10.1186/1472-6807-11-41. PubMed DOI PMC
Das U.; Chen S.; Fuxreiter M.; Vaguine A. A.; Richelle J.; Berman H. M.; Wodak S. J. Checking Nucleic Acid Crystal Structures. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2001, 57, 813–828. 10.1107/S0907444901003936. PubMed DOI
Davis I. W.; Leaver-Fay A.; Chen V. B.; Block J. N.; Kapral G. J.; Wang X.; Murray L. W.; Arendall W. B.; Snoeyink J.; Richardson J. S.; et al. MolProbity: All-atom Contacts and Structure Validation for Proteins and Nucleic Acids. Nucleic Acids Res. 2007, 35, W375–W383. 10.1093/nar/gkm216. PubMed DOI PMC
Wlodawer A.; Minor W.; Dauter Z.; Jaskolski M. Protein Crystallography for Non-crystallographers, or How to Get the Best (but not more) From Published Macromolecular Structures. FEBS J. 2008, 275, 1–21. 10.1111/j.1742-4658.2007.06178.x. PubMed DOI PMC
Chen X.; Weber I.; Harrison R. W. Hydration Water and Bulk Water in Proteins Have Distinct Properties in Radial Distributions Calculated from 105 Atomic Resolution Crystal Structures. J. Phys. Chem. B 2008, 112, 12073–12080. 10.1021/jp802795a. PubMed DOI PMC
Carugo O.; Argos P. Reliability of Atomic Displacement Parameters in Protein Crystal Structures. Acta Crystallogr., Sect. D: Biol. Crystallogr. 1999, 55, 473–478. 10.1107/S0907444998011688. PubMed DOI
Conte M. R.; Conn G. L.; Brown T.; Lane A. N. Hydration of the RNA Duplex r(CGCAAAUUUGCG) 2 Determined by NMR. Nucleic Acids Res. 1996, 24, 3693–3699. PubMed PMC
LouiseMay S.; Auffinger P.; Westhof E. Calculations of Nucleic Acid Conformations. Curr. Opin. Struct. Biol. 1996, 6, 289–298. 10.1016/S0959-440X(96)80046-7. PubMed DOI
Auffinger P.; Westhof E. RNA Hydration: Three Nanoseconds of Multiple Molecular Dynamics Simulations of the Solvated tRNA(Asp) Anticodon Hairpin. J. Mol. Biol. 1997, 269, 326–341. 10.1006/jmbi.1997.1022. PubMed DOI
Auffinger P.; Westhof E. Rules Governing the Orientation of the 2’-hydroxyl Group in RNA. J. Mol. Biol. 1997, 274, 54–63. 10.1006/jmbi.1997.1370. PubMed DOI
Auffinger P.; Louise-May S.; Westhof E. Molecular Dynamics Simulations of Solvated Yeast tRNA(Asp). Biophys. J. 1999, 76, 50–64. 10.1016/S0006-3495(99)77177-8. PubMed DOI PMC
Nagan M. C.; Kerimo S. S.; Musier-Forsyth K.; Cramer C. J. Wild-Type RNA MicrohelixAla and 3:70 Variants: Molecular Dynamics Analysis of Local Helical Structure and Tightly Bound Water. J. Am. Chem. Soc. 1999, 121, 7310–7317. 10.1021/ja9842565. DOI
Auffinger P.; Westhof E. Singly and Bifurcated Hydrogen-bonded Base-pairs in tRNA Anticodon Hairpins and Ribozymes. J. Mol. Biol. 1999, 292, 467–483. 10.1006/jmbi.1999.3080. PubMed DOI
Brandl M.; Meyer M.; Sühnel J. Water-Mediated Base Pairs in RNA: A Quantum-Chemical Study. J. Phys. Chem. A 2000, 104, 11177–11187. 10.1021/jp002022d. DOI
Auffinger P.; Westhof E. Water and Ion Binding Around RNA and DNA (C,G) Oligomers. J. Mol. Biol. 2000, 300, 1113–1131. 10.1006/jmbi.2000.3894. PubMed DOI
Csaszar K.; Špačková N. a.; Štefl R.; Šponer J.; Leontis N. B. Molecular Dynamics of the Frame-shifting Pseudoknot from Beet Western Yellows Virus: The Role of Non-Watson-Crick Base-pairing, Ordered Hydration, Cation Binding and Base Mutations on Stability and Unfolding. J. Mol. Biol. 2001, 313, 1073–1091. 10.1006/jmbi.2001.5100. PubMed DOI
Auffinger P.; Westhof E. Water and Ion Binding Around r(UpA)(12) and d(TpA)(12) Oligomers - Comparison with RNA and DNA (CpG)(12) Duplexes. J. Mol. Biol. 2001, 305, 1057–1072. 10.1006/jmbi.2000.4360. PubMed DOI
Auffinger P.; Westhof E. An Extended Structural Signature for the tRNA Anticodon Loop. RNA 2001, 7, 334–341. 10.1017/S1355838201002382. PubMed DOI PMC
Vaiana A. C.; Westhof E.; Auffinger P. A Molecular Dynamics Simulation Study of an Aminoglycoside/A-site RNA Complex: Conformational and Hydration Patterns. Biochimie 2006, 88, 1061–1073. 10.1016/j.biochi.2006.06.006. PubMed DOI
Auffinger P.; Hashem Y. Nucleic Acid Solvation: From Outside to Insight. Curr. Opin. Struct. Biol. 2007, 17, 325–333. 10.1016/j.sbi.2007.05.008. PubMed DOI
Auffinger P.Molecular Dynamics Simulations of RNA Systems. In Handbook of RNA Biochemistry; Hartmann R. K., Bindereif A., Schön A., Westhof E., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: New York, 2014; pp 687–718.
Nguyen C. N.; Young T. K.; Gilson M. K. Grid Inhomogeneous Solvation Theory: Hydration Structure and Thermodynamics of the Miniature Receptor Cucurbit[7]uril. J. Chem. Phys. 2012, 137, 044101.10.1063/1.4733951. PubMed DOI PMC
Ramsey S.; Nguyen C.; Salomon-Ferrer R.; Walker R. C.; Gilson M. K.; Kurtzman T. Solvation Thermodynamic Mapping of Molecular Surfaces in AmberTools: GIST. J. Comput. Chem. 2016, 37, 2029–2037. 10.1002/jcc.24417. PubMed DOI PMC
Shanker S.; Bandyopadhyay P. How Mg2+ Ion and Water Network Affect the Stability and Structure of Non-Watson–Crick Base Pairs in E. coli Loop E of 5S rRNA: A Molecular Dynamics and Reference Interaction Site Model (RISM) Study. J. Biomol. Struct. Dyn. 2017, 35, 2103–2122. 10.1080/07391102.2016.1213186. PubMed DOI
Lee J. C.; Gutell R. R.; Russell R. The UAA/GAN Internal Loop Motif: A New RNA Structural Element that Forms a Cross-strand AAA Stack and Long-range Tertiary Interactions. J. Mol. Biol. 2006, 360, 978–988. 10.1016/j.jmb.2006.05.066. PubMed DOI
Gutell R. R.; Schnare M. N.; Gray M. W. A Compilation of Large Subunit (23s-like and 23s-like) Ribosomal-rna Structures. Nucleic Acids Res. 1992, 20, 2095–2109. 10.1093/nar/20.suppl.2095. PubMed DOI PMC
Endo Y.; Mitsui K.; Motizuki M.; Tsurugi K. The Mechanism of Action of Ricin and Related Toxic Lectins on Eukaryotic Ribosomes. The Site and the Characteristics of the Modification in 28 S Ribosomal RNA Caused By the Toxins. J. Biol. Chem. 1987, 262, 5908–5912. PubMed
Qin S.; Zhou H.-X. Dissection of the High Rate Constant for the Binding of a Ribotoxin to the Ribosome. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 6974–6979. 10.1073/pnas.0900291106. PubMed DOI PMC
Lacadena J.; Álvarez-García E.; Carreras-Sangrà N.; Herrero-Galán E.; Alegre-Cebollada J.; García-Ortega L.; Oñaderra M.; Gavilanes J. G.; Martínez del Pozo Á. Fungal Ribotoxins: Molecular Dissection of a Family of Natural Killers. FEMS Microbiol. Rev. 2007, 31, 212–237. 10.1111/j.1574-6976.2006.00063.x. PubMed DOI
Schindler D. G.; Davies J. E. Specific Cleavage of Ribosomal RNA Caused by Alpha Sarcin. Nucleic Acids Res. 1977, 4, 1097–1110. 10.1093/nar/4.4.1097. PubMed DOI PMC
Endo Y.; Tsurugi K. RNA N-glycosidase Activity of Ricin A-chain. Mechanism of Action of the Toxic Lectin Ricin on Eukaryotic Ribosomes. J. Biol. Chem. 1987, 262, 8128–8130. PubMed
Hausner T.-P.; Atmadja J.; Nierhaus K. H. Evidence that the G2661 Region of 23S rRNA is Located at the Ribosomal Binding Sites of Both Elongation Factors. Biochimie 1987, 69, 911–923. 10.1016/0300-9084(87)90225-2. PubMed DOI
Lancaster L.; Lambert N. J.; Maklan E. J.; Horan L. H.; Noller H. F. The Sarcin–ricin Loop of 23S rRNA Is Essential for Assembly of the Functional Core of the 50S Ribosomal Subunit. RNA 2008, 14, 1999–2012. 10.1261/rna.1202108. PubMed DOI PMC
Macbeth M. R.; Wool I. G. The Phenotype of Mutations of G2655 in the Sarcin/Ricin Domain of 23S Ribosomal RNA. J. Mol. Biol. 1999, 285, 965–975. 10.1006/jmbi.1998.2388. PubMed DOI
Chan Y.-L.; Sitikov A. S.; Wool I. G. The Phenotype of Mutations of the Base-pair C2658·G2663 That Closes the Tetraloop in the Sarcin/ricin Domain of Escherichia coli 23 S Ribosomal RNA. J. Mol. Biol. 2000, 298, 795–805. 10.1006/jmbi.2000.3720. PubMed DOI
Garst A. D.; Héroux A.; Rambo R. P.; Batey R. T. Crystal Structure of the Lysine Riboswitch Regulatory mRNA Element. J. Biol. Chem. 2008, 283, 22347–22351. 10.1074/jbc.C800120200. PubMed DOI PMC
Serganov A.; Huang L.; Patel D. J. Structural Insights Into Amino Acid Binding and Gene Control by a Lysine Riboswitch. Nature 2008, 455, 1263–1267. 10.1038/nature07326. PubMed DOI PMC
Garst A. D.; Porter E. B.; Batey R. T. Insights into the Regulatory Landscape of the Lysine Riboswitch. J. Mol. Biol. 2012, 423, 17–33. 10.1016/j.jmb.2012.06.038. PubMed DOI PMC
Yang X.; Gerczei T.; Glover L.; Correll C. C. Crystal Structures of Restrictocin-inhibitor Complexes with Implications for RNA Recognition and Base Flipping. Nat. Struct. Biol. 2001, 8, 968–973. 10.1038/nsb1101-968. PubMed DOI
Szewczak A. A.; Moore P. B.; Chang Y. L.; Wool I. G. The Conformation of the Sarcin/ricin Loop from 28S Ribosomal RNA. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 9581–9585. 10.1073/pnas.90.20.9581. PubMed DOI PMC
Duarte C. M.; Wadley L. M.; Pyle A. M. RNA Structure Comparison, Motif Search and Discovery Using a Reduced Representation of RNA Conformational Space. Nucleic Acids Res. 2003, 31, 4755–4761. 10.1093/nar/gkg682. PubMed DOI PMC
Tian S.; Das R. RNA Structure Through Multidimensional Chemical Mapping. Q. Rev. Biophys. 2016, 49, e710.1017/S0033583516000020. PubMed DOI
Vidovic I.; Nottrott S.; Hartmuth K.; Lührmann R.; Ficner R. Crystal Structure of the Spliceosomal 15.5kD Protein Bound to a U4 snRNA Fragment. Mol. Mol. Cell 2000, 6, 1331–1342. 10.1016/S1097-2765(00)00131-3. PubMed DOI
Schroeder K. T.; McPhee S. A.; Ouellet J.; Lilley D. M. J. A Structural Database for K-Turn Motifs in RNA. RNA 2010, 16, 1463–1468. 10.1261/rna.2207910. PubMed DOI PMC
Schroeder Kersten T.; Daldrop P.; Lilley David M. J. RNA Tertiary Interactions in a Riboswitch Stabilize the Structure of a Kink Turn. Structure 2011, 19, 1233–1240. 10.1016/j.str.2011.07.003. PubMed DOI PMC
Huang L.; Lilley D. M. J. The Kink Turn, a Key Architectural Element in RNA Structure. J. Mol. Biol. 2016, 428, 790–801. 10.1016/j.jmb.2015.09.026. PubMed DOI PMC
Szewczak L. B. W.; Gabrielsen J. S.; DeGregorio S. J.; Strobel S. A.; Steitz J. A. Molecular Basis for RNA Kink-Turn Recognition by the h15.5K Small RNP Protein. RNA 2005, 11, 1407–1419. 10.1261/rna.2830905. PubMed DOI PMC
Razga F.; Spackova N.; Reblova K.; Koca J.; Leontis N. B.; Sponer J. Ribosomal RNA Kink-Turn Motif - A Flexible Molecular Hinge. J. Biomol. Struct. Dyn. 2004, 22, 183–193. 10.1080/07391102.2004.10506994. PubMed DOI
Cojocaru V.; Klement R.; Jovin T. M. Loss of G-A Base Pairs is Insufficient for Achieving a Large Opening of U4 snRNA K-Turn Motif. Nucleic Acids Res. 2005, 33, 3435–3446. 10.1093/nar/gki664. PubMed DOI PMC
Cojocaru V.; Nottrott S.; Klement R.; Jovin T. M. The snRNP 15.5K Protein Folds its Cognate K-turn RNA: A Combined Theoretical and Biochemical Study. RNA 2005, 11, 197–209. 10.1261/rna.7149605. PubMed DOI PMC
Razga F.; Koca J.; Mokdad A.; Sponer J. Elastic Properties of Ribosomal RNA Building Blocks: Molecular Dynamics of the GTPase-Associated Center rRNA. Nucleic Acids Res. 2007, 35, 4007–4017. 10.1093/nar/gkm245. PubMed DOI PMC
Reblova K.; Razga F.; Li W.; Gao H. X.; Frank J.; Sponer J. Dynamics of the Base of Ribosomal A-Site Finger Revealed by Molecular Dynamics Simulations and Cryo-EM. Nucleic Acids Res. 2010, 38, 1325–1340. 10.1093/nar/gkp1057. PubMed DOI PMC
Spackova N.; Reblova K.; Sponer J. Structural Dynamics of the Box C/D RNA Kink-Turn and Its Complex with Proteins: The Role of the A-Minor 0 Interaction, Long-Residency Water Bridges, and Structural Ion-Binding Sites Revealed by Molecular Simulations. J. Phys. Chem. B 2010, 114, 10581–10593. 10.1021/jp102572k. PubMed DOI
Ye W.; Yang J.; Yu Q.; Wang W.; Hancy J.; Luo R.; Chen H.-F. Kink Turn sRNA Folding upon L7Ae Binding Using Molecular Dynamics Simulations. Phys. Chem. Chem. Phys. 2013, 15, 18510–18522. 10.1039/c3cp53145g. PubMed DOI
Frank J.; Spahn C. M. T. The Ribosome and the Mechanism of Protein Synthesis. Rep. Prog. Phys. 2006, 69, 1383–1417. 10.1088/0034-4885/69/5/R03. DOI
Nissen P.; Ippolito J. A.; Ban N.; Moore P. B.; Steitz T. A. RNA Tertiary Interactions in the Large Ribosomal Subunit: The A-Minor Motif. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 4899–4903. 10.1073/pnas.081082398. PubMed DOI PMC
Falb M.; Amata I.; Gabel F.; Simon B.; Carlomagno T. Structure of the K-turn U4 RNA: A Combined NMR and SANS Study. Nucleic Acids Res. 2010, 38, 6274–6285. 10.1093/nar/gkq380. PubMed DOI PMC
Yusupov M. M.; Yusupova G. Z.; Baucom A.; Lieberman K.; Earnest T. N.; Cate J. H. D.; Noller H. F. Crystal Structure of the Ribosome at 5.5 Å Resolution. Science 2001, 292, 883–896. 10.1126/science.1060089. PubMed DOI
Liu Q.; Fredrick K. Intersubunit Bridges of the Bacterial Ribosome. J. Mol. Biol. 2016, 428, 2146–2164. 10.1016/j.jmb.2016.02.009. PubMed DOI PMC
Shaikh T. R.; Yassin A. S.; Lu Z.; Barnard D.; Meng X.; Lu T.-M.; Wagenknecht T.; Agrawal R. K. Initial Bridges Between Two Ribosomal Subunits Are Formed Within 9.4 ms, As Studied By Time-resolved Cryo-EM. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 9822–9827. 10.1073/pnas.1406744111. PubMed DOI PMC
Weis F.; Bron P.; Giudice E.; Rolland J.-P.; Thomas D.; Felden B.; Gillet R. tmRNA–SmpB: A Journey to the Centre of the Bacterial Ribosome. EMBO J. 2010, 29, 3810–3818. 10.1038/emboj.2010.252. PubMed DOI PMC
Frank J.; Agrawal R. K. A Ratchet-like Inter-subunit Reorganization of the Ribosome During Translocation. Nature 2000, 406, 318–322. 10.1038/35018597. PubMed DOI
Valle M.; Zavialov A.; Sengupta J.; Rawat U.; Ehrenberg M.; Frank J. Locking and Unlocking of Ribosomal Motions. Cell 2003, 114, 123–134. 10.1016/S0092-8674(03)00476-8. PubMed DOI
Liiv A.; O’Connor M. Mutations in the Intersubunit Bridge Regions of 23 S rRNA. J. Biol. Chem. 2006, 281, 29850–29862. 10.1074/jbc.M603013200. PubMed DOI
Piekna-Przybylska D.; Przybylski P.; Baudin-Baillieu A.; Rousset J.-P.; Fournier M. J. Ribosome Performance Is Enhanced by a Rich Cluster of Pseudouridines in the A-site Finger Region of the Large Subunit. J. Biol. Chem. 2008, 283, 26026–26036. 10.1074/jbc.M803049200. PubMed DOI PMC
Komoda T.; Sato N. S.; Phelps S. S.; Namba N.; Joseph S.; Suzuki T. The A-site Finger in 23 S rRNA Acts as a Functional Attenuator for Translocation. J. Biol. Chem. 2006, 281, 32303–32309. 10.1074/jbc.M607058200. PubMed DOI
Rakauskaite R.; Dinman J. D. An Arc of Unpaired “Hinge Bases” Facilitates Information Exchange among Functional Centers of the Ribosome. Mol. Cell. Biol. 2006, 26, 8992–9002. 10.1128/MCB.01311-06. PubMed DOI PMC
Sergiev P. V.; Kiparisov S. V.; Burakovsky D. E.; Lesnyak D. V.; Leonov A. A.; Bogdanov A. A.; Dontsova O. A. The Conserved A-site Finger of the 23 S rRNA: Just One of the Intersubunit Bridges or a Part of the Allosteric Communication Pathway?. J. Mol. Biol. 2005, 353, 116–123. 10.1016/j.jmb.2005.08.006. PubMed DOI
Paci M.; Fox G. E. Major Centers of Motion in the Large Ribosomal RNAs. Nucleic Acids Res. 2015, 43, 4640–4649. 10.1093/nar/gkv289. PubMed DOI PMC
Reblova K.; Sponer J.; Lankas F. Structure and Mechanical Properties of the Ribosomal L1 Stalk Three-way Junction. Nucleic Acids Res. 2012, 40, 6290–6303. 10.1093/nar/gks258. PubMed DOI PMC
Strobel S. A.; Adams P. L.; Stahley M. R.; Wang J. RNA Kink Turns to the Left and to the Right. RNA 2004, 10, 1852–1854. 10.1261/rna.7141504. PubMed DOI PMC
Zhong C.; Tang H.; Zhang S. RNAMotifScan: Automatic Identification of RNA Structural Motifs Using Secondary Structural Alignment. Nucleic Acids Res. 2010, 38, e176.10.1093/nar/gkq672. PubMed DOI PMC
Dethoff E. A.; Hansen A. L.; Musselman C.; Watt E. D.; Andricioaei I.; Al-Hashimi H. M. Characterizing Complex Dynamics in the Transactivation Response Element Apical Loop and Motional Correlations with the Bulge by NMR, Molecular Dynamics, and Mutagenesis. Biophys. J. 2008, 95, 3906–3915. 10.1529/biophysj.108.140285. PubMed DOI PMC
Fulle S.; Christ N. A.; Kestner E.; Gohlke H. HIV-1 TAR RNA Spontaneously Undergoes Relevant Apo-to-Holo Conformational Transitions in Molecular Dynamics and Constrained Geometrical Simulations. J. Chem. Inf. Model. 2010, 50, 1489–1501. 10.1021/ci100101w. PubMed DOI
Sethaphong L.; Singh A.; Marlowe A. E.; Yingling Y. G. The Sequence of HIV-1 TAR RNA Helix Controls Cationic Distribution. J. Phys. Chem. C 2010, 114, 5506–5512. 10.1021/jp906147q. DOI
Do T. N.; Ippoliti E.; Carloni P.; Varani G.; Parrinello M. Counterion Redistribution upon Binding of a Tat-Protein Mimic to HIV-1 TAR RNA. J. Chem. Theory Comput. 2012, 8, 688–694. 10.1021/ct2005769. PubMed DOI
Musiani F.; Rossetti G.; Capece L.; Gerger T. M.; Micheletti C.; Varani G.; Carloni P. Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV-1 Transactivation Responsive RNA. J. Am. Chem. Soc. 2014, 136, 15631–15637. 10.1021/ja507812v. PubMed DOI PMC
Andralojc W.; Ravera E.; Salmon L.; Parigi G.; Al-Hashimi H. M.; Luchinat C. Inter-helical Conformational Preferences of HIV-1 TAR-RNA from Maximum Occurrence Analysis of NMR Data and Molecular Dynamics Simulations. Phys. Chem. Chem. Phys. 2016, 18, 5743–5752. 10.1039/C5CP03993B. PubMed DOI PMC
Aboul-ela F.; Karn J.; Varani G. The Structure of the Human Immunodeficiency Virus Type-1 TAR RNA Reveals Principles of RNA Recognition by Tat Protein. J. Mol. Biol. 1995, 253, 313–332. 10.1006/jmbi.1995.0555. PubMed DOI
Ippolito J. A.; Steitz T. A. A 1.3-resolution Crystal Structure of the HIV-1 Trans-activation Response Region RNA Stem Reveals a Metal Ion-dependent Bulge Conformation. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 9819–9824. 10.1073/pnas.95.17.9819. PubMed DOI PMC
Bardaro M. F.; Shajani Z.; Patora-Komisarska K.; Robinson J. A.; Varani G. How Binding of Small Molecule and Peptide Ligands to HIV-1 TAR Alters the RNA Motional Landscape. Nucleic Acids Res. 2009, 37, 1529–1540. 10.1093/nar/gkn1074. PubMed DOI PMC
Zhang Q.; Sun X.; Watt E. D.; Al-Hashimi H. M. Resolving the Motional Modes That Code for RNA Adaptation. Science 2006, 311, 653–656. 10.1126/science.1119488. PubMed DOI
Long K. S.; Crothers D. M. Characterization of the Solution Conformations of Unbound and Tat Peptide-Bound Forms of HIV-1 TAR RNA. Biochemistry 1999, 38, 10059–10069. 10.1021/bi990590h. PubMed DOI
Hamy F.; Felder E. R.; Heizmann G.; Lazdins J.; Aboul-ela F.; Varani G.; Karn J.; Klimkait T. An Inhibitor of the Tat/TAR RNA Interaction that Effectively Suppresses HIV-1 Replication. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 3548–3553. 10.1073/pnas.94.8.3548. PubMed DOI PMC
Davidson A.; Leeper T. C.; Athanassiou Z.; Patora-Komisarska K.; Karn J.; Robinson J. A.; Varani G. Simultaneous Recognition of HIV-1 TAR RNA Bulge and Loop Sequences by Cyclic Peptide Mimics of Tat Protein. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 11931–11936. 10.1073/pnas.0900629106. PubMed DOI PMC
Puglisi J. D.; Chen L.; Frankel A. D.; Williamson J. R. Role of RNA Structure in Arginine Recognition of TAR RNA. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 3680–3684. 10.1073/pnas.90.8.3680. PubMed DOI PMC
Frank A. T.; Stelzer A. C.; Al-Hashimi H. M.; Andricioaei I. Constructing RNA Dynamical Ensembles by Combining MD and Motionally Decoupled NMR RDCs: New Insights into RNA Dynamics and Adaptive Ligand Recognition. Nucleic Acids Res. 2009, 37, 3670–3679. 10.1093/nar/gkp156. PubMed DOI PMC
Salmon L.; Bascom G.; Andricioaei I.; Al-Hashimi H. M. A General Method for Constructing Atomic-Resolution RNA Ensembles using NMR Residual Dipolar Couplings: The Basis for Interhelical Motions Revealed. J. Am. Chem. Soc. 2013, 135, 5457–5466. 10.1021/ja400920w. PubMed DOI PMC
Lee J.; Dethoff E. A.; Al-Hashimi H. M. Invisible RNA State Dynamically Couples Distant Motifs. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 9485–9490. 10.1073/pnas.1407969111. PubMed DOI PMC
Clay M. C.; Ganser L. R.; Merriman D. K.; Al-Hashimi H. M. Resolving Sugar Puckers in RNA Excited States Exposes Slow Modes of Repuckering Dynamics. Nucleic Acids Res. 2017, 45, e134.10.1093/nar/gkx525. PubMed DOI PMC
Bonomi M.; Heller G. T.; Camilloni C.; Vendruscolo M. Principles of Protein Structural Ensemble Determination. Curr. Opin. Struct. Biol. 2017, 42, 106–116. 10.1016/j.sbi.2016.12.004. PubMed DOI
Zhang Q.; Throolin R.; Pitt S. W.; Serganov A.; Al-Hashimi H. M. Probing Motions between Equivalent RNA Domains Using Magnetic Field Induced Residual Dipolar Couplings: Accounting for Correlations between Motions and Alignment. J. Am. Chem. Soc. 2003, 125, 10530–10531. 10.1021/ja0363056. PubMed DOI
Yang S.; Salmon L.; Al-Hashimi H. M. Measuring Similarity between Dynamic Ensembles of Biomolecules. Nat. Methods 2014, 11, 552–554. 10.1038/nmeth.2921. PubMed DOI PMC
Salmon L.; Yang S.; Al-Hashimi H. M. Advances in the Determination of Nucleic Acid Conformational Ensembles. Annu. Rev. Phys. Chem. 2014, 65, 293–316. 10.1146/annurev-physchem-040412-110059. PubMed DOI PMC
Salmon L.; Giambaşu G. M.; Nikolova E. N.; Petzold K.; Bhattacharya A.; Case D. A.; Al-Hashimi H. M. Modulating RNA Alignment Using Directional Dynamic Kinks: Application in Determining an Atomic-Resolution Ensemble for a Hairpin using NMR Residual Dipolar Couplings. J. Am. Chem. Soc. 2015, 137, 12954–12965. 10.1021/jacs.5b07229. PubMed DOI PMC
Li H.; Lee T.; Dziubla T.; Pi F.; Guo S.; Xu J.; Li C.; Haque F.; Liang X.-J.; Guo P. RNA as a Stable Polymer to Build Controllable and Defined Nanostructures for Material and Biomedical Applications. Nano Today 2015, 10, 631–655. 10.1016/j.nantod.2015.09.003. PubMed DOI PMC
Pasi M.; Maddocks J. H.; Beveridge D.; Bishop T. C.; Case D. A.; Cheatham T.; Dans P. D.; Jayaram B.; Lankas F.; Laughton C.; et al. μABC: A Systematic Microsecond Molecular Dynamics Study of Tetranucleotide Sequence Effects in B-DNA. Nucleic Acids Res. 2014, 42, 12272–12283. 10.1093/nar/gku855. PubMed DOI PMC
Lavery R.; Zakrzewska K.; Beveridge D.; Bishop T. C.; Case D. A.; Cheatham T.; Dixit S.; Jayaram B.; Lankas F.; Laughton C.; et al. A Systematic Molecular Dynamics Study of Nearest-neighbor Effects on Base Pair and Base Pair Step Conformations and Fluctuations in B-DNA. Nucleic Acids Res. 2010, 38, 299–313. 10.1093/nar/gkp834. PubMed DOI PMC
Calladine C. R. Mechanics of Sequence-dependent Stacking of Bases in B-DNA. J. Mol. Biol. 1982, 161, 343–352. 10.1016/0022-2836(82)90157-7. PubMed DOI
Dickerson R. E.; Klug A. Base Sequence and Helix Structure Variation in B and A DNA. J. Mol. Biol. 1983, 166, 419–441. 10.1016/S0022-2836(83)80093-X. PubMed DOI
Šponer J.; Kypr J. Different Intrastrand and Interstrand Contributions to Stacking Account for Roll Variations at the Alternating Purine-pyrimidine Sequences in A-DNA and A-RNA. J. Mol. Biol. 1991, 221, 761–764. 10.1016/0022-2836(91)80172-Q. PubMed DOI
Wahl M. C.; Sundaralingam M. Crystal Structures of A-DNA Duplexes. Biopolymers 1997, 44, 45–63. 10.1002/(SICI)1097-0282(1997)44:1<45::AID-BIP4>3.0.CO;2-#. PubMed DOI
Besseova I.; Otyepka M.; Reblova K.; Sponer J. Dependence of A-RNA Simulations on the Choice of the Force Field and Salt Strength. Phys. Chem. Chem. Phys. 2009, 11, 10701–10711. 10.1039/b911169g. PubMed DOI
Dock-Bregeon A. C.; Chevrier B.; Podjarny A.; Johnson J.; de Bear J. S.; Gough G. R.; Gilham P. T.; Moras D. Crystallographic Structure of an RNA Helix: [U(UA)6A]2. J. Mol. Biol. 1989, 209, 459–474. 10.1016/0022-2836(89)90010-7. PubMed DOI
Liu C.; Janowski P. A.; Case D. A. All-atom Crystal Simulations of DNA and RNA Duplexes. Biochim. Biophys. Acta, Gen. Subj. 2015, 1850, 1059–1071. 10.1016/j.bbagen.2014.09.018. PubMed DOI PMC
Liebl K.; Drsata T.; Lankas F.; Lipfert J.; Zacharias M. Explaining the Striking Difference in Twist-stretch Coupling between DNA and RNA: A Comparative Molecular Dynamics Analysis. Nucleic Acids Res. 2015, 43, 10143–10156. PubMed PMC
Bao L.; Zhang X.; Shi Y.-Z.; Wu Y.-Y.; Tan Z.-J. Understanding the Relative Flexibility of RNA and DNA Duplexes: Stretching and Twist-Stretch Coupling. Biophys. J. 2017, 112, 1094–1104. 10.1016/j.bpj.2017.02.022. PubMed DOI PMC
Lankaš F.; Šponer J.; Hobza P.; Langowski J. Sequence-dependent Elastic Properties of DNA. J. Mol. Biol. 2000, 299, 695–709. 10.1006/jmbi.2000.3781. PubMed DOI
Lankaš F.; Šponer J.; Langowski J.; Cheatham T. E. III DNA Basepair Step Deformability Inferred from Molecular Dynamics Simulations. Biophys. J. 2003, 85, 2872–2883. 10.1016/S0006-3495(03)74710-9. PubMed DOI PMC
Dršata T.; Lankaš F. Theoretical Models of DNA Flexibility. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2013, 3, 355–363. 10.1002/wcms.1144. DOI
Herrero-Galán E.; Fuentes-Perez M. E.; Carrasco C.; Valpuesta J. M.; Carrascosa J. L.; Moreno-Herrero F.; Arias-Gonzalez J. R. Mechanical Identities of RNA and DNA Double Helices Unveiled at the Single-Molecule Level. J. Am. Chem. Soc. 2013, 135, 122–131. 10.1021/ja3054755. PubMed DOI
Lipfert J.; Skinner G. M.; Keegstra J. M.; Hensgens T.; Jager T.; Dulin D.; Köber M.; Yu Z.; Donkers S. P.; Chou F.-C.; et al. Double-stranded RNA under Force and Torque: Similarities to and Striking Differences from Double-stranded DNA. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 15408–15413. 10.1073/pnas.1407197111. PubMed DOI PMC
Marin-Gonzalez A.; Vilhena J. G.; Perez R.; Moreno-Herrero F. Understanding the Mechanical Response of Double-stranded DNA and RNA under Constant Stretching Forces Using All-atom Molecular Dynamics. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 7049–7054. 10.1073/pnas.1705642114. PubMed DOI PMC
Parsch J.; Engels J. W. C–F···H–C Hydrogen Bonds in Ribonucleic Acids. J. Am. Chem. Soc. 2002, 124, 5664–5672. 10.1021/ja012116g. PubMed DOI
Zacharias M.; Engels J. W. Influence of a Fluorobenzene Nucleobase Analogue on the Conformational Flexibility of RNA Studied by Molecular Dynamics Simulations. Nucleic Acids Res. 2004, 32, 6304–6311. 10.1093/nar/gkh971. PubMed DOI PMC
Kopitz H.; Zivkovic A.; Engels J. W.; Gohlke H. Determinants of the Unexpected Stability of RNA Fluorobenzene Self Pairs. ChemBioChem 2008, 9, 2619–2622. 10.1002/cbic.200800461. PubMed DOI
Koller A. N.; Bozilovic J.; Engels J. W.; Gohlke H. Aromatic N versus Aromatic F: Bioisosterism Discovered in RNA Base Pairing Interactions Leads to a Novel Class of Universal Base Analogs. Nucleic Acids Res. 2010, 38, 3133–3146. 10.1093/nar/gkp1237. PubMed DOI PMC
Jaeger L.; Leontis N. B. Tecto-RNA: One-Dimensional Self-Assembly through Tertiary Interactions. Angew. Chem., Int. Ed. 2000, 39, 2521–2524. 10.1002/1521-3773(20000717)39:14<2521::AID-ANIE2521>3.0.CO;2-P. PubMed DOI
Afonin K. A.; Kasprzak W.; Bindewald E.; Puppala P. S.; Diehl A. R.; Hall K. T.; Kim T. J.; Zimmermann M. T.; Jernigan R. L.; Jaeger L.; et al. Computational and Experimental Characterization of RNA Cubic Nanoscaffolds. Methods 2014, 67, 256–265. 10.1016/j.ymeth.2013.10.013. PubMed DOI PMC
Yingling Y. G.; Shapiro B. A. Computational Design of an RNA Hexagonal Nanoring and an RNA. Nano Lett. 2007, 7, 2328–2334. 10.1021/nl070984r. PubMed DOI
Singh A.; Sethaphong L.; Yingling Y. G. Interactions of Cations with RNA Loop-Loop Complexes. Biophys. J. 2011, 101, 727–735. 10.1016/j.bpj.2011.06.033. PubMed DOI PMC
Golebiowski J.; Antonczak S.; Fernandez-Carmona J.; Condom R.; Cabrol-Bass D. Closing Loop Base Pairs in RNA Loop–loop Complexes: Structural Behavior, Interaction Energy and Solvation Analysis through Molecular Dynamics Simulations. J. Mol. Model. 2004, 10, 408–417. 10.1007/s00894-004-0216-7. PubMed DOI
Pattabiraman N.; Martinez H. M.; Shapiro B. A. Molecular Modeling and Dynamics Studies of HIV-1 Kissing Loop Structures. J. Biomol. Struct. Dyn. 2002, 20, 397–411. 10.1080/07391102.2002.10506858. PubMed DOI
Beaurain F.; Laguerre M. MD Studies of the DIS/DIS Kissing Complex Solution and X-Ray Structures. Oligonucleotides 2003, 13, 501–514. 10.1089/154545703322860816. PubMed DOI
Aci S.; Gangneux L.; Paoletti J.; Genest D. On the Stability of Different Experimental Dimeric Structures of the SL1 Sequence from the Genomic RNA of HIV-1 in Solution: A Molecular Dynamics Simulation and Electrophoresis Study. Biopolymers 2004, 74, 177–188. 10.1002/bip.20032. PubMed DOI
Mazier S.; Genest D. Molecular Dynamics Simulation for Probing the Flexibility of the 35 Nucleotide SL1 Sequence Kissing Complex from HIV-1Lai Genomic RNA. J. Biomol. Struct. Dyn. 2007, 24, 471–479. 10.1080/07391102.2007.10507135. PubMed DOI
Kim T.; Shapiro B. A. The Role of Salt Concentration and Magnesium Binding in HIV-1 Subtype-A and Subtype-B Kissing Loop Monomer Structures. J. Biomol. Struct. Dyn. 2013, 31, 495–510. 10.1080/07391102.2012.706072. PubMed DOI PMC
Sarzyńska J.; Réblová K.; Šponer J.; Kuliński T. Conformational Transitions of Flanking Purines in HIV-1 RNA Dimerization Initiation Site Kissing Complexes Studied by CHARMM Explicit Solvent Molecular Dynamics. Biopolymers 2008, 89, 732–746. 10.1002/bip.21001. PubMed DOI
Mujeeb A.; Clever J. L.; Billeci T. M.; James T. L.; Parslow T. G. Structure of the Dimer a Initiation Complex of HIV-1 Genomic RNA. Nat. Struct. Biol. 1998, 5, 432–436. 10.1038/nsb0698-432. PubMed DOI
Baba S.; Takahashi K.-i.; Noguchi S.; Takaku H.; Koyanagi Y.; Yamamoto N.; Kawai G. Solution RNA Structures of the HIV-1 Dimerization Initiation Site in the Kissing-Loop and Extended-Duplex Dimers. J. Biochem. 2005, 138, 583–592. 10.1093/jb/mvi158. PubMed DOI
Kieken F.; Paquet F.; Brulé F.; Paoletti J.; Lancelot G. A New NMR Solution Structure of the SL1 HIV-1Lai Loop–loop Dimer. Nucleic Acids Res. 2006, 34, 343–352. 10.1093/nar/gkj427. PubMed DOI PMC
Lee E. C.; Kim D.; Jurečka P.; Tarakeshwar P.; Hobza P.; Kim K. S. Understanding of Assembly Phenomena by Aromatic–Aromatic Interactions: Benzene Dimer and the Substituted Systems. J. Phys. Chem. A 2007, 111, 3446–3457. 10.1021/jp068635t. PubMed DOI
Řezáč J.; Hobza P. Benchmark Calculations of Interaction Energies in Noncovalent Complexes and Their Applications. Chem. Rev. 2016, 116, 5038–5071. 10.1021/acs.chemrev.5b00526. PubMed DOI
Chen A. A.; García A. E. Mechanism of Enhanced Mechanical Stability of a Minimal RNA Kissing Complex Elucidated by Nonequilibrium Molecular Dynamics Simulations. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, E1530–E1539. 10.1073/pnas.1119552109. PubMed DOI PMC
Li P. T. X.; Bustamante C.; Tinoco I. Unusual Mechanical Stability of a Minimal RNA Kissing Complex. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15847–15852. 10.1073/pnas.0607202103. PubMed DOI PMC
Stephenson W.; Asare-Okai P. N.; Chen A. A.; Keller S.; Santiago R.; Tenenbaum S. A.; Garcia A. E.; Fabris D.; Li P. T. X. The Essential Role of Stacking Adenines in a Two-Base-Pair RNA Kissing Complex. J. Am. Chem. Soc. 2013, 135, 5602–5611. 10.1021/ja310820h. PubMed DOI PMC
Winkler W. C.; Breaker R. R. Regulation of Bacterial Gene Expression by Riboswitches. Annu. Rev. Microbiol. 2005, 59, 487–517. 10.1146/annurev.micro.59.030804.121336. PubMed DOI
Winkler W. C.; Breaker R. R. Genetic Control by Metabolite-binding Riboswitches. ChemBioChem 2003, 4, 1024–1032. 10.1002/cbic.200300685. PubMed DOI
Barrick J. E.; Breaker R. R. The Power of Riboswitches. Sci. Am. 2007, 296, 36–43. 10.1038/scientificamerican0107-50. PubMed DOI
Nudler E.; Mironov A. S. The Riboswitch Control of Bacterial Metabolism. Trends Biochem. Trends Biochem. Sci. 2004, 29, 11–17. 10.1016/j.tibs.2003.11.004. PubMed DOI
Nahvi A.; Sudarsan N.; Ebert M. S.; Zou X.; Brown K. L.; Breaker R. R. Genetic Control by a Metabolite Binding mRNA. Chem. Biol. 2002, 9, 1043–1049. 10.1016/S1074-5521(02)00224-7. PubMed DOI
Weinberg Z.; Wang J. X.; Bogue J.; Yang J. Y.; Corbino K.; Moy R. H.; Breaker R. R. Comparative Genomics Reveals 104 Candidate Structured RNAs from Bacteria, Archaea, and their Metagenomes. Genome Biol. 2010, 11, R31.10.1186/gb-2010-11-3-r31. PubMed DOI PMC
Wickiser J. K.; Winkler W. C.; Breaker R. R.; Crothers D. M. The Speed of RNA Transcription and Metabolite Binding Kinetics Operate an FMN Riboswitch. Mol. Cell 2005, 18, 49–60. 10.1016/j.molcel.2005.02.032. PubMed DOI
Chauvier A.; Picard-Jean F.; Berger-Dancause J.-C.; Bastet L.; Naghdi M. R.; Dubé A.; Turcotte P.; Perreault J.; Lafontaine D. A. Transcriptional Pausing at the Translation Start Site Operates as a Critical Checkpoint for Riboswitch Regulation. Nat. Commun. 2017, 8, 13892.10.1038/ncomms13892. PubMed DOI PMC
Stoddard C. D.; Widmann J.; Trausch J. J.; Marcano-Velazquez J. G.; Knight R.; Batey R. T. Nucleotides Adjacent to the Ligand-Binding Pocket are Linked to Activity Tuning in the Purine Riboswitch. J. Mol. Biol. 2013, 425, 1596–1611. 10.1016/j.jmb.2013.02.023. PubMed DOI PMC
Serganov A.; Yuan Y. R.; Pikovskaya O.; Polonskaia A.; Malinina L.; Phan A. T.; Hobartner C.; Micura R.; Breaker R. R.; Patel D. J. Structural Basis for Discriminative Regulation of Gene Expression by Adenine- and Guanine-sensing mRNAs. Chem. Biol. 2004, 11, 1729–1741. 10.1016/j.chembiol.2004.11.018. PubMed DOI PMC
Gilbert S. D.; Mediatore S. J.; Batey R. T. Modified Pyrimidines Specifically Bind the Purine Riboswitch. J. Am. Chem. Soc. 2006, 128, 14214–14215. 10.1021/ja063645t. PubMed DOI
Gilbert S. D.; Reyes F. E.; Edwards A. L.; Batey R. T. Adaptive Ligand Binding by the Purine Riboswitch in the Recognition of Guanine and Adenine Analogs. Structure 2009, 17, 857–868. 10.1016/j.str.2009.04.009. PubMed DOI PMC
Gilbert S. D.; Stoddard C. D.; Wise S. J.; Batey R. T. Thermodynamic and Kinetic Characterization of Ligand Binding to the Purine Riboswitch Aptamer Domain. J. Mol. Biol. 2006, 359, 754–768. 10.1016/j.jmb.2006.04.003. PubMed DOI
Gilbert S. D.; Love C. E.; Edwards A. L.; Batey R. T. Mutational Analysis of the Purine Riboswitch Aptamer Domain. Biochemistry 2007, 46, 13297–13309. 10.1021/bi700410g. PubMed DOI PMC
Batey R. T.; Gilbert S. D.; Montange R. K. Structure of a Natural Guanine-responsive Riboswitch Complexed with the Metabolite Hypoxanthine. Nature 2004, 432, 411–415. 10.1038/nature03037. PubMed DOI
Stagno J. R.; Liu Y.; Bhandari Y. R.; Conrad C. E.; Panja S.; Swain M.; Fan L.; Nelson G.; Li C.; Wendel D. R.; et al. Structures of Riboswitch RNA Reaction States by Mix-and-inject XFEL Serial Crystallography. Nature 2017, 541, 242–246. 10.1038/nature20599. PubMed DOI PMC
Liu Y.; Holmstrom E.; Zhang J. W.; Yu P.; Wang J. B.; Dyba M. A.; Chen D.; Ying J. F.; Lockett S.; Nesbitt D. J.; et al. Synthesis and Applications of RNAs with Position-selective Labelling and Mosaic Composition. Nature 2015, 522, 368–372. 10.1038/nature14352. PubMed DOI PMC
Mandal M.; Boese B.; Barrick J. E.; Winkler W. C.; Breaker R. R. Riboswitches Control Fundamental Biochemical Pathways in Bacillus Subtilis and Other Bacteria. Cell 2003, 113, 577–586. 10.1016/S0092-8674(03)00391-X. PubMed DOI
Mandal M.; Breaker R. R. Adenine Riboswitches and Gene Activation by Disruption of a Transcription Terminator. Nat. Struct. Mol. Biol. 2004, 11, 29–35. 10.1038/nsmb710. PubMed DOI
Rieder R.; Lang K.; Graber D.; Micura R. Ligand-induced Folding of the Adenosine Deaminase A-riboswitch and Implications on Riboswitch Translational Control. ChemBioChem 2007, 8, 896–902. 10.1002/cbic.200700057. PubMed DOI
Jain N.; Zhao L.; Liu J. D.; Xia T. Heterogeneity and Dynamics of the Ligand Recognition Mode in Purine-Sensing Riboswitches. Biochemistry 2010, 49, 3703–3714. 10.1021/bi1000036. PubMed DOI
Priyakumar U. D.; MacKerell A. D. Role of the Adenine Ligand on the Stabilization of the Secondary and Tertiary Interactions in the Adenine Riboswitch. J. Mol. Biol. 2010, 396, 1422–1438. 10.1016/j.jmb.2009.12.024. PubMed DOI PMC
Villa A.; Wöhnert J.; Stock G. Molecular Dynamics Simulation Study of the Binding of Purine Bases to the Aptamer Domain of the Guanine Sensing Riboswitch. Nucleic Acids Res. 2009, 37, 4774–4786. 10.1093/nar/gkp486. PubMed DOI PMC
Sharma M.; Bulusu G.; Mitra A. MD Simulations of Ligand-bound and Ligand-free Aptamer: Molecular Level Insights into the Binding and Switching Mechanism of the add A-riboswitch. RNA 2009, 15, 1673–1692. 10.1261/rna.1675809. PubMed DOI PMC
Gong Z.; Zhao Y. J.; Chen C. J.; Xiao Y. Role of Ligand Binding in Structural Organization of Add A-riboswitch Aptamer: A Molecular Dynamics Simulation. J. Biomol. Struct. Dyn. 2011, 29, 403–416. 10.1080/07391102.2011.10507394. PubMed DOI
Greenleaf W. J.; Frieda K. L.; Foster D. A.; Woodside M. T.; Block S. M. Direct Observation of Hierarchical Folding in Single Riboswitch Aptamers. Science 2008, 319, 630–633. 10.1126/science.1151298. PubMed DOI PMC
Lin J. C.; Hyeon C.; Thirumalai D. Sequence-dependent Folding Landscapes of Adenine Riboswitch Aptamers. Phys. Chem. Chem. Phys. 2014, 16, 6376–6382. 10.1039/C3CP53932F. PubMed DOI PMC
Nguyen P. H.; Derreumaux P.; Stock G. Energy Flow and Long-Range Correlations in Guanine-Binding Riboswitch: A Nonequilibrium Molecular Dynamics Study. J. Phys. Chem. B 2009, 113, 9340–9347. 10.1021/jp902013s. PubMed DOI
McDowell S. E.; Jun J. M.; Walter N. G. Long-range Tertiary Interactions in Single Hammerhead Ribozymes Bias Motional Sampling Toward Catalytically Active Conformations. RNA 2010, 16, 2414–2426. 10.1261/rna.1829110. PubMed DOI PMC
Leipply D.; Draper D. E. Effects of Mg2+ on the Free Energy Landscape for Folding a Purine Riboswitch RNA. Biochemistry 2011, 50, 2790–2799. 10.1021/bi101948k. PubMed DOI PMC
Ling B. P.; Zhang R.; Wang Z. G.; Dong L. H.; Liu Y. J.; Zhang C. Q.; Liu C. B. Theoretical Studies on the Interaction of Guanine Riboswitch with Guanine and its Closest Analogues. Mol. Simul. 2010, 36, 929–938. 10.1080/08927022.2010.492833. DOI
Ling B. P.; Wang Z. G.; Zhang R.; Meng X. H.; Liu Y. J.; Zhang C. Q.; Liu C. B. Theoretical Studies on the Interaction of Modified Pyrimidines and Purines with Purine Riboswitch. J. Mol. Graphics Modell. 2009, 28, 37–45. 10.1016/j.jmgm.2009.03.005. PubMed DOI
Sund J.; Lind C.; Aqvist J. Binding Site Preorganization and Ligand Discrimination in the Purine Riboswitch. J. Phys. Chem. B 2015, 119, 773–782. 10.1021/jp5052358. PubMed DOI
Hu G.; Ma A.; Wang J. Ligand Selectivity Mechanism and Conformational Changes in Guanine Riboswitch by Molecular Dynamics Simulations and Free Energy Calculations. J. Chem. Inf. Model. 2017, 57, 918–928. 10.1021/acs.jcim.7b00139. PubMed DOI
Spitale R. C.; Torelli A. T.; Krucinska J.; Bandarian V.; Wedekind J. E. The Structural Basis for Recognition of the PreQ(0) Metabolite by an Unusually Small Riboswitch Aptamer Domain. J. Biol. Chem. 2009, 284, 11012–11016. 10.1074/jbc.C900024200. PubMed DOI PMC
Liberman J. A.; Suddala K. C.; Aytenfisu A.; Chan D. L.; Belashov I. A.; Salim M.; Mathews D. H.; Spitaled R. C.; Walter N. G.; Wedekind J. E. Structural Analysis of a Class III PreQ(1) Riboswitch Reveals an Aptamer Distant from a Ribosome-binding Site Regulated by Fast Dynamics. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, E3485–E3494. 10.1073/pnas.1503955112. PubMed DOI PMC
Liberman J. A.; Salim M.; Krucinska J.; Wedekind J. E. Structure of a Class II PreQ(1) Riboswitch Reveals Ligand Recognition by a New Fold. Nat. Chem. Biol. 2013, 9, 353–355. 10.1038/nchembio.1231. PubMed DOI PMC
Klein D. J.; Edwards T. E.; Ferre-D’Amare A. R. Cocrystal Structure of a Class I PreQ(1) Riboswitch Reveals a Pseudoknot Recognizing an Essential Hypermodified Nucleobase. Nat. Struct. Mol. Biol. 2009, 16, 343–344. 10.1038/nsmb.1563. PubMed DOI PMC
Jenkins J. L.; Krucinska J.; McCarty R. M.; Bandarian V.; Wedekind J. E. Comparison of a PreQ(1) Riboswitch Aptamer in Metabolite-bound and Free States with Implications for Gene Regulation. J. Biol. Chem. 2011, 286, 24626–24637. 10.1074/jbc.M111.230375. PubMed DOI PMC
Kang M. J.; Eichhorn C. D.; Feigon J. Structural Determinants for Ligand Capture by a Class II PreQ(1) Riboswitch. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, E663–E671. 10.1073/pnas.1400126111. PubMed DOI PMC
Kang M.; Peterson R.; Feigon J. Structural Insights into Riboswitch Control of the Biosynthesis of Queuosine, a Modified Nucleotide Found in the Anticodon of tRNA. Mol. Cell 2009, 33, 784–790. 10.1016/j.molcel.2009.02.019. PubMed DOI
Gong Z.; Zhao Y. J.; Chen C. J.; Xiao Y. Computational Study of Unfolding and Regulation Mechanism of preQ(1) Riboswitches. PLoS One 2012, 7, e45239.10.1371/journal.pone.0045239. PubMed DOI PMC
Feng J.; Walter N. G.; Brooks C. L. Cooperative and Directional Folding of the preQ(1) Riboswitch Aptamer Domain. J. Am. Chem. Soc. 2011, 133, 4196–4199. 10.1021/ja110411m. PubMed DOI PMC
Yoon J.; Thirumalai D.; Hyeon C. Urea-Induced Denaturation of PreQ(1)-Riboswitch. J. Am. Chem. Soc. 2013, 135, 12112–12121. 10.1021/ja406019s. PubMed DOI
Petrone P. M.; Dewhurst J.; Tommasi R.; Whitehead L.; Pomerantz A. K. Atomic-scale Characterization of Conformational Changes in the PreQ(1) Riboswitch Aptamer upon Ligand Binding. J. Mol. Graphics Modell. 2011, 30, 179–185. 10.1016/j.jmgm.2011.07.006. PubMed DOI
Gong Z.; Zhao Y. J.; Chen C. J.; Duan Y.; Xiao Y. Insights into Ligand Binding to PreQ(1) Riboswitch Aptamer from Molecular Dynamics Simulations. PLoS One 2014, 9, e92247.10.1371/journal.pone.0092247. PubMed DOI PMC
Eichhorn C. D.; Feng J.; Suddala K. C.; Walter N. G.; Brooks C. L.; Al-Hashimi H. M. Unraveling the Structural Complexity in a Single-stranded RNA Tail: Implications for Efficient Ligand Binding in the Prequeuosine Riboswitch. Nucleic Acids Res. 2012, 40, 1345–1355. 10.1093/nar/gkr833. PubMed DOI PMC
Aytenfisu A. H.; Liberman J. A.; Wedekind J. E.; Mathews D. H. Molecular Mechanism for preQ(1)-II Riboswitch Function Revealed by Molecular Dynamics. RNA 2015, 21, 1898–1907. 10.1261/rna.051367.115. PubMed DOI PMC
Wang W.; Jiang C.; Zhang J. M.; Ye W.; Luo R.; Chen H. F. Dynamics Correlation Network for Allosteric Switching of PreQ(1) Riboswitch. Sci. Rep. 2016, 6, e3100510.1038/srep31005. PubMed DOI PMC
Winkler W. C.; Nahvi A.; Sudarsan N.; Barrick J. E.; Breaker R. R. An mRNA Structure that Controls Gene Expression by Binding S-adenosylmethionine. Nat. Struct. Biol. 2003, 10, 701–707. 10.1038/nsb967. PubMed DOI
Wang J. X.; Breaker R. R. Riboswitches that Sense S-adenosylmethionine and S-adenosylhomocysteine. Biochem. Cell Biol. 2008, 86, 157–168. 10.1139/O08-008. PubMed DOI
McDaniel B. A. M.; Grundy F. J.; Artsimovitch I.; Henkin T. M. Transcription Termination Control of the S Box System: Direct Measurement of S-adenosylmethionine by the Leader RNA. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 3083–3088. 10.1073/pnas.0630422100. PubMed DOI PMC
Epshtein V.; Mironov A. S.; Nudler E. The Riboswitch-mediated Control of Sulfur Metabolism in Bacteria. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 5052–5056. 10.1073/pnas.0531307100. PubMed DOI PMC
Grundy F. J.; Henkin T. M. The S Box Regulon: A New Global Transcription Termination Control System for Methionine and Cysteine Biosynthesis Genes in Gram-positive Bacteria. Mol. Microbiol. 1998, 30, 737–749. 10.1046/j.1365-2958.1998.01105.x. PubMed DOI
Montange R. K.; Mondragon E.; van Tyne D.; Garst A. D.; Ceres P.; Batey R. T. Discrimination between Closely Related Cellular Metabolites by the SAM-I Riboswitch. J. Mol. Biol. 2010, 396, 761–772. 10.1016/j.jmb.2009.12.007. PubMed DOI PMC
Montange R. K.; Batey R. T. Structure of the S-adenosylmethionine Riboswitch Regulatory mRNA Element. Nature 2006, 441, 1172–1175. 10.1038/nature04819. PubMed DOI
Lu C. R.; Ding F.; Chowdhury A.; Pradhan V.; Tomsic J.; Holmes W. M.; Henkin T. M.; Ke A. L. SAM Recognition and Conformational Switching Mechanism in the Bacillus subtilis yitJ S Box/SAM-I Riboswitch. J. Mol. Biol. 2010, 404, 803–818. 10.1016/j.jmb.2010.09.059. PubMed DOI PMC
Weinberg Z.; Regulski E. E.; Hammond M. C.; Barrick J. E.; Yao Z.; Ruzzo W. L.; Breaker R. R. The Aptamer Core of SAM-IV Riboswitches Mimics the Ligand-binding Site of SAM-I Riboswitches. RNA 2008, 14, 822–828. 10.1261/rna.988608. PubMed DOI PMC
Trausch J. J.; Xu Z. J.; Edwards A. L.; Reyes F. E.; Ross P. E.; Knight R.; Batey R. T. Structural Basis for Diversity in the SAM Clan of Riboswitches. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 6624–6629. 10.1073/pnas.1312918111. PubMed DOI PMC
Lim J.; Winkler W. C.; Nakamura S.; Scott V.; Breaker R. R. Molecular-recognition Characteristics of SAM-binding Riboswitches. Angew. Chem., Int. Ed. 2006, 45, 964–968. 10.1002/anie.200503198. PubMed DOI
Gilbert S. D.; Rambo R. P.; Van Tyne D.; Batey R. T. Structure of the SAM-II Riboswitch Bound to S-adenosylmethionine. Nat. Struct. Mol. Biol. 2008, 15, 177–182. 10.1038/nsmb.1371. PubMed DOI
Corbino K. A.; Barrick J. E.; Lim J.; Welz R.; Tucker B. J.; Puskarz I.; Mandal M.; Rudnick N. D.; Breaker R. R. Evidence for a Second Class of S-adenosylmethionine Riboswitches and Other Regulatory RNA Motifs in Alpha-proteobacteria. Genome Biol. 2005, 6, R70.10.1186/gb-2005-6-8-r70. PubMed DOI PMC
Poiata E.; Meyer M. M.; Ames T. D.; Breaker R. R. A Variant Riboswitch Aptamer Class for S-adenosylmethionine Common in Marine Bacteria. RNA 2009, 15, 2046–2056. 10.1261/rna.1824209. PubMed DOI PMC
Lu C.; Smith A. M.; Fuchs R. T.; Ding F.; Rajashankar K.; Henkin T. M.; Ke A. Crystal Structures of the SAM-III/S-MK Riboswitch Reveal the SAM-dependent Translation Inhibition Mechanism. Nat. Struct. Mol. Biol. 2008, 15, 1076–1083. 10.1038/nsmb.1494. PubMed DOI PMC
Fuchs R. T.; Grundy F. J.; Henkin T. M. S-adenosylmethionine Directly Inhibits Binding of 30S Ribosornal Subunits to the S-MK Box Translational Riboswitch RNA. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 4876–4880. 10.1073/pnas.0609956104. PubMed DOI PMC
Fuchs R. T.; Grundy F. J.; Henkin T. M. The S-MK Box is a New SAM-binding RNA for Translational Regulation of SAM Synthetase. Nat. Struct. Mol. Biol. 2006, 13, 226–233. 10.1038/nsmb1059. PubMed DOI
Stoddard C. D.; Montange R. K.; Hennelly S. P.; Rambo R. P.; Sanbonmatsu K. Y.; Batey R. T. Free State Conformational Sampling of the SAM-I Riboswitch Aptamer Domain. Structure 2010, 18, 787–797. 10.1016/j.str.2010.04.006. PubMed DOI PMC
Huang W.; Kim J.; Jha S.; Aboul-ela F. The Impact of a Ligand Binding on Strand Migration in the SAM-I Riboswitch. PLoS Comput. Biol. 2013, 9, e1003069.10.1371/journal.pcbi.1003069. PubMed DOI PMC
Huang W.; Kim J.; Jha S.; Aboul-Ela F. A Mechanism for S-adenosyl Methionine Assisted Formation of a Riboswitch Conformation: A Small Molecule with a Strong Arm. Nucleic Acids Res. 2009, 37, 6528–6539. 10.1093/nar/gkp664. PubMed DOI PMC
Hayes R. L.; Noel J. K.; Mohanty U.; Whitford P. C.; Hennelly S. P.; Onuchic J. N.; Sanbonmatsu K. Y. Magnesium Fluctuations Modulate RNA Dynamics in the SAM-I Riboswitch. J. Am. Chem. Soc. 2012, 134, 12043–12053. 10.1021/ja301454u. PubMed DOI PMC
Kelley J. M.; Hamelberg D. Atomistic Basis for the On–off Signaling Mechanism in SAM-II Riboswitch. Nucleic Acids Res. 2010, 38, 1392–1400. 10.1093/nar/gkp1106. PubMed DOI PMC
Doshi U.; Kelley J. M.; Hamelberg D. Atomic-level Insights Into Metabolite Recognition and Specificity of the SAM-II Riboswitch. RNA 2012, 18, 300–307. 10.1261/rna.028779.111. PubMed DOI PMC
Priyakumar U. D. Atomistic Details of the Ligand Discrimination Mechanism of S-MK/SAM-III Riboswitch. J. Phys. Chem. B 2010, 114, 9920–9925. 10.1021/jp1042427. PubMed DOI
Suresh G.; Srinivasan H.; Nanda S.; Priyakumar U. D. Ligand-Induced Stabilization of a Duplex-like Architecture Is Crucial for the Switching Mechanism of the SAM-III Riboswitch. Biochemistry 2016, 55, 3349–3360. 10.1021/acs.biochem.5b00973. PubMed DOI
Wimberly B. T.; Brodersen D. E.; Clemons W. M.; Morgan-Warren R. J.; Carter A. P.; Vonrhein C.; Hartsch T.; Ramakrishnan V. Structure of the 30S Ribosomal Subunit. Nature 2000, 407, 327–339. 10.1038/35030006. PubMed DOI
Rozov A.; Demeshkina N.; Westhof E.; Yusupov M.; Yusupova G. Structural Insights into the Translational Infidelity Mechanism. Nat. Commun. 2015, 6, 7251.10.1038/ncomms8251. PubMed DOI PMC
Rozov A.; Demeshkina N.; Westhof E.; Yusupov M.; Yusupova G. New Structural Insights into Translational Miscoding. Trends Biochem. Trends Biochem. Sci. 2016, 41, 798–814. 10.1016/j.tibs.2016.06.001. PubMed DOI
Rozov A.; Westhof E.; Yusupov M.; Yusupova G. The Ribosome Prohibits the G•U Wobble Geometry at the First Position of the Codon–anticodon Helix. Nucleic Acids Res. 2016, 44, 6434–6441. PubMed PMC
Ogle J. M.; Murphy F. V. I. V.; Tarry M. J.; Ramakrishnan V. Selection of tRNA by the Ribosome Requires a Transition from an Open to a Closed Form. Cell 2002, 111, 721–732. 10.1016/S0092-8674(02)01086-3. PubMed DOI
Fourmy D.; Recht M. I.; Blanchard S. C.; Puglisi J. D. Structure of the A Site of Escherichia coli 16S Ribosomal RNA Complexed with an Aminoglycoside Antibiotic. Science 1996, 274, 1367–1371. 10.1126/science.274.5291.1367. PubMed DOI
Vicens Q.; Westhof E. Crystal Structure of Paromomycin Docked into the Eubacterial Ribosomal Decoding A Site. Structure 2001, 9, 647–658. 10.1016/S0969-2126(01)00629-3. PubMed DOI
François B.; Russell R. J. M.; Murray J. B.; Aboul-ela F.; Masquida B.; Vicens Q.; Westhof E. Crystal Structures of Complexes Between Aminoglycosides and Decoding A Site Oligonucleotides: Role of the Number of Rings and Positive Charges in the Specific Binding Leading to Miscoding. Nucleic Acids Res. 2005, 33, 5677–5690. 10.1093/nar/gki862. PubMed DOI PMC
Kondo J.; Francois B.; Urzhumtsev A.; Westhof E. Crystal Structure of the Homo Sapiens Cytoplasmic Ribosomal Decoding Site Complexed with Apramycin. Angew. Chem., Int. Ed. 2006, 45, 3310–3314. 10.1002/anie.200600354. PubMed DOI
Kondo J.; Urzhumtsev A.; Westhof E. Two Conformational States in the Crystal Structure of the Homo Sapiens Cytoplasmic Ribosomal Decoding A Site. Nucleic Acids Res. 2006, 34, 676–685. 10.1093/nar/gkj467. PubMed DOI PMC
Kondo J.; Westhof E. The Bacterial and Mitochondrial Ribosomal A-site Molecular Switches Possess Different Conformational Substates. Nucleic Acids Res. 2008, 36, 2654–2666. 10.1093/nar/gkn112. PubMed DOI PMC
Sanbonmatsu K. Y. Energy Landscape of the Ribosomal Decoding Center. Biochimie 2006, 88, 1053–1059. 10.1016/j.biochi.2006.06.012. PubMed DOI
Długosz M.; Antosiewicz J. M.; Trylska J. Association of Aminoglycosidic Antibiotics with the Ribosomal A-Site Studied with Brownian Dynamics. J. Chem. Theory Comput. 2008, 4, 549–559. 10.1021/ct700210n. PubMed DOI PMC
Romanowska J.; Setny P.; Trylska J. Molecular Dynamics Study of the Ribosomal A-Site. J. Phys. Chem. B 2008, 112, 15227–15243. 10.1021/jp806814s. PubMed DOI PMC
Romanowska J.; McCammon J. A.; Trylska J. Understanding the Origins of Bacterial Resistance to Aminoglycosides through Molecular Dynamics Mutational Study of the Ribosomal A-Site. PLoS Comput. Biol. 2011, 7, e1002099.10.1371/journal.pcbi.1002099. PubMed DOI PMC
Panecka J.; Havrila M.; Reblova K.; Sponer J.; Trylska J. Role of S-turn2 in the Structure, Dynamics, and Function of Mitochondrial Ribosomal A-Site. A Bioinformatics and Molecular Dynamics Simulation Study. J. Phys. Chem. B 2014, 118, 6687–6701. 10.1021/jp5030685. PubMed DOI
Panecka J.; Mura C.; Trylska J. Interplay of the Bacterial Ribosomal A-Site, S12 Protein Mutations and Paromomycin Binding: A Molecular Dynamics Study. PLoS One 2014, 9, e111811.10.1371/journal.pone.0111811. PubMed DOI PMC
Zeng X.; Chugh J.; Casiano-Negroni A.; Al-Hashimi H. M.; Brooks Iii C. L. Flipping of the Ribosomal A-Site Adenines Provides a Basis for tRNA Selection. J. Mol. Biol. 2014, 426, 3201–3213. 10.1016/j.jmb.2014.04.029. PubMed DOI PMC
Panecka J.; Sponer J.; Trylska J. Conformational Dynamics of Bacterial and Human Cytoplasmic Models of the Ribosomal A-site. Biochimie 2015, 112C, 96–110. 10.1016/j.biochi.2015.02.021. PubMed DOI
Wadley L. M.; Pyle A. M. The Identification of Novel RNA Structural Motifs Using COMPADRES: An Automated Approach to Structural Discovery. Nucleic Acids Res. 2004, 32, 6650–6659. 10.1093/nar/gkh1002. PubMed DOI PMC
Romanowska J.; Reuter N.; Trylska J. Comparing Aminoglycoside Binding Sites in Bacterial Ribosomal RNA and Aminoglycoside Modifying Enzymes. Proteins 2013, 81, 63–80. 10.1002/prot.24163. PubMed DOI
Długosz M.; Huber G. A.; McCammon J. A.; Trylska J. Brownian Dynamics Study of the Association between the 70S Ribosome and Elongation Factor G.. Biopolymers 2011, 95, 616–627. 10.1002/bip.21619. PubMed DOI PMC
Innis C. A.; Blaha G.; Bulkley D.; Steitz T. A.. Structural Studies of Complexes of the 70S Ribosome. In Ribosomes: Structure, Function, and Dynamics; Rodnina M. V., Wintermeyer W., Green R., Eds.; Springer Vienna: Vienna, 2011; pp 31–43.
VanLoock M. S.; Agrawal R. K.; Gabashvili I. S.; Qi L.; Frank J.; Harvey S. C. Movement of the Decoding Region of the 16S Ribosomal RNA Accompanies tRNA Translocation. J. Mol. Biol. 2000, 304, 507–515. 10.1006/jmbi.2000.4213. PubMed DOI
Drsata T.; Reblova K.; Beššeová I.; Sponer J.; Lankas F. rRNA C-loops: Mechanical Properties of a Recurrent Structural Motif. J. Chem. Theory Comput. 2017, 13, 3359–3371. 10.1021/acs.jctc.7b00061. PubMed DOI
Barthel A.; Zacharias M. Conformational Transitions in RNA Single Uridine and Adenosine Bulge Structures: A Molecular Dynamics Free Energy Simulation Study. Biophys. J. 2006, 90, 2450–2462. 10.1529/biophysj.105.076158. PubMed DOI PMC
Wang J.; Wolf R. M.; Caldwell J. W.; Kollman P. A.; Case D. A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. 10.1002/jcc.20035. PubMed DOI
Nivedha A. K.; Makeneni S.; Foley B. L.; Tessier M. B.; Woods R. J. Importance of Ligand Conformational Energies in Carbohydrate Docking: Sorting the Wheat from the Chaff. J. Comput. Chem. 2014, 35, 526–539. 10.1002/jcc.23517. PubMed DOI PMC
Kirschner K. N.; Yongye A. B.; Tschampel S. M.; González-Outeiriño J.; Daniels C. R.; Foley B. L.; Woods R. J. GLYCAM06: A Generalizable Biomolecular Force Field. Carbohydrates. J. Comput. Chem. 2008, 29, 622–655. 10.1002/jcc.20820. PubMed DOI PMC
Satpati P.; Åqvist J. Why Base Tautomerization Does Not Cause Errors in mRNA Decoding on the Ribosome. Nucleic Acids Res. 2014, 42, 12876–12884. 10.1093/nar/gku1044. PubMed DOI PMC
Vries M. S. d.; Hobza P. Gas-Phase Spectroscopy of Biomolecular Building Blocks. Annu. Rev. Phys. Chem. 2007, 58, 585–612. 10.1146/annurev.physchem.57.032905.104722. PubMed DOI
Nir E.; Janzen C.; Imhof P.; Kleinermanns K.; de Vries M. S. Guanine Tautomerism Revealed by UV–UV and IR–UV Hole Burning Spectroscopy. J. Chem. Phys. 2001, 115, 4604–4611. 10.1063/1.1391443. DOI
Mons M.; Dimicoli I.; Piuzzi F.; Tardivel B.; Elhanine M. Tautomerism of the DNA Base Guanine and Its Methylated Derivatives as Studied by Gas-Phase Infrared and Ultraviolet Spectroscopy. J. Phys. Chem. A 2002, 106, 5088–5094. 10.1021/jp0139742. DOI
Trygubenko S. A.; Bogdan T. V.; Rueda M.; Orozco M.; Luque F. J.; Sponer J.; Slavicek P.; Hobza P. Correlated Ab Initio Study of Nucleic Acid Bases and Their Tautomers in the Gas Phase, in a Microhydrated Environment and in Aqueous Solution Part 1. Phys. Chem. Chem. Phys. 2002, 4, 4192–4203. 10.1039/B202156K. DOI
Gorb L.; Leszczynski J. Intramolecular Proton Transfer in Mono- and Dihydrated Tautomers of Guanine: An ab Initio Post Hartree–Fock Study. J. Am. Chem. Soc. 1998, 120, 5024–5032. 10.1021/ja972017w. DOI
Orozco M.; Hernández B.; Luque F. J. Tautomerism of 1-Methyl Derivatives of Uracil, Thymine, and 5-Bromouracil. Is Tautomerism the Basis for the Mutagenicity of 5-Bromouridine?. J. Phys. Chem. B 1998, 102, 5228–5233. 10.1021/jp981005+. DOI
Bebenek K.; Pedersen L. C.; Kunkel T. A. Replication Infidelity via a Mismatch with Watson–Crick Geometry. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 1862–1867. 10.1073/pnas.1012825108. PubMed DOI PMC
Wang W.; Hellinga H. W.; Beese L. S. Structural Evidence for the Rare Tautomer Hypothesis of Spontaneous Mutagenesis. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 17644–17648. 10.1073/pnas.1114496108. PubMed DOI PMC
Kimsey I. J.; Petzold K.; Sathyamoorthy B.; Stein Z. W.; Al-Hashimi H. M. Visualizing Transient Watson-Crick-like Mispairs in DNA and RNA Duplexes. Nature 2015, 519, 315–320. 10.1038/nature14227. PubMed DOI PMC
Colominas C.; Luque F. J.; Orozco M. Tautomerism and Protonation of Guanine and Cytosine. Implications in the Formation of Hydrogen-Bonded Complexes. J. Am. Chem. Soc. 1996, 118, 6811–6821. 10.1021/ja954293l. DOI
Watson J. D.; Crick F. H. C. Genetical Implications of the Structure of Deoxyribonucleic Acid. Nature 1953, 171, 964–967. 10.1038/171964b0. PubMed DOI
Topal M. D.; Fresco J. R. Complementary Base Pairing and the Origin of Substitution Mutations. Nature 1976, 263, 285–289. 10.1038/263285a0. PubMed DOI
Florián J.; Leszczyński J. Spontaneous DNA Mutations Induced by Proton Transfer in the Guanine·Cytosine Base Pairs: An Energetic Perspective. J. Am. Chem. Soc. 1996, 118, 3010–3017. 10.1021/ja951983g. DOI
Wilcox J. L.; Ahluwalia A. K.; Bevilacqua P. C. Charged Nucleobases and Their Potential for RNA Catalysis. Acc. Chem. Res. 2011, 44, 1270–1279. 10.1021/ar2000452. PubMed DOI PMC
Song K.; Campbell A. J.; Bergonzo C.; de los Santos C.; Grollman A. P.; Simmerling C. An Improved Reaction Coordinate for Nucleic Acid Base Flipping Studies. J. Chem. Theory Comput. 2009, 5, 3105–3113. 10.1021/ct9001575. PubMed DOI PMC
Priyakumar U. D.; MacKerell A. D. Computational Approaches for Investigating Base Flipping in Oligonucleotides. Chem. Rev. 2006, 106, 489–505. 10.1021/cr040475z. PubMed DOI
Sanbonmatsu K. Y. Flipping through the Genetic Code: New Developments in Discrimination between Cognate and Near-Cognate tRNAs and the Effect of Antibiotics. J. Mol. Biol. 2014, 426, 3197–3200. 10.1016/j.jmb.2014.07.005. PubMed DOI
Pavlov M. Y.; Liljas A.; Ehrenberg M. A Recent Intermezzo at the Ribosome Club. Philos. Trans. R. Soc., B 2017, 372, 20160185.10.1098/rstb.2016.0185. PubMed DOI PMC
Fischer N.; Neumann P.; Bock L. V.; Maracci C.; Wang Z.; Paleskava A.; Konevega A. L.; Schröder G. F.; Grubmüller H.; Ficner R.; et al. The Pathway to GTPase Activation of Elongation Factor SelB on the Ribosome. Nature 2016, 540, 80–85. 10.1038/nature20560. PubMed DOI
Rodnina M. V.; Fischer N.; Maracci C.; Stark H. Ribosome Dynamics During Decoding. Philos. Trans. R. Soc., B 2017, 372, 20160182.10.1098/rstb.2016.0182. PubMed DOI PMC
Fagan C. E.; Dunkle J. A.; Maehigashi T.; Dang M. N.; Devaraj A.; Miles S. J.; Qin D.; Fredrick K.; Dunham C. M. Reorganization of an Intersubunit Bridge Induced by Disparate 16S Ribosomal Ambiguity Mutations Mimics an EF-Tu-bound State. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 9716–9721. 10.1073/pnas.1301585110. PubMed DOI PMC
Maximoff S. N.; Kamerlin S. C. L.; Florián J. DNA Polymerase λ Active Site Favors a Mutagenic Mispair between the Enol Form of Deoxyguanosine Triphosphate Substrate and the Keto Form of Thymidine Template: A Free Energy Perturbation Study. J. Phys. Chem. B 2017, 121, 7813–7822. 10.1021/acs.jpcb.7b04874. PubMed DOI
Krueger A. T.; Kool E. T. Model systems for understanding DNA base pairing. Curr. Opin. Chem. Biol. 2007, 11, 588–594. 10.1016/j.cbpa.2007.09.019. PubMed DOI PMC
Oertell K.; Harcourt E. M.; Mohsen M. G.; Petruska J.; Kool E. T.; Goodman M. F. Kinetic Selection vs. Free Energy of DNA Base Pairing in Control of Polymerase Fidelity. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, E2277–E2285. 10.1073/pnas.1600279113. PubMed DOI PMC
Sripathi K. N.; Tay W. W.; Banas P.; Otyepka M.; Sponer J.; Walter N. G. Disparate HDV Ribozyme Crystal Structures Represent Intermediates on a Rugged Free-energy Landscape. RNA 2014, 20, 1112–1128. 10.1261/rna.044982.114. PubMed DOI PMC
Åqvist J.; Lind C.; Sund J.; Wallin G. Bridging the Gap between Ribosome Structure and Biochemistry by Mechanistic Computations. Curr. Opin. Struct. Biol. 2012, 22, 815–823. 10.1016/j.sbi.2012.07.008. PubMed DOI
Almlof M.; Ander M.; Aqvist J. Energetics of Codon-anticodon Recognition on the Small Ribosomal Subunit. Biochemistry 2007, 46, 200–209. 10.1021/bi061713i. PubMed DOI
Sund J.; Ander M.; Aqvist J. Principles of Stop-codon Reading on the Ribosome. Nature 2010, 465, 947–950. 10.1038/nature09082. PubMed DOI
Satpati P.; Sund J.; Aqvist J. Structure-Based Energetics of mRNA Decoding on the Ribosome. Biochemistry 2014, 53, 1714–1722. 10.1021/bi5000355. PubMed DOI
Satpati P.; Bauer P.; Aqvist J. Energetic Tuning by tRNA Modifications Ensures Correct Decoding of Isoleucine and Methionine on the Ribosome. Chem. - Eur. J. 2014, 20, 10271–10275. 10.1002/chem.201404016. PubMed DOI
Voorhees R. M.; Schmeing T. M.; Kelley A. C.; Ramakrishnan V. The Mechanism for Activation of GTP Hydrolysis on the Ribosome. Science 2010, 330, 835–838. 10.1126/science.1194460. PubMed DOI PMC
Wallin G.; Kamerlin S. C. L.; Åqvist J. Energetics of Activation of GTP Hydrolysis on the Ribosome. Nat. Commun. 2013, 4, 1733.10.1038/ncomms2741. PubMed DOI
Åqvist J.; Kamerlin S. C. L. The Conformation of a Catalytic Loop Is Central to GTPase Activity on the Ribosome. Biochemistry 2015, 54, 546–556. 10.1021/bi501373g. PubMed DOI
Åqvist J.; Kamerlin S. C. L. Exceptionally Large Entropy Contributions Enable the High Rates of GTP Hydrolysis on the Ribosome. Sci. Rep. 2015, 5, e1581710.1038/srep15817. PubMed DOI PMC
Åqvist J.; Kamerlin S. C. L. Conserved Motifs in Different Classes of GTPases Dictate their Specific Modes of Catalysis. ACS Catal. 2016, 6, 1737–1743. 10.1021/acscatal.5b02491. DOI
Carvalho A. T. P.; Szeler K.; Vavitsas K.; Åqvist J.; Kamerlin S. C. L. Modeling the Mechanisms of Biological GTP Hydrolysis. Arch. Biochem. Biophys. 2015, 582, 80–90. 10.1016/j.abb.2015.02.027. PubMed DOI
Whitford P. C.; Sanbonmatsu K. Y. Simulating Movement of tRNA Through the Ribosome During Hybrid-state Formation. J. Chem. Phys. 2013, 139, 121919.10.1063/1.4817212. PubMed DOI PMC
Whitford P. C.; Blanchard S. C.; Cate J. H. D.; Sanbonmatsu K. Y. Connecting the Kinetics and Energy Landscape of tRNA Translocation on the Ribosome. PLoS Comput. Biol. 2013, 9, e1003003.10.1371/journal.pcbi.1003003. PubMed DOI PMC
Sanbonmatsu K. Y. Computational Studies of Molecular Machines: The Ribosome. Curr. Opin. Struct. Biol. 2012, 22, 168–174. 10.1016/j.sbi.2012.01.008. PubMed DOI PMC
Whitford P. C.; Ahmed A.; Yu Y. A.; Hennelly S. P.; Tama F.; Spahn C. M. T.; Onuchic J. N.; Sanbonmatsu K. Y. Excited States of Ribosome Translocation Revealed Through Integrative Molecular Modeling. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 18943–18948. 10.1073/pnas.1108363108. PubMed DOI PMC
Whitford P. C.; Geggier P.; Altman R. B.; Blanchard S. C.; Onuchic J. N.; Sanbonmatsu K. Y. Accommodation of Aminoacyl-tRNA Into the Ribosome Involves Reversible Excursions Along Multiple Pathways. RNA 2010, 16, 1196–1204. 10.1261/rna.2035410. PubMed DOI PMC
Munro J. B.; Sanbonmatsu K. Y.; Spahn C. M. T.; Blanchard S. C. Navigating the Ribosome’s Metastable Energy Landscape. Trends Biochem. Trends Biochem. Sci. 2009, 34, 390–400. 10.1016/j.tibs.2009.04.004. PubMed DOI PMC
Sanbonmatsu K. Y.; Tung C. S. High Performance Computing in Biology: Multimillion Atom Simulations of Nanoscale Systems. J. Struct. Biol. 2007, 157, 470–480. 10.1016/j.jsb.2006.10.023. PubMed DOI PMC
Sanbonmatsu K. Y.; Joseph S.; Tung C. S. Simulating Movement of tRNA Into the Ribosome During Decoding. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 15854–15859. 10.1073/pnas.0503456102. PubMed DOI PMC
Trabuco L. G.; Schreiner E.; Eargle J.; Cornish P.; Ha T.; Luthey-Schulten Z.; Schulten K. The Role of L1 Stalk-tRNA Interaction in the Ribosome Elongation Cycle. J. Mol. Biol. 2010, 402, 741–760. 10.1016/j.jmb.2010.07.056. PubMed DOI PMC
Bock L. V.; Blau C.; Schröder G. F.; Davydov I. I.; Fischer N.; Stark H.; Rodnina M. V.; Vaiana A. C.; Grubmüller H. Energy Barriers and Driving Forces in tRNA Translocation through the Ribosome. Nat. Struct. Mol. Biol. 2013, 20, 1390–1396. 10.1038/nsmb.2690. PubMed DOI
Brandman R.; Brandman Y.; Pande V. S. A-Site Residues Move Independently from P-Site Residues in all-Atom Molecular Dynamics Simulations of the 70S Bacterial Ribosome. PLoS One 2012, 7, e29377.10.1371/journal.pone.0029377. PubMed DOI PMC
Sothiselvam S.; Liu B.; Han W.; Ramu H.; Klepacki D.; Atkinson G. C.; Brauer A.; Remm M.; Tenson T.; Schulten K.; et al. Macrolide Antibiotics Allosterically Predispose the Ribosome for Translation Arrest. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 9804–9809. 10.1073/pnas.1403586111. PubMed DOI PMC
Gumbart J.; Schreiner E.; Wilson Daniel N.; Beckmann R.; Schulten K. Mechanisms of SecM-Mediated Stalling in the Ribosome. Biophys. J. 2012, 103, 331–341. 10.1016/j.bpj.2012.06.005. PubMed DOI PMC
Tung C. S.; Sanbonmatsu K. Y. Atomic Model of the Thermus thermophilus 70S Ribosome Developed in silico. Biophys. J. 2004, 87, 2714–2722. 10.1529/biophysj.104.040162. PubMed DOI PMC
Yang H.; Noel J. K.; Whitford P. C. Anisotropic Fluctuations in the Ribosome Determine tRNA Kinetics. J. Phys. Chem. B 2017, 121, 10593–10601. 10.1021/acs.jpcb.7b06828. PubMed DOI
Noel J. K.; Whitford P. C. How EF-Tu Can Contribute to Efficient Proofreading of aa-tRNA by the Ribosome. Nat. Commun. 2016, 7, 13314.10.1038/ncomms13314. PubMed DOI PMC
Shalev-Benami M.; Zhang Y.; Matzov D.; Halfon Y.; Zackay A.; Rozenberg H.; Zimmerman E.; Bashan A.; Jaffe C. L.; Yonath A.; et al. 2.8-Å Cryo-EM Structure of the Large Ribosomal Subunit from the Eukaryotic Parasite Leishmania. Cell Rep. 2016, 16, 288–294. 10.1016/j.celrep.2016.06.014. PubMed DOI PMC
Fischer N.; Neumann P.; Konevega A. L.; Bock L. V.; Ficner R.; Rodnina M. V.; Stark H. Structure of the E. coli Ribosome–EF-Tu complex at < 3 Å Resolution by Cs-corrected Cryo-EM. Nature 2015, 520, 567–570. 10.1038/nature14275. PubMed DOI
Von Loeffelholz O.; Natchiar S. K.; Djabeur N.; Myasnikov A. G.; Kratzat H.; Ménétret J.-F.; Hazemann I.; Klaholz B. P. Focused Classification and Refinement in High-resolution Cryo-EM Structural Analysis of Ribosome Complexes. Curr. Opin. Struct. Biol. 2017, 46, 140–148. 10.1016/j.sbi.2017.07.007. PubMed DOI
Chen Y.; Varani G. Protein Families and RNA Recognition. FEBS J. 2005, 272, 2088–2097. 10.1111/j.1742-4658.2005.04650.x. PubMed DOI
Daubner G. M.; Cléry A.; Allain F. H. T. RRM–RNA Recognition: NMR or Crystallography···and New Findings. Curr. Opin. Struct. Biol. 2013, 23, 100–108. 10.1016/j.sbi.2012.11.006. PubMed DOI
Chen Y.-C. Beware of docking!. Trends Pharmacol. Sci. 2015, 36, 78–95. 10.1016/j.tips.2014.12.001. PubMed DOI
Hornak V.; Abel R.; Okur A.; Strockbine B.; Roitberg A.; Simmerling C. Comparison of Multiple Amber Force Fields and Development of Improved Protein Backbone Parameters. Proteins: Struct., Funct., Genet. 2006, 65, 712–725. 10.1002/prot.21123. PubMed DOI PMC
Yadav D. K.; Lukavsky P. J. NMR Solution Structure Determination of Large RNA-protein Complexes. Prog. Nucl. Magn. Reson. Spectrosc. 2016, 97, 57–81. 10.1016/j.pnmrs.2016.10.001. PubMed DOI
Schlundt A.; Tants J.-N.; Sattler M. Integrated Structural Biology to Unravel Molecular Mechanisms of Protein-RNA Recognition. Methods 2017, 118, 119–136. 10.1016/j.ymeth.2017.03.015. PubMed DOI
Auweter S. D.; Fasan R.; Reymond L.; Underwood J. G.; Black D. L.; Pitsch S.; Allain F. H. T. Molecular Basis of RNA Recognition by the Human Alternative Splicing Factor Fox-1. EMBO J. 2006, 25, 163–173. 10.1038/sj.emboj.7600918. PubMed DOI PMC
Pitera J. W.; Chodera J. D. On the Use of Experimental Observations to Bias Simulated Ensembles. J. Chem. Theory Comput. 2012, 8, 3445–3451. 10.1021/ct300112v. PubMed DOI
Afroz T.; Cienikova Z.; Cléry A.; Allain F. H. T.. One, Two, Three, Four! How Multiple RRMs Read the Genome Sequence. In Methods in Enzymology; Woodson S. A., Allain F. H. T., Eds.; Academic Press: New York, 2015; Vol. 558, pp 235–278. PubMed
Oubridge C.; Ito N.; Evans P. R.; Teo C. H.; Nagai K. Crystal-Structure at 1.92 Angstrom Resolution of the RNA-Binding Domain of the U1A Spliceosomal Protein Complexed with an RNA Hairpin. Nature 1994, 372, 432–438. 10.1038/372432a0. PubMed DOI
Allain F. H. T.; Howe P. W. A.; Neuhaus D.; Varani G. Structural Basis of the RNA-binding Specificity of Human U1A Protein. EMBO J. 1997, 16, 5764–5774. PubMed PMC
Reyes C. M.; Kollman P. A. Molecular Dynamics Studies of U1A-RNA Complexes. RNA 1999, 5, 235–244. 10.1017/S1355838299981657. PubMed DOI PMC
Reyes C. M.; Kollman P. A. Structure and Thermodynamics of RNA-protein Binding: Using Molecular Dynamics and Free Energy Analyses to Calculate the Free Energies of Binding and Conformational Change. J. Mol. Biol. 2000, 297, 1145–1158. 10.1006/jmbi.2000.3629. PubMed DOI
Blakaj D. M.; McConnell K. J.; Beveridge D. L.; Baranger A. M. Molecular Dynamics and Thermodynamics of Protein-RNA Interactions: Mutation of a Conserved Aromatic Residue Modifies Stacking Interactions and Structural Adaptation in the U1A-stem Loop 2 RNA Complex. J. Am. Chem. Soc. 2001, 123, 2548–2551. 10.1021/ja005538j. PubMed DOI
Kormos B. L.; Benitex Y.; Baranger A. M.; Beveridge D. L. Affinity and Specificity of Protein U1A-RNA Complex Formation Based on an Additive Component Free Energy Model. J. Mol. Biol. 2007, 371, 1405–1419. 10.1016/j.jmb.2007.06.003. PubMed DOI PMC
Kormos B. L.; Pieniazek S. N.; Beveridge D. L.; Baranger A. M. U1A Protein-stem Loop 2 RNA Recognition: Prediction of Structural Differences from Protein Mutations. Biopolymers 2011, 95, 591–606. 10.1002/bip.21616. PubMed DOI PMC
Law M. J.; Linde M. E.; Chambers E. J.; Oubridge C.; Katsamba P. S.; Nilsson L.; Haworth I. S.; Laird-Offringa I. A. The Role of Positively Charged Amino Acids and Electrostatic Interactions in the Complex of U1A Protein and U1 Hairpin II RNA. Nucleic Acids Res. 2006, 34, 275–285. 10.1093/nar/gkj436. PubMed DOI PMC
Showalter S. A.; Hall K. B. Altering the RNA-binding Mode of the U1A RBD1 Protein. J. Mol. Biol. 2004, 335, 465–480. 10.1016/j.jmb.2003.10.055. PubMed DOI
Pitici F.; Beveridge D. L.; Baranger A. M. Molecular Dynamics Simulation Studies of Induced Fit and Conformational Capture in U1A–RNA Binding: Do Molecular Substates Code for Specificity?. Biopolymers 2002, 65, 424–435. 10.1002/bip.10251. PubMed DOI
Anunciado D.; Agumeh M.; Kormos B. L.; Beveridge D. L.; Knee J. L.; Baranger A. M. Characterization of the Dynamics of an Essential Helix in the U1A Protein by Time-Resolved Fluorescence Measurements. J. Phys. Chem. B 2008, 112, 6122–6130. 10.1021/jp076896c. PubMed DOI PMC
Kurisaki I.; Takayanagi M.; Nagaoka M. Combined Mechanism of Conformational Selection and Induced Fit in U1A–RNA Molecular Recognition. Biochemistry 2014, 53, 3646–3657. 10.1021/bi401708q. PubMed DOI
Guzman I.; Ghaemi Z.; Baranger A.; Luthey-Schulten Z.; Gruebele M. Native Conformational Dynamics of the Spliceosomal U1A Protein. J. Phys. Chem. B 2015, 119, 3651–3661. 10.1021/jp511760m. PubMed DOI
Guo J. X.; Gmeiner W. H. Molecular Dynamics Simulation of the Human U2B ’ Protein Complex with U2 snRNA Hairpin IV in Aqueous Solution. Biophys. J. 2001, 81, 630–642. 10.1016/S0006-3495(01)75728-1. PubMed DOI PMC
Schmid N.; Zagrovic B.; van Gunsteren W. F. Mechanism and Thermodynamics of Binding of the Polypyrimidine Tract Binding Protein to RNA. Biochemistry 2007, 46, 6500–6512. 10.1021/bi6026133. PubMed DOI
Schmid N.; Eichenberger A. P.; Choutko A.; Riniker S.; Winger M.; Mark A. E.; van Gunsteren W. F. Definition and Testing of the GROMOS Force-field Versions 54A7 and 54B7. Eur. Biophys. J. 2011, 40, 843–856. 10.1007/s00249-011-0700-9. PubMed DOI
Konté N. D. d.; Krepl M.; Damberger F. F.; Ripin N.; Duss O.; Sponer J.; Allain F. H.-T. Aromatic Side-chain Conformational Switch on the Surface of the RNA Recognition Motif Enables RNA Discrimination. Nat. Commun. 2017, 8, e65410.1038/s41467-017-00631-3. PubMed DOI PMC
Wang L.; Yan F. Molecular Insights into the Specific Recognition between the RNA Binding Domain qRRM2 of hnRNP F and G-tract RNA: A Molecular Dynamics Study. Biochem. Biophys. Res. Commun. 2017, 494, 95–100. 10.1016/j.bbrc.2017.10.078. PubMed DOI
Tian B.; Bevilacqua P. C.; Diegelman-Parente A.; Mathews M. B. The Double-stranded-RNA-binding motif: Interference and Much More. Nat. Rev. Mol. Cell Biol. 2004, 5, 1013–1023. 10.1038/nrm1528. PubMed DOI
Masliah G.; Barraud P.; Allain F. H.-T. RNA Recognition by Double-stranded RNA Binding Domains: A Matter of Shape and Sequence. Cell. Mol. Life Sci. 2013, 70, 1875–1895. 10.1007/s00018-012-1119-x. PubMed DOI PMC
Castrignanò T.; Chillemi G.; Varani G.; Desideri A. Molecular Dynamics Simulation of the RNA Complex of a Double-Stranded RNA-Binding Domain Reveals Dynamic Features of the Intermolecular Interface and Its Hydration. Biophys. J. 2002, 83, 3542–3552. 10.1016/S0006-3495(02)75354-X. PubMed DOI PMC
Yang J.; Song J.; Zhang J. Z. H.; Ji C. Effect of Mismatch on Binding of ADAR2/GluR-2 Pre-mRNA Complex. J. Mol. Model. 2015, 21, e22210.1007/s00894-015-2760-8. PubMed DOI
Stefl R.; Oberstrass F. C.; Hood J. L.; Jourdan M.; Zimmermann M.; Skrisovska L.; Maris C.; Peng L.; Hofr C.; Emeson R. B.; et al. The Solution Structure of the ADAR2 dsRBM-RNA Complex Reveals a Sequence-Specific Readout of the Minor Groove. Cell 2010, 143, 225–237. 10.1016/j.cell.2010.09.026. PubMed DOI PMC
Drusin S. I.; Suarez I. P.; Gauto D. F.; Rasia R. M.; Moreno D. M. dsRNA-protein Interactions Studied by Molecular Dynamics Techniques Unravelling dsRNA Recognition by DCL1. Arch. Biochem. Biophys. 2016, 596, 118–125. 10.1016/j.abb.2016.03.013. PubMed DOI
Acevedo R.; Evans D.; Penrod Katheryn A.; Showalter Scott A Binding by TRBP-dsRBD2 Does Not Induce Bending of Double-Stranded RNA. Biophys. J. 2016, 110, 2610–2617. 10.1016/j.bpj.2016.05.012. PubMed DOI PMC
Ryter J. M.; Schultz S. C. Molecular Basis of Double-stranded RNA-protein Interactions: Structure of a dsRNA-binding Domain Complexed with dsRNA. EMBO J. 1998, 17, 7505–7513. PubMed PMC
Wang X.; Vukovic L.; Koh H. R.; Schulten K.; Myong S. Dynamic Profiling of Double-stranded RNA Binding Proteins. Nucleic Acids Res. 2015, 43, 7566–7576. 10.1093/nar/gkv726. PubMed DOI PMC
Xue Q.; Zheng Q.-C.; Zhang J.-L.; Cui Y.-L.; Zhang H.-X. Exploring the Mechanism How Marburg Virus VP35 Recognizes and Binds dsRNA by Molecular Dynamics Simulations and Free Energy Calculations. Biopolymers 2014, 101, 849–860. 10.1002/bip.22463. PubMed DOI
Allen W. J.; Wiley M. R.; Myles K. M.; Adelman Z. N.; Bevan D. R. Steered Molecular Dynamics Identifies Critical Residues of the Nodamura Virus B2 Suppressor of RNAi. J. Mol. Model. 2014, 20, 1–10. 10.1007/s00894-014-2092-0. PubMed DOI PMC
Xia Z.; Zhu Z.; Zhu J.; Zhou R. Recognition Mechanism of siRNA by Viral p19 Suppressor of RNA Silencing: A Molecular Dynamics Study. Biophys. J. 2009, 96, 1761–1769. 10.1016/j.bpj.2008.11.047. PubMed DOI PMC
Harikrishna S.; Pradeepkumar P. I. Probing the Binding Interactions between Chemically Modified siRNAs and Human Argonaute 2 Using Microsecond Molecular Dynamics Simulations. J. Chem. Inf. Model. 2017, 57, 883–896. 10.1021/acs.jcim.6b00773. PubMed DOI
Reyes C. M.; Nifosì R.; Frankel A. D.; Kollman P. A. Molecular Dynamics and Binding Specificity Analysis of the Bovine Immunodeficiency Virus BIV Tat-TAR Complex. Biophys. J. 2001, 80, 2833–2842. 10.1016/S0006-3495(01)76250-9. PubMed DOI PMC
Mu Y.; Stock G. Conformational Dynamics of RNA-Peptide Binding: A Molecular Dynamics Simulation Study. Biophys. J. 2006, 90, 391–399. 10.1529/biophysj.105.069559. PubMed DOI PMC
Li C. H.; Zuo Z. C.; Su J. G.; Xu X. J.; Wang C. X. The Interactions and Recognition of Cyclic Peptide Mimetics of Tat with HIV-1 TAR RNA: A Molecular Dynamics Simulation Study. J. Biomol. Struct. Dyn. 2013, 31, 276–287. 10.1080/07391102.2012.698248. PubMed DOI
Créty T.; Malliavin T. E. The Conformational Landscape of the Ribosomal Protein S15 and Its Influence on the Protein Interaction with 16S RNA. Biophys. J. 2007, 92, 2647–2665. 10.1529/biophysj.106.092601. PubMed DOI PMC
Chen K.; Eargle J.; Sarkar K.; Gruebele M.; Luthey-Schulten Z. Functional Role of Ribosomal Signatures. Biophys. J. 2010, 99, 3930–3940. 10.1016/j.bpj.2010.09.062. PubMed DOI PMC
Wolf A.; Baumann S.; Arndt H.-D.; Kirschner K. N. Influence of Thiostrepton Binding on the Ribosomal GTPase Associated Region Characterized by Molecular Dynamics Simulation. Bioorg. Med. Chem. 2012, 20, 7194–7205. 10.1016/j.bmc.2012.09.025. PubMed DOI
Li W.; Sengupta J.; Rath B. K.; Frank J. Functional Conformations of the L11-ribosomal RNA Complex Revealed by Correlative Analysis of Cryo-EM and Molecular Dynamics Simulations. RNA 2006, 12, 1240–1253. 10.1261/rna.2294806. PubMed DOI PMC
Schimmel P.; Beebe K.. Aminoacyl tRNA Synthetases: From the RNA World to the Theater of Proteins. In The RNA World, 3rd ed.; Gesteland R. F., Cech T. R., Atkins J. F., Eds.; Cold Spring Harbor Laboratory Press: Long Island, NY, 2006; Vol. 43, pp 227–255.
Yamasaki S.; Nakamura S.; Terada T.; Shimizu K. Mechanism of the Difference in the Binding Affinity of E. coli tRNAGln to Glutaminyl-tRNA Synthetase Caused by Noninterface Nucleotides in Variable Loop. Biophys. J. 2007, 92, 192–200. 10.1529/biophysj.106.093351. PubMed DOI PMC
Li R.; Macnamara L.; Leuchter J.; Alexander R.; Cho S. MD Simulations of tRNA and Aminoacyl-tRNA Synthetases: Dynamics, Folding, Binding, and Allostery. Int. J. Mol. Sci. 2015, 16, 15872–15902. 10.3390/ijms160715872. PubMed DOI PMC
Ghosh A.; Vishveshwara S. A Study of Communication Pathways in Methionyl- tRNA Synthetase by Molecular Dynamics Simulations and Structure Network Analysis. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 15711–15716. 10.1073/pnas.0704459104. PubMed DOI PMC
Bhattacharyya M.; Ghosh A.; Hansia P.; Vishveshwara S. Allostery and Conformational Free Energy Changes in Human Tryptophanyl-tRNA Synthetase from Essential Dynamics and Structure Networks. Proteins 2010, 78, 506–517. 10.1002/prot.22573. PubMed DOI
Ghosh A.; Sakaguchi R.; Liu C.; Vishveshwara S.; Hou Y.-M. Allosteric Communication in Cysteinyl tRNA Synthetase: A Network of Direct and Indirect Readout. J. Biol. Chem. 2011, 286, 37721–37731. 10.1074/jbc.M111.246702. PubMed DOI PMC
Sethi A.; Eargle J.; Black A. A.; Luthey-Schulten Z. Dynamical Networks in tRNA:protein Complexes. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 6620–6625. 10.1073/pnas.0810961106. PubMed DOI PMC
Bushnell E. A. C.; Huang W.; Llano J.; Gauld J. W. Molecular Dynamics Investigation into Substrate Binding and Identity of the Catalytic Base in the Mechanism of Threonyl-tRNA Synthetase. J. Phys. Chem. B 2012, 116, 5205–5212. 10.1021/jp302556e. PubMed DOI
Minajigi A.; Francklyn C. S. RNA-assisted Catalysis in a Protein Enzyme: The 2′-hydroxyl of tRNAThr A76 Promotes Aminoacylation by Threonyl-tRNA Synthetase. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 17748–17753. 10.1073/pnas.0804247105. PubMed DOI PMC
Grant T. D.; Luft J. R.; Wolfley J. R.; Snell M. E.; Tsuruta H.; Corretore S.; Quartley E.; Phizicky E. M.; Grayhack E. J.; Snell E. H. The Structure of Yeast Glutaminyl-tRNA Synthetase and Modeling of Its Interaction with tRNA. J. Mol. Biol. 2013, 425, 2480–2493. 10.1016/j.jmb.2013.03.043. PubMed DOI PMC
Estarellas C.; Otyepka M.; Koca J.; Banas P.; Krepl M.; Sponer J. Molecular Dynamic Simulations of Protein/RNA Complexes: CRISPR/Csy4 Endoribonuclease. Biochim. Biophys. Acta, Gen. Subj. 2015, 1850, 1072–1090. 10.1016/j.bbagen.2014.10.021. PubMed DOI
Haurwitz R. E.; Sternberg S. H.; Doudna J. A. Csy4 Relies on an Unusual Catalytic Dyad to Position and Cleave CRISPR RNA. EMBO J. 2012, 31, 2824–2832. 10.1038/emboj.2012.107. PubMed DOI PMC
Suresh G.; Priyakumar U. D. Atomistic Details of the Molecular Recognition of DNA-RNA Hybrid Duplex by Ribonuclease H Enzyme. J. Chem. Sci. 2015, 127, 1701–1713. 10.1007/s12039-015-0942-7. DOI
Figiel M.; Krepl M.; Poznański J.; Gołąb A.; Šponer J.; Nowotny M. Coordination between the Polymerase and RNase H Activity of HIV-1 Reverse Transcriptase. Nucleic Acids Res. 2017, 45, 3341–3352. PubMed PMC
Lapkouski M.; Tian L.; Miller J. T.; Le Grice S. F. J.; Yang W. Complexes of HIV-1 RT, NNRTI and RNA/DNA Hybrid Reveal a Structure Compatible with RNA Degradation. Nat. Struct. Mol. Biol. 2013, 20, 230–236. 10.1038/nsmb.2485. PubMed DOI PMC
Das K.; Martinez S. E.; Bandwar R. P.; Arnold E. Structures of HIV-1 RT-RNA/DNA Ternary Complexes with dATP and Nevirapine Reveal Conformational Flexibility of RNA/DNA: Insights into Requirements for RNase H Cleavage. Nucleic Acids Res. 2014, 42, 8125–8137. 10.1093/nar/gku487. PubMed DOI PMC
Figiel M.; Krepl M.; Park S.; Poznański J.; Skowronek K.; Gołąb A.; Ha T.; Šponer J.; Nowotny M. Mechanism of Polypurine Tract Primer Generation by HIV-1 Reverse Transcriptase. J. Biol. Chem. 2017, jbc.M117.798256.10.1074/jbc.M117.798256. PubMed DOI PMC
Rausch J. W.; Le Grice S. F. J. ‘Binding, Bending and Bonding’: Polypurine Tract-primed Initiation of Plus-strand DNA Synthesis in Human Immunodeficiency Virus. Int. J. Biochem. Cell Biol. 2004, 36, 1752–1766. 10.1016/j.biocel.2004.02.016. PubMed DOI
Palermo G.; Miao Y.; Walker R. C.; Jinek M.; McCammon J. A. Striking Plasticity of CRISPR-Cas9 and Key Role of Non-target DNA, as Revealed by Molecular Simulations. ACS Cent. Sci. 2016, 2, 756–763. 10.1021/acscentsci.6b00218. PubMed DOI PMC
Jinek M.; Chylinski K.; Fonfara I.; Hauer M.; Doudna J. A.; Charpentier E. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 2012, 337, 816–821. 10.1126/science.1225829. PubMed DOI PMC
Palermo G.; Miao Y.; Walker R. C.; Jinek M.; McCammon J. A. CRISPR-Cas9 Conformational Activation as Elucidated from Enhanced Molecular Simulations. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 7260–7265. 10.1073/pnas.1707645114. PubMed DOI PMC
Zuo Z.; Liu J. Cas9-catalyzed DNA Cleavage Generates Staggered Ends: Evidence from Molecular Dynamics Simulations. Sci. Rep. 2016, 5, e3758410.1038/srep37584. PubMed DOI PMC
Michael L. A.; Chenault J. A.; Miller Iii B. R.; Knolhoff A. M.; Nagan M. C. Water, Shape Recognition, Salt Bridges, and Cation–Pi Interactions Differentiate Peptide Recognition of the HIV Rev-Responsive Element. J. Mol. Biol. 2009, 392, 774–786. 10.1016/j.jmb.2009.07.047. PubMed DOI
Fischer U.; Huber J.; Boelens W. C.; Mattajt L. W.; Lührmann R. The HIV-1 Rev Activation Domain is a Nuclear Export Signal that Accesses an Export Pathway Used by Specific Cellular RNAs. Cell 1995, 82, 475–483. 10.1016/0092-8674(95)90436-0. PubMed DOI
Das A. Control of Transcription Termination by RNA-binding Proteins. Annu. Rev. Biochem. 1993, 62, 893–930. 10.1146/annurev.bi.62.070193.004333. PubMed DOI
Bahadur R. P.; Kannan S.; Zacharias M. Binding of the Bacteriophage P22 N-Peptide to the boxB RNA Motif Studied by Molecular Dynamics Simulations. Biophys. J. 2009, 97, 3139–3149. 10.1016/j.bpj.2009.09.035. PubMed DOI PMC
Mori M.; Dietrich U.; Manetti F.; Botta M. Molecular Dynamics and DFT Study on HIV-1 Nucleocapsid Protein-7 in Complex with Viral Genome. J. Chem. Inf. Model. 2010, 50, 638–650. 10.1021/ci100070m. PubMed DOI
Darnell J. C.; Jensen K. B.; Jin P.; Brown V.; Warren S. T.; Darnell R. B. Fragile X Mental Retardation Protein Targets G Quartet mRNAs Important for Neuronal Function. Cell 2001, 107, 489–499. 10.1016/S0092-8674(01)00566-9. PubMed DOI
Phan A. T.; Kuryavyi V.; Darnell J. C.; Serganov A.; Majumdar A.; Ilin S.; Raslin T.; Polonskaia A.; Chen C.; Clain D.; et al. Structure-function studies of FMRP RGG peptide recognition of an RNA duplex-quadruplex junction. Nat. Struct. Mol. Biol. 2011, 18, 796–804. 10.1038/nsmb.2064. PubMed DOI PMC
Vasilyev N.; Polonskaia A.; Darnell J. C.; Darnell R. B.; Patel D. J.; Serganov A. Crystal Structure Reveals Specific Recognition of a G-quadruplex RNA by a β-turn in the RGG Motif of FMRP. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, E5391–E5400. 10.1073/pnas.1515737112. PubMed DOI PMC
Pérez-Villa A.; Darvas M.; Bussi G. ATP Dependent NS3 Helicase Interaction with RNA: Insights from Molecular Simulations. Nucleic Acids Res. 2015, 43, 8725–8734. 10.1093/nar/gkv872. PubMed DOI PMC
Appleby T. C.; Anderson R.; Fedorova O.; Pyle A. M.; Wang R.; Liu X.; Brendza K. M.; Somoza J. R. Visualizing ATP-Dependent RNA Translocation by the NS3 Helicase from HCV. J. Mol. Biol. 2011, 405, 1139–1153. 10.1016/j.jmb.2010.11.034. PubMed DOI PMC
Sharma C.; Mohanty D. Molecular Dynamics Simulations for Deciphering the Structural Basis of Recognition of Pre-let-7 miRNAs by LIN28. Biochemistry 2017, 56, 723–735. 10.1021/acs.biochem.6b00837. PubMed DOI
Zhang L.; Pardo-Avila F.; Unarta I. C.; Cheung P. P.-H.; Wang G.; Wang D.; Huang X. Elucidation of the Dynamics of Transcription Elongation by RNA Polymerase II using Kinetic Network Models. Acc. Chem. Res. 2016, 49, 687–694. 10.1021/acs.accounts.5b00536. PubMed DOI PMC
Da L.-T.; Wang D.; Huang X. Dynamics of Pyrophosphate Ion Release and Its Coupled Trigger Loop Motion from Closed to Open State in RNA Polymerase II. J. Am. Chem. Soc. 2012, 134, 2399–2406. 10.1021/ja210656k. PubMed DOI PMC
Da L.-T.; Pardo Avila F.; Wang D.; Huang X. A Two-State Model for the Dynamics of the Pyrophosphate Ion Release in Bacterial RNA Polymerase. PLoS Comput. Biol. 2013, 9, e1003020.10.1371/journal.pcbi.1003020. PubMed DOI PMC
Da L.-T.; E C.; Duan B.; Zhang C.; Zhou X.; Yu J. A Jump-from-Cavity Pyrophosphate Ion Release Assisted by a Key Lysine Residue in T7 RNA Polymerase Transcription Elongation. PLoS Comput. Biol. 2015, 11, e1004624.10.1371/journal.pcbi.1004624. PubMed DOI PMC
Silva D.-A.; Weiss D. R.; Pardo Avila F.; Da L.-T.; Levitt M.; Wang D.; Huang X. Millisecond Dynamics of RNA Polymerase II Translocation at Atomic Resolution. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 7665–7670. 10.1073/pnas.1315751111. PubMed DOI PMC
Jin Y.; Lin-Tai D.; Xuhui H. Constructing Kinetic Models to Elucidate Structural Dynamics of a Complete RNA Polymerase II Elongation Cycle. Phys. Biol. 2015, 12, 016004.10.1088/1478-3975/12/1/016004. PubMed DOI
Da L.-T.; Pardo-Avila F.; Xu L.; Silva D.-A.; Zhang L.; Gao X.; Wang D.; Huang X. Bridge Helix Bending Promotes RNA Polymerase II Backtracking through a Critical and Conserved Threonine Residue. Nat. Commun. 2016, 7, 11244.10.1038/ncomms11244. PubMed DOI PMC
Jiang H.; Sheong F. K.; Zhu L.; Gao X.; Bernauer J.; Huang X. Markov State Models Reveal a Two-Step Mechanism of miRNA Loading into the Human Argonaute Protein: Selective Binding followed by Structural Re-arrangement. PLoS Comput. Biol. 2015, 11, e1004404.10.1371/journal.pcbi.1004404. PubMed DOI PMC
Banáš P.; Jurečka P.; Walter N. G.; Šponer J.; Otyepka M. Theoretical Studies of RNA Catalysis: Hybrid QM/MM Methods and their Comparison with MD and QM. Methods 2009, 49, 202–216. 10.1016/j.ymeth.2009.04.007. PubMed DOI PMC
Bertran J.; Oliva A. Chapter 12: Ribozymes. Simulating Enzyme Reactivity: Computational Methods in Enzyme Catalysis 2017, 2017, 404–435. 10.1039/9781782626831-00404. DOI
Bevilacqua P. C.; Brown T. S.; Nakano S.-i.; Yajima R. Catalytic Roles for Proton Transfer and Protonation in Ribozymes. Biopolymers 2004, 73, 90–109. 10.1002/bip.10519. PubMed DOI
Bingaman J. L.; Zhang S.; Stevens D. R.; Yennawar N. H.; Hammes-Schiffer S.; Bevilacqua P. C. The GlcN6P Cofactor Plays Multiple Catalytic Roles in the glmS Ribozyme. Nat. Chem. Biol. 2017, 13, 439–445. 10.1038/nchembio.2300. PubMed DOI PMC
Weinberg Z.; Kim P. B.; Chen T. H.; Li S. S.; Harris K. A.; Lunse C. E.; Breaker R. R. New Classes of Self-cleaving Ribozymes Revealed by Comparative Genomics Analysis. Nat. Chem. Biol. 2015, 11, 606–610. 10.1038/nchembio.1846. PubMed DOI PMC
Lee K.-Y.; Lee B.-J. Structural and Biochemical Properties of Novel Self-Cleaving Ribozymes. Molecules 2017, 22, e678. PubMed PMC
Fedor M. J.; Williamson J. R. The Catalytic Diversity of RNAs. Nat. Rev. Mol. Cell Biol. 2005, 6, 399–412. 10.1038/nrm1647. PubMed DOI
Spitale R. C.; Wedekind J. E. Exploring Ribozyme Conformational Changes with X-ray Crystallography. Methods 2009, 49, 87–100. 10.1016/j.ymeth.2009.06.003. PubMed DOI PMC
Lilley D. M. J. The Origins of RNA Catalysis in Ribozymes. Trends Biochem. Trends Biochem. Sci. 2003, 28, 495–501. 10.1016/S0968-0004(03)00191-9. PubMed DOI
Nam K.; Cui Q.; Gao J.; York D. M. Specific Reaction Parametrization of the AM1/d Hamiltonian for Phosphoryl Transfer Reactions: H, O, and P Atoms. J. Chem. Theory Comput. 2007, 3, 486–504. 10.1021/ct6002466. PubMed DOI
Nam K. H.; Gaot J. L.; York D. M. Quantum Mechanical/Molecular Mechanical Simulation Study of the Mechanism of Hairpin Ribozyme Catalysis. J. Am. Chem. Soc. 2008, 130, 4680–4691. 10.1021/ja0759141. PubMed DOI PMC
Warshel A.; Sharma P. K.; Kato M.; Xiang Y.; Liu H.; Olsson M. H. Electrostatic Basis for Enzyme Catalysis. Chem. Rev. 2006, 106, 3210–3235. 10.1021/cr0503106. PubMed DOI
Klahn M.; Rosta E.; Warshel A. On the Mechanism of Hydrolysis of Phosphate Monoesters Dianions in Solutions and Proteins. J. Am. Chem. Soc. 2006, 128, 15310–15323. 10.1021/ja065470t. PubMed DOI
Rosta E.; Kamerlin S. C.; Warshel A. On the Interpretation of the Observed Llinear Free Energy Relationship in Phosphate Hydrolysis: A thorough Computational Study of Phosphate Diester Hydrolysis in Solution. Biochemistry 2008, 47, 3725–3735. 10.1021/bi702106m. PubMed DOI
Florian J.; Warshel A. Phosphate Ester Hydrolysis in Aqueous Solution: Associative Versus Dissociative Mechanisms. J. Phys. Chem. B 1998, 102, 719–734. 10.1021/jp972182y. DOI
Breaker R. R.; Emilsson G. M.; Lazarev D.; Nakamura S.; Puskarz I. J.; Roth A.; Sudarsan N. A Common Speed Limit for RNA-cleaving Ribozymes and Deoxyribozymes. RNA 2003, 9, 949–957. 10.1261/rna.5670703. PubMed DOI PMC
Min D.; Xue S.; Li H.; Yang W. ’In-line attack’ Conformational Effect Plays a Modest Role in an Enzyme-catalyzed RNA Cleavage: A Free Energy Simulation Study. Nucleic Acids Res. 2007, 35, 4001–4006. 10.1093/nar/gkm394. PubMed DOI PMC
Lopez X.; Dejaegere A.; Leclerc F.; York D. M.; Karplus M. Nucleophilic Attack on Phosphate Diesters: A Density Functional Study of In-line Reactivity in Dianionic, Monoanionic, and Neutral Systems. J. Phys. Chem. B 2006, 110, 11525–11539. 10.1021/jp0603942. PubMed DOI
Radak B. K.; Harris M. E.; York D. M. Molecular Simulations of RNA 2’-O-transesterification Reaction Models in Solution. J. Phys. Chem. B 2013, 117, 94–103. 10.1021/jp3084277. PubMed DOI PMC
Kellerman D. L.; York D. M.; Piccirilli J. A.; Harris M. E. Altered (transition) States: Mechanisms of Solution and Enzyme Catalyzed RNA 2’-O-transphosphorylation. Curr. Opin. Chem. Biol. 2014, 21, 96–102. 10.1016/j.cbpa.2014.06.010. PubMed DOI PMC
Chval Z.; Chvalova D.; Leclerc F. Modeling the RNA 2’OH Activation: Possible Roles of Metal Ion and Nucleobase as Catalysts in Self-cleaving Ribozymes. J. Phys. Chem. B 2011, 115, 10943–10956. 10.1021/jp200970d. PubMed DOI
Huang M.; York D. M. Linear Free Energy Relationships in RNA Transesterification: Theoretical Models to Aid Experimental Interpretations. Phys. Chem. Chem. Phys. 2014, 16, 15846–15855. 10.1039/C4CP01050G. PubMed DOI PMC
Chen H.; Giese T. J.; Huang M.; Wong K. Y.; Harris M. E.; York D. M. Mechanistic Insights into RNA Transphosphorylation from Kinetic Isotope Effects and Linear Free Energy Relationships of Model Reactions. Chem. - Eur. J. 2014, 20, 14336–14343. 10.1002/chem.201403862. PubMed DOI PMC
Chen H.; Piccirilli J. A.; Harris M. E.; York D. M. Effect of Zn2+ Binding and Enzyme Active Site on the Transition State for RNA 2’-O-transphosphorylation Interpreted through Kinetic Isotope Effects. Biochim. Biophys. Acta, Proteins Proteomics 2015, 1854, 1795–1800. 10.1016/j.bbapap.2015.02.022. PubMed DOI PMC
Wong K. Y.; Gu H.; Zhang S.; Piccirilli J. A.; Harris M. E.; York D. M. Characterization of the Reaction Path and Transition States for RNA Transphosphorylation Models from Theory and Experiment. Angew. Chem., Int. Ed. 2012, 51, 647–651. 10.1002/anie.201104147. PubMed DOI PMC
Zhang S.; Gu H.; Chen H.; Strong E.; Ollie E. W.; Kellerman D.; Liang D.; Miyagi M.; Anderson V. E.; Piccirilli J. A.; et al. Isotope Effect Analyses Provide Evidence for an Altered Transition State for RNA 2’-O-transphosphorylation Catalyzed by Zn(2+). Chem. Commun. 2016, 52, 4462–4465. 10.1039/C5CC10212J. PubMed DOI PMC
Gregersen B. A.; Lopez X.; York D. M. Hybrid QM/MM Study of Thio Effects in Transphosphorylation Reactions. J. Am. Chem. Soc. 2003, 125, 7178–7179. 10.1021/ja035167h. PubMed DOI
Gregersen B. A.; Lopez X.; York D. M. Hybrid QM/MM Study of Thio Effects in Transphosphorylation Reactions: The Role of Solvation. J. Am. Chem. Soc. 2004, 126, 7504–7513. 10.1021/ja031815l. PubMed DOI
Liu Y.; Gregersen B. A.; Hengge A.; York D. M. Transesterification Thio Effects of Phosphate Diesters: Free Energy Barriers and Kinetic and Equilibrium Isotope Effects from Density-functional Theory. Biochemistry 2006, 45, 10043–10053. 10.1021/bi060869f. PubMed DOI
Liu Y.; Lopez X.; York D. M. Kinetic Isotope Effects on Thio-substituted Biological Phosphoryl Transfer Reactions from Density-functional Theory. Chem. Commun. 2005, 0, 3909–3911. 10.1039/b502568k. PubMed DOI
Liu Y.; Gregersen B. A.; Lopez X.; York D. M. Density Functional Study of the In-line Mechanism of Methanolysis of Cyclic Phosphate and Thiophosphate Esters in Solution: Insight into Thio Effects in RNA Transesterification. J. Phys. Chem. B 2005, 109, 19987–20003. 10.1021/jp053146z. PubMed DOI
Wong K. Y.; Xu Y.; York D. M. Ab Initio Path-integral Calculations of Kinetic and Equilibrium Isotope Effects on Base-catalyzed RNA Transphosphorylation Models. J. Comput. Chem. 2014, 35, 1302–1316. 10.1002/jcc.23628. PubMed DOI PMC
Lopez C. S.; Faza O. N.; de Lera A. R.; York D. M. Pseudorotation Barriers of Biological Oxyphosphoranes: A Challenge for Simulations of Ribozyme Catalysis. Chem. - Eur. J. 2005, 11, 2081–2093. 10.1002/chem.200400790. PubMed DOI
Lopez C. S.; Faza O. N.; Gregersen B. A.; Lopez X.; de Lera A. R.; York D. M. Pseudorotation of Natural and Chemically Modified Biological Phosphoranes: Implications for RNA Catalysis. ChemPhysChem 2004, 5, 1045–1049. 10.1002/cphc.200400091. PubMed DOI
Mlynsky V.; Kuhrova P.; Jurecka P.; Sponer J.; Otyepka M.; Banas P. Mapping Chemical Space of the RNA Cleavage and its Implications for Ribozyme Catalysis. J. Phys. Chem. B 2017, 121, 10828–10840. 10.1021/acs.jpcb.7b09129. PubMed DOI
Soukup G. A.; Breaker R. R. Relationship between Internucleotide Linkage Geometry and the Stability of RNA. RNA 1999, 5, 1308–1325. 10.1017/S1355838299990891. PubMed DOI PMC
Fedor M. J. Comparative Enzymology and Structural Biology of RNA Self-Cleavage. Annu. Rev. Biophys. 2009, 38, 271–299. 10.1146/annurev.biophys.050708.133710. PubMed DOI
Prody G. A.; Bakos J. T.; Buzayan J. M.; Schneider I. R.; Bruening G. Autolytic Processing of Dimeric Plant-Virus Satellite Rna. Science 1986, 231, 1577–1580. 10.1126/science.231.4745.1577. PubMed DOI
Sharmeen L.; Kuo M. Y. P.; Dintergottlieb G.; Taylor J. Antigenomic Rna of Human Hepatitis Delta-Virus Can Undergo Self-Cleavage. J. Virol. 1988, 62, 2674–2679. PubMed PMC
Buzayan J. M.; Gerlach W. L.; Bruening G. Nonenzymatic Cleavage and Ligation of Rnas Complementary to a Plant-Virus Satellite Rna. Nature 1986, 323, 349–353. 10.1038/323349a0. DOI
Saville B. J.; Collins R. A. A Site-specific Self-cleavage Reaction Performed by a Novel RNA in Neurospora Mitochondria. Cell 1990, 61, 685–696. 10.1016/0092-8674(90)90480-3. PubMed DOI
Winkler W. C.; Nahvi A.; Roth A.; Collins J. A.; Breaker R. R. Control of Gene Expression by a Natural Metabolite-responsive Ribozyme. Nature 2004, 428, 281–286. 10.1038/nature02362. PubMed DOI
Roth A.; Weinberg Z.; Chen A. G. Y.; Kim P. B.; Ames T. D.; Breaker R. R. A Widespread Self-cleaving Ribozyme Class is Revealed by Bioinformatics. Nat. Chem. Biol. 2014, 10, 56–60. 10.1038/nchembio.1386. PubMed DOI PMC
Harris K. A.; Lunse C. E.; Li S. S.; Brewer K. I.; Breaker R. R. Biochemical Analysis of Pistol Self-cleaving Ribozymes. RNA 2015, 21, 1852–1858. 10.1261/rna.052514.115. PubMed DOI PMC
Li S.; Lunse C. E.; Harris K. A.; Breaker R. R. Biochemical Analysis of Hatchet Self-cleaving Ribozymes. RNA 2015, 21, 1845–1851. 10.1261/rna.052522.115. PubMed DOI PMC
Liu Y.; Wilson T. J.; Lilley D. M. J. The Structure of a Nucleolytic Ribozyme that Employs a Catalytic Metal Ion. Nat. Chem. Biol. 2017, 13, 508–513. 10.1038/nchembio.2333. PubMed DOI PMC
Casalino L.; Palermo G.; Rothlisberger U.; Magistrato A. Who Activates the Nucleophile in Ribozyme Catalysis? An Answer from the Splicing Mechanism of Group II Introns. J. Am. Chem. Soc. 2016, 138, 10374–10377. 10.1021/jacs.6b01363. PubMed DOI
Hammann C.; Luptak A.; Perreault J.; de la Peña M. The Ubiquitous Hammerhead Ribozyme. RNA 2012, 18, 871–885. 10.1261/rna.031401.111. PubMed DOI PMC
Martick M.; Scott W. G. Tertiary Contacts Distant from the Active Site Prime a Ribozyme for Catalysis. Cell 2006, 126, 309–320. 10.1016/j.cell.2006.06.036. PubMed DOI PMC
Lee T. S.; York D. M. Computational Mutagenesis Studies of Hammerhead Ribozyme Catalysis. J. Am. Chem. Soc. 2010, 132, 13505–13518. 10.1021/ja105956u. PubMed DOI PMC
Scott W. G.; Finch J. T.; Klug A. The Crystal-Structure of an All-Rna Hammerhead Ribozyme - A Proposed Mechanism for Rna Catalytic Cleavage. Cell 1995, 81, 991–1002. 10.1016/S0092-8674(05)80004-2. PubMed DOI
Scott W. G.; Murray J. B.; Arnold J. R. P.; Stoddard B. L.; Klug A. Capturing the Structure of a Catalytic RNA Intermediate: The Hammerhead Ribozyme. Science 1996, 274, 2065–2069. 10.1126/science.274.5295.2065. PubMed DOI
Dunham C. M.; Murray J. B.; Scott W. G. A Helical Twist-induced Conformational Switch Activates Cleavage in the Hammerhead Ribozyme. J. Mol. Biol. 2003, 332, 327–336. 10.1016/S0022-2836(03)00843-X. PubMed DOI
Feig A. L.; Scott W. G.; Uhlenbeck O. C. Inhibition of the Hammerhead Ribozyme Cleavage Reaction by Site-specific Binding of Tb(III). Science 1998, 279, 81–84. 10.1126/science.279.5347.81. PubMed DOI
Murray J. B.; Szoke H.; Szoke A.; Scott W. G. Capture and Visualization of a Catalytic RNA Enzyme-product Complex Using Crystal Lattice Trapping and X-ray Holographic Reconstruction. Mol. Cell 2000, 5, 279–287. 10.1016/S1097-2765(00)80423-2. PubMed DOI
Murray J. B.; Terwey D. P.; Maloney L.; Karpeisky A.; Usman N.; Beigelman L.; Scott W. G. The Structural Basis of Hammerhead Ribozyme Self-cleavage. Cell 1998, 92, 665–673. 10.1016/S0092-8674(00)81134-4. PubMed DOI
Murray J. B.; Dunham C. M.; Scott W. G. A pH-dependent Conformational Change, Rather than the Chemical Step, Appears to be Rate-limiting in the Hammerhead Ribozyme Cleavage Reaction. J. Mol. Biol. 2002, 315, 121–130. 10.1006/jmbi.2001.5145. PubMed DOI
Hermann T.; Auffinger P.; Westhof E. Molecular dynamics investigations of hammerhead ribozyme RNA. Eur. Biophys. J. 1998, 27, 153–165. 10.1007/s002490050121. PubMed DOI
Mei H. Y.; Kaaret T. W.; Bruice T. C. A Computational Approach to the Mechanism of Self-Cleavage of Hammerhead Rna. Proc. Natl. Acad. Sci. U. S. A. 1989, 86, 9727–9731. 10.1073/pnas.86.24.9727. PubMed DOI PMC
Torres R. A.; Bruice T. C. Molecular Dynamics Study Displays Near In-line Attack Conformations in the Hammerhead Ribozyme Self-cleavage Reaction. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 11077–11082. 10.1073/pnas.95.19.11077. PubMed DOI PMC
Torres R. A.; Bruice T. C. The Mechanism of Phosphodiester Hydrolysis: Near In-line Attack Conformations in the Hammerhead Ribozyme. J. Am. Chem. Soc. 2000, 122, 781–791. 10.1021/ja993094p. DOI
Lyne P. D.; Karplus M. Determination of the pK(a) of the 2 ’-hydroxyl Group of a Phosphorylated Ribose: Implications for the Mechanism of Hammerhead Ribozyme Catalysis. J. Am. Chem. Soc. 2000, 122, 166–167. 10.1021/ja991820i. DOI
Leclerc F.; Karplus M. Two-metal-ion Mechanism for Hammerhead-ribozyme Catalysis. J. Phys. Chem. B 2006, 110, 3395–3409. 10.1021/jp053835a. PubMed DOI
Torres R. A.; Himo F.; Bruice T. C.; Noodleman L.; Lovell T. Theoretical Examination of Mg2+-mediated Hydrolysis of a Phosphodiester Linkage as Proposed for the Hammerhead Ribozyme. J. Am. Chem. Soc. 2003, 125, 9861–9867. 10.1021/ja021451h. PubMed DOI
Radhakrishnan R. Coupling of Fast and Slow Modes in the Reaction Pathway of the Minimal Hammerhead Ribozyme Cleavage. Biophys. J. 2007, 93, 2391–2399. 10.1529/biophysj.107.104661. PubMed DOI PMC
Suzumura K.; Takagi Y.; Orita M.; Taira K. NMR-based Reappraisal of the Coordination of a Metal Ion at the Pro-Rp Oxygen of the A9/G10.1 Site in a Hammerhead Ribozyme. J. Am. Chem. Soc. 2004, 126, 15504–15511. 10.1021/ja0472937. PubMed DOI
Wang S.; Karbstein K.; Peracchi A.; Beigelman L.; Herschlag D. Identification of the Hammerhead Ribozyme Metal Ion Binding Site Responsible for Rescue of the Deleterious Effect of a Cleavage Site Phosphorothioate. Biochemistry 1999, 38, 14363–14378. 10.1021/bi9913202. PubMed DOI
Blount K. F.; Uhlenbeck O. C. The Structure-function Dilemma of the Hammerhead Ribozyme. Annu. Rev. Biophys. Biomol. Struct. 2005, 34, 415–440. 10.1146/annurev.biophys.34.122004.184428. PubMed DOI
Chen H.; Giese T. J.; Golden B. L.; York D. M. Divalent Metal Ion Activation of a Guanine General Base in the Hammerhead Ribozyme: Insights from Molecular Simulations. Biochemistry 2017, 56, 2985–2994. 10.1021/acs.biochem.6b01192. PubMed DOI PMC
Lee T. S.; Giambasu G. M.; Sosa C. P.; Martick M.; Scott W. G.; York D. M. Threshold Occupancy and Specific Cation Binding Modes in the Hammerhead Ribozyme Active Site Are Required for Active Conformation. J. Mol. Biol. 2009, 388, 195–206. 10.1016/j.jmb.2009.02.054. PubMed DOI PMC
Lee T. S.; York D. M. Origin of Mutational Effects at the C3 and G8 Positions on Hammerhead Ribozyme Catalysis from Molecular Dynamics Simulations. J. Am. Chem. Soc. 2008, 130, 7168–7169. 10.1021/ja711242b. PubMed DOI PMC
Lee T. S.; Silva Lopez C.; Giambasu G. M.; Martick M.; Scott W. G.; York D. M. Role of Mg2+ in Hammerhead Ribozyme Catalysis from Molecular Simulation. J. Am. Chem. Soc. 2008, 130, 3053–3064. 10.1021/ja076529e. PubMed DOI PMC
Wong K. Y.; Lee T. S.; York D. M. Active Participation of Mg Ion in the Reaction Coordinate of RNA Self-cleavage Catalyzed by the Hammerhead Ribozyme. J. Chem. Theory Comput. 2011, 7, 1–3. 10.1021/ct100467t. PubMed DOI PMC
Mir A.; Golden B. L. Two Active Site Divalent Ions in the Crystal Structure of the Hammerhead Ribozyme Bound to a Transition State Analogue. Biochemistry 2016, 55, 633–636. 10.1021/acs.biochem.5b01139. PubMed DOI PMC
Mir A.; Chen J.; Robinson K.; Lendy E.; Goodman J.; Neau D.; Golden B. L. Two Divalent Metal Ions and Conformational Changes Play Roles in the Hammerhead Ribozyme Cleavage Reaction. Biochemistry 2015, 54, 6369–6381. 10.1021/acs.biochem.5b00824. PubMed DOI PMC
Curtis E. A.; Bartel D. P. The Hammerhead Cleavage Reaction in Monovalent Cations. RNA 2001, 7, 546–552. 10.1017/S1355838201002357. PubMed DOI PMC
Anderson M.; Schultz E. P.; Martick M.; Scott W. G. Active-Site Monovalent Cations Revealed in a 1.55-Å-Resolution Hammerhead Ribozyme Structure. J. Mol. Biol. 2013, 425, 3790–3798. 10.1016/j.jmb.2013.05.017. PubMed DOI PMC
Riccitelli N.; Lupták A.. HDV Family of Self-Cleaving Ribozymes. In Progress in Molecular Biology and Translational Science; Garrett A. S., Ed.; Academic Press: New York, 2013; Vol. 120, Chapter 4, pp 123–171. PubMed
Tanner N. K.; Schaff S.; Thill G.; Petitkoskas E.; Craindenoyelle A. M.; Westhof E. A 3-Dimensional Model of Hepatitis-Delta Virus Ribozyme Based on Biochemical and Mutational Analyses. Curr. Biol. 1994, 4, 488–498. 10.1016/S0960-9822(00)00109-3. PubMed DOI
Doudna J. A.; Lorsch J. R. Ribozyme Catalysis: Not Different, Just Worse. Nat. Struct. Mol. Biol. 2005, 12, 395–402. 10.1038/nsmb932. PubMed DOI
Perrotta A. T.; Shih I.-h.; Been M. D. Imidazole Rescue of a Cytosine Mutation in a Self-Cleaving Ribozyme. Science 1999, 286, 123–126. 10.1126/science.286.5437.123. PubMed DOI
Nakano S.-i.; Chadalavada D. M.; Bevilacqua P. C. General Acid-Base Catalysis in the Mechanism of a Hepatitis Delta Virus Ribozyme. Science 2000, 287, 1493–1497. 10.1126/science.287.5457.1493. PubMed DOI
Tinsley R. A.; Harris D. A.; Walter N. G. Magnesium Dependence of the Amplified Conformational Switch in the Trans-acting Hepatitis Delta Virus Ribozyme. Biochemistry 2004, 43, 8935–8945. 10.1021/bi049471e. PubMed DOI
Chen J.-H.; Yajima R.; Chadalavada D. M.; Chase E.; Bevilacqua P. C.; Golden B. L. A 1.9 Å Crystal Structure of the HDV Ribozyme Precleavage Suggests both Lewis Acid and General Acid Mechanisms Contribute to Phosphodiester Cleavage. Biochemistry 2010, 49, 6508–6518. 10.1021/bi100670p. PubMed DOI
Ganguly A.; Thaplyal P.; Rosta E.; Bevilacqua P. C.; Hammes-Schiffer S. Quantum Mechanical/Molecular Mechanical Free Energy Simulations of the Self-Cleavage Reaction in the Hepatitis Delta Virus Ribozyme. J. Am. Chem. Soc. 2014, 136, 1483–1496. 10.1021/ja4104217. PubMed DOI PMC
Lee T.-S.; Radak B. K.; Harris M. E.; York D. M. A Two-Metal-Ion-Mediated Conformational Switching Pathway for HDV Ribozyme Activation. ACS Catal. 2016, 6, 1853–1869. 10.1021/acscatal.5b02158. PubMed DOI PMC
Krasovska M. V.; Sefcikova J.; Špačková N. a.; Šponer J.; Walter N. G. Structural Dynamics of Precursor and Product of the RNA Enzyme from the Hepatitis Delta Virus as Revealed by Molecular Dynamics Simulations. J. Mol. Biol. 2005, 351, 731–748. 10.1016/j.jmb.2005.06.016. PubMed DOI
Sefcikova J.; Krasovska M. V.; Spackova N.; Sponer J.; Walter N. G. Impact of an Extruded Nucleotide on Cleavage Activity and Dynamic Catalytic Core Conformation of the Hepatitis Delta Virus Ribozyme. Biopolymers 2007, 85, 392–406. 10.1002/bip.20693. PubMed DOI
Lee T.-S.; Giambaşu G. M.; Harris M. E.; York D. M. Characterization of the Structure and Dynamics of the HDV Ribozyme in Different Stages Along the Reaction Path. J. Phys. Chem. Lett. 2011, 2, 2538–2543. 10.1021/jz201106y. PubMed DOI PMC
Sefcikova J.; Krasovska M. V.; Šponer J.; Walter N. G. The Genomic HDV Ribozyme Utilizes a Previously Unnoticed U-turn Motif to Accomplish Fast Site-specific Catalysis. Nucleic Acids Res. 2007, 35, 1933–1946. 10.1093/nar/gkl1104. PubMed DOI PMC
Veeraraghavan N.; Bevilacqua P. C.; Hammes-Schiffer S. Long-Distance Communication in the HDV Ribozyme: Insights from Molecular Dynamics and Experiments. J. Mol. Biol. 2010, 402, 278–291. 10.1016/j.jmb.2010.07.025. PubMed DOI PMC
Liu H. N.; Robinet J. J.; Ananvoranich S.; Gauld J. W. Density Functional Theory Investigation on the Mechanism of the Hepatitis Delta Virus Ribozyme. J. Phys. Chem. B 2007, 111, 439–445. 10.1021/jp064292n. PubMed DOI
Wei K.; Liu L.; Cheng Y. H.; Fu Y.; Guo Q. X. Theoretical Examination of Two Opposite Mechanisms Proposed for Hepatitis Delta Virus Ribozyme. J. Phys. Chem. B 2007, 111, 1514–1516. 10.1021/jp070120u. PubMed DOI
Banáš P.; Rulíšek L.; Hánošová V.; Svozil D.; Walter N. G.; Šponer J.; Otyepka M. General Base Catalysis for Cleavage by the Active-Site Cytosine of the Hepatitis Delta Virus Ribozyme: QM/MM Calculations Establish Chemical Feasibility. J. Phys. Chem. B 2008, 112, 11177–11187. 10.1021/jp802592z. PubMed DOI PMC
Das S. R.; Piccirilli J. A. General Acid Catalysis by the Hepatitis Delta Virus Ribozyme. Nat. Chem. Biol. 2005, 1, 45–52. 10.1038/nchembio703. PubMed DOI
Veeraraghavan N.; Ganguly A.; Chen J.-H.; Bevilacqua P. C.; Hammes-Schiffer S.; Golden B. L. Metal Binding Motif in the Active Site of the HDV Ribozyme Binds Divalent and Monovalent Ions. Biochemistry 2011, 50, 2672–2682. 10.1021/bi2000164. PubMed DOI PMC
Veeraraghavan N.; Ganguly A.; Golden B. L.; Bevilacqua P. C.; Hammes-Schiffer S. Mechanistic Strategies in the HDV Ribozyme: Chelated and Diffuse Metal Ion Interactions and Active Site Protonation. J. Phys. Chem. B 2011, 115, 8346–8357. 10.1021/jp203202e. PubMed DOI PMC
Sripathi K. N.; Banas P.; Reblova K.; Sponer J.; Otyepka M.; Walter N. G. Wobble Pairs of the HDV Ribozyme Play Specific Roles in Stabilization of Active Site Dynamics. Phys. Chem. Chem. Phys. 2015, 17, 5887–5900. 10.1039/C4CP05083E. PubMed DOI PMC
Chen J.; Ganguly A.; Miswan Z.; Hammes-Schiffer S.; Bevilacqua P. C.; Golden B. L. Identification of the Catalytic Mg2+ Ion in the Hepatitis Delta Virus Ribozyme. Biochemistry 2013, 52, 557–567. 10.1021/bi3013092. PubMed DOI PMC
Ganguly A.; Bevilacqua P. C.; Hammes-Schiffer S. Quantum Mechanical/Molecular Mechanical Study of the HDV Ribozyme: Impact of the Catalytic Metal Ion on the Mechanism. J. Phys. Chem. Lett. 2011, 2, 2906–2911. 10.1021/jz2013215. PubMed DOI PMC
Dubecky M.; Walter N. G.; Sponer J.; Otyepka M.; Banas P. Chemical Feasibility of the General Acid/Base Mechanism of glmS Ribozyme Self-Cleavage. Biopolymers 2015, 103, 550–562. 10.1002/bip.22657. PubMed DOI PMC
Mlynsky V.; Banas P.; Walter N. G.; Sponer J.; Otyepka M. QM/MM Studies of Hairpin Ribozyme Self-Cleavage Suggest the Feasibility of Multiple Competing Reaction Mechanisms. J. Phys. Chem. B 2011, 115, 13911–13924. 10.1021/jp206963g. PubMed DOI PMC
Mlynsky V.; Walter N. G.; Sponer J.; Otyepka M.; Banas P. The Role of an Active Site Mg2+ in HDV Ribozyme Self-cleavage: Insights from QM/MM Calculations. Phys. Chem. Chem. Phys. 2015, 17, 670–679. 10.1039/C4CP03857F. PubMed DOI PMC
Thaplyal P.; Ganguly A.; Golden B. L.; Hammes-Schiffer S.; Bevilacqua P. C. Thio Effects and an Unconventional Metal Ion Rescue in the Genomic Hepatitis Delta Virus Ribozyme. Biochemistry 2013, 52, 6499–6514. 10.1021/bi4000673. PubMed DOI PMC
Thaplyal P.; Ganguly A.; Hammes-Schiffer S.; Bevilacqua P. C. Inverse Thio Effects in the Hepatitis Delta Virus Ribozyme Reveal that the Reaction Pathway Is Controlled by Metal Ion Charge Density. Biochemistry 2015, 54, 2160–2175. 10.1021/acs.biochem.5b00190. PubMed DOI PMC
Radak B. K.; Lee T.-S.; Harris M. E.; York D. M. Assessment of Metal-assisted Nucleophile Activation in the Hepatitis Delta Virus Ribozyme from Molecular Simulation and 3D-RISM. RNA 2015, 21, 1566–1577. 10.1261/rna.051466.115. PubMed DOI PMC
Shih I. H.; Been M. D. Kinetic Scheme for Intermolecular RNA Cleavage by a Ribozyme Derived from Hepatitis Delta Virus RNA. Biochemistry 2000, 39, 9055–9066. 10.1021/bi000499+. PubMed DOI
Harris D. A.; Tinsley R. A.; Walter N. G. Terbium-mediated Footprinting Probes a Catalytic Conformational Switch in the Antigenomic Hepatitis Delta Virus Ribozyme. J. Mol. Biol. 2004, 341, 389–403. 10.1016/j.jmb.2004.05.074. PubMed DOI
Kapral G. J.; Jain S.; Noeske J.; Doudna J. A.; Richardson D. C.; Richardson J. S. New Tools Provide a Second Look at HDV Ribozyme Structure, Dynamics and Cleavage. Nucleic Acids Res. 2014, 42, 12833–12846. 10.1093/nar/gku992. PubMed DOI PMC
Walter N. G.; Burker J. M. The Hairpin Ribozyme: Structure, Assembly and Catalysis. Curr. Opin. Chem. Biol. 1998, 2, 24–30. 10.1016/S1367-5931(98)80032-X. PubMed DOI
Müller S.; Appel B.; Krellenberg T.; Petkovic S. The Many Faces of the Hairpin Ribozyme: Structural and Functional Variants of a Small Catalytic Rna. IUBMB Life 2012, 64, 36–47. 10.1002/iub.575. PubMed DOI
Young K. J.; Gill F.; Grasby J. A. Metal Ions Play a Passive Role in the Hairpin Ribozyme Catalysed Reaction. Nucleic Acids Res. 1997, 25, 3760–3766. 10.1093/nar/25.19.3760. PubMed DOI PMC
Rupert P. B.; Ferre-D’Amare A. R. Crystal Structure of a Hairpin Ribozyme-inhibitor Complex with Implications for Catalysis. Nature 2001, 410, 780–786. 10.1038/35071009. PubMed DOI
Rupert P. B.; Massey A. P.; Sigurdsson S. T.; Ferre-D’Amare A. R. Transition State Stabilization by a Catalytic RNA. Science 2002, 298, 1421–1424. 10.1126/science.1076093. PubMed DOI
Salter J.; Krucinska J.; Alam S.; Grum-Tokars V.; Wedekind J. E. Water in the Active Site of an All-RNA hairpin Ribozyme and Effects of Gua8 Base Variants on the Geometry of Phosphoryl Transfer. Biochemistry 2006, 45, 686–700. 10.1021/bi051887k. PubMed DOI PMC
Heldenbrand H.; Janowski P. A.; Giambasu G.; Giese T. J.; Wedekind J. E.; York D. M. Evidence for the Role of Active Site Residues in the Hairpin Ribozyme from Molecular Simulations along the Reaction Path. J. Am. Chem. Soc. 2014, 136, 7789–7792. 10.1021/ja500180q. PubMed DOI PMC
Park H.; Lee S. Role of Solvent Dynamics in Stabilizing the Transition State of RNA Hydrolysis by Hairpin Ribozyme. J. Chem. Theory Comput. 2006, 2, 858–862. 10.1021/ct0503015. PubMed DOI
Rhodes M. M.; Réblová K.; Šponer J.; Walter N. G. Trapped Water Molecules Are Essential to Structural Dynamics and Function of a Ribozyme. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 13380–13385. 10.1073/pnas.0605090103. PubMed DOI PMC
Ditzler M. A.; Sponer J.; Walter N. G. Molecular Dynamics Suggest Multifunctionality of an Adenine Imino Group in Acid-base Catalysis of the Hairpin Ribozyme. RNA 2009, 15, 560–575. 10.1261/rna.1416709. PubMed DOI PMC
Nam K.; Gao J. L.; York D. M. Electrostatic Interactions in the Hairpin Ribozyme Account for the Majority of the Rate Acceleration Without Chemical Participation by Nucleobases. RNA 2008, 14, 1501–1507. 10.1261/rna.863108. PubMed DOI PMC
Mlynsky V.; Banas P.; Sponer J.; van der Kamp M. W.; Mulholland A. J.; Otyepka M. Comparison of ab Initio, DFT, and Semiempirical QM/MM Approaches for Description of Catalytic Mechanism of Hairpin Ribozyme. J. Chem. Theory Comput. 2014, 10, 1608–1622. 10.1021/ct401015e. PubMed DOI
Schuabb C.; Kumar N.; Pataraia S.; Marx D.; Winter R. Pressure Modulates the Self-cleavage Step of the Hairpin Ribozyme. Nat. Commun. 2017, 8, 14661.10.1038/ncomms14661. PubMed DOI PMC
Cochrane J. C.; Lipchock S. V.; Strobel S. A. Structural Investigation of the GlmS Ribozyme Bound to its Catalytic Cofactor. Chem. Biol. 2007, 14, 97–105. 10.1016/j.chembiol.2006.12.005. PubMed DOI PMC
Klein D. J.; Ferre-D’Amare A. R. Structural Basis of glmS Ribozyme Activation by Glucosamine-6-phosphate. Science 2006, 313, 1752–1756. 10.1126/science.1129666. PubMed DOI
Klein D. J.; Been M. D.; Ferre-D’Amare A. R. Essential Role of an Active-site Guanine in glmS Ribozyme Catalysis. J. Am. Chem. Soc. 2007, 129, 14858–14859. 10.1021/ja0768441. PubMed DOI
Klein D. J.; Wilkinson S. R.; Been M. D.; Ferre-D’Amare A. R. Requirement of Helix p2.2 and Nucleotide g1 for Positioning the Cleavage Site and Cofactor of the glmS Ribozyme. J. Mol. Biol. 2007, 373, 178–189. 10.1016/j.jmb.2007.07.062. PubMed DOI PMC
Cochrane J. C.; Lipchock S. V.; Smith K. D.; Strobel S. A. Structural and Chemical Basis for Glucosamine 6-Phosphate Binding and Activation of the glmS Ribozyme. Biochemistry 2009, 48, 3239–3246. 10.1021/bi802069p. PubMed DOI PMC
Lau M. W. L.; Ferre-D’Amare A. R. An in vitro Evolved glmS Ribozyme Has the Wild-type Fold but Loses Coenzyme Dependence. Nat. Chem. Biol. 2013, 9, 805–810. 10.1038/nchembio.1360. PubMed DOI PMC
Banáš P.; Walter N. G.; Šponer J.; Otyepka M. Protonation States of the Key Active Site Residues and Structural Dynamics of the glmS Riboswitch As Revealed by Molecular Dynamics. J. Phys. Chem. B 2010, 114, 8701–8712. 10.1021/jp9109699. PubMed DOI PMC
Zhang S. X.; Ganguly A.; Goyal P.; Bingaman J. L.; Bevilacqua P. C.; Hammes-Schiffer S. Role of the Active Site Guanine in the glmS Ribozyme Self-Cleavage Mechanism: Quantum Mechanical/Molecular Mechanical Free Energy Simulations. J. Am. Chem. Soc. 2015, 137, 784–798. 10.1021/ja510387y. PubMed DOI PMC
Xin Y.; Hamelberg D. Deciphering the Role of Glucosamine-6-phosphate in the Riboswitch Action of glmS Ribozyme. RNA 2010, 16, 2455–2463. 10.1261/rna.2334110. PubMed DOI PMC
Zhang S.; Stevens D. R.; Goyal P.; Bingaman J. L.; Bevilacqua P. C.; Hammes-Schiffer S. Assessing the Potential Effects of Active Site Mg2+ Ions in the glmS Ribozyme-Cofactor Complex. J. Phys. Chem. Lett. 2016, 7, 3984–3988. 10.1021/acs.jpclett.6b01854. PubMed DOI PMC
Dong X.; Tian Z. Y.; Yang X.; Xue Y. Theoretical Study on the Mechanism of Self-cleavage Reaction of the glmS Ribozyme. Theor. Chem. Acc. 2015, 134, e6810.1007/s00214-015-1667-x. DOI
Eiler D.; Wang J. M.; Steitz T. A. Structural Basis for the Fast Self-cleavage Reaction Catalyzed by the Twister Ribozyme. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 13028–13033. 10.1073/pnas.1414571111. PubMed DOI PMC
Liu Y. J.; Wilson T. J.; McPhee S. A.; Lilley D. M. J. Crystal Structure and Mechanistic Investigation of the Twister Ribozyme. Nat. Chem. Biol. 2014, 10, 739–744. 10.1038/nchembio.1587. PubMed DOI
Ren A. M.; Kosutic M.; Rajashankar K. R.; Frener M.; Santner T.; Westhof E.; Micura R.; Patel D. J. In-line Alignment and Mg2+ Coordination at the Cleavage Site of the Env22 Twister Ribozyme. Nat. Commun. 2014, 5, 5534.10.1038/ncomms6534. PubMed DOI PMC
Świderek K.; Marti S.; Tuñón I.; Moliner V.; Bertran J. Molecular Mechanism of the Site-specific Self-cleavage of the RNA Phosphodiester Backbone by a Twister Ribozyme. Theor. Chem. Acc. 2017, 136, e3110.1007/s00214-017-2060-8. DOI
Gaines C. S.; York D. M. Ribozyme Catalysis with a Twist: Active State of the Twister Ribozyme in Solution Predicted from Molecular Simulation. J. Am. Chem. Soc. 2016, 138, 3058–3065. 10.1021/jacs.5b12061. PubMed DOI PMC
Wilson T. J.; Liu Y. J.; Domnick C.; Kath-Schorr S.; Liiley D. M. J. The Novel Chemical Mechanism of the Twister Ribozyme. J. Am. Chem. Soc. 2016, 138, 6151–6162. 10.1021/jacs.5b11791. PubMed DOI
Ucisik M. N.; Bevilacqua P. C.; Hammes-Schiffer S. Molecular Dynamics Study of Twister Ribozyme: Role of Mg2+ Ions and the Hydrogen-Bonding Network in the Active Site. Biochemistry 2016, 55, 3834–3846. 10.1021/acs.biochem.6b00203. PubMed DOI PMC
Selmer M.; Dunham C. M.; Murphy F. V.; Weixlbaumer A.; Petry S.; Kelley A. C.; Weir J. R.; Ramakrishnan V. Structure of the 70S Ribosome Complexed with mRNA and tRNA. Science 2006, 313, 1935–1942. 10.1126/science.1131127. PubMed DOI
Trobro S.; Aqvist J. Role of Ribosomal Protein L27 in Peptidyl Transfer. Biochemistry 2008, 47, 4898–4906. 10.1021/bi8001874. PubMed DOI
Sharma P. K.; Xiang Y.; Kato M.; Warshel A. What are the Roles of Substrate-assisted Catalysis and Proximity Effects in Peptide Bond Formation by the Ribosome?. Biochemistry 2005, 44, 11307–11314. 10.1021/bi0509806. PubMed DOI
Trobro S.; Aqvist J. Mechanism of Peptide Bond Synthesis on the Ribosome. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 12395–12400. 10.1073/pnas.0504043102. PubMed DOI PMC
Trobro S.; Aqvist J. Analysis of Predictions for the Catalytic Mechanism of Ribosomal Peptidyl Transfer. Biochemistry 2006, 45, 7049–7056. 10.1021/bi0605383. PubMed DOI
Weinger J. S.; Parnell K. M.; Dorner S.; Green R.; Strobel S. A. Substrate-assisted Catalysis of Peptide Bond Formation by the Ribosome. Nat. Struct. Mol. Biol. 2004, 11, 1101–1106. 10.1038/nsmb841. PubMed DOI
Sievers A.; Beringer M.; Rodnina M. V.; Wolfenden R. The Ribosome as an Entropy Trap. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 7897–7901. 10.1073/pnas.0402488101. PubMed DOI PMC
Johansson M.; Ieong K. W.; Trobro S.; Strazewski P.; Aqvist J.; Pavlov M. Y.; Ehrenberg M. pH-sensitivity of the Ribosomal Peptidyl Transfer Reaction Dependent on the Identity of the A-site Aminoacyl-tRNA. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 79–84. 10.1073/pnas.1012612107. PubMed DOI PMC
Acosta-Silva C.; Bertran J.; Branchadell V.; Oliva A. Theoretical Study of a Proton Wire Mechanism for the Peptide Bond Formation in the Ribosome. Theor. Chem. Acc. 2017, 136, e4910.1007/s00214-017-2066-2. DOI
Petry S.; Brodersen D. E.; Murphy F. V.; Dunham C. M.; Selmer M.; Tarry M. J.; Kelley A. C.; Ramakrishnan V. Crystal Structures of the Ribosome in Complex with Release Factors RF1 and RF2 Bound to a Cognate Stop Codon. Cell 2005, 123, 1255–1266. 10.1016/j.cell.2005.09.039. PubMed DOI
Klaholz B. P.; Pape T.; Zavialov A. V.; Myasnikov A. G.; Orlova E. V.; Vestergaard B.; Ehrenberg M.; Van Heel M. Structure of the Escherichia coli Ribosomal Termination Complex with Release Factor 2. Nature 2003, 421, 90–94. 10.1038/nature01225. PubMed DOI
Rawat U. B. S.; Zavialov A. V.; Sengupta J.; Valle M.; Grassucci R. A.; Linde J.; Vestergaard B.; Ehrenberg M.; Frank J. A Cryo-electron Microscopic Study of Ribosome-bound Termination Factor RF2. Nature 2003, 421, 87–90. 10.1038/nature01224. PubMed DOI
Vestergaard B.; Sanyal S.; Roessle M.; Mora L.; Buckingham R. H.; Kastrup J. S.; Gajhede M.; Svergun D. I.; Ehrenberg M. The SAXS Solution Structure of RF1 Differs from its Crystal Structure and Is Similar to its Ribosome Bound Cryo-EM Structure. Mol. Mol. Cell 2005, 20, 929–938. 10.1016/j.molcel.2005.11.022. PubMed DOI
Song H. W.; Mugnier P.; Das A. K.; Webb H. M.; Evans D. R.; Tuite M. F.; Hemmings B. A.; Barford D. The Crystal Structure of Human Eukaryotic Release Factor eRF1-Mechanism of Stop Codon Recognition and Peptidyl-tRNA Hydrolysis. Cell 2000, 100, 311–321. 10.1016/S0092-8674(00)80667-4. PubMed DOI
Trobro S.; Aqvist J. A Model for How Ribosomal Release Factors Induce Peptidyl-tRNA Cleavage in Termination of Protein Synthesis. Mol. Mol. Cell 2007, 27, 758–766. 10.1016/j.molcel.2007.06.032. PubMed DOI
Trobro S.; Aqvist J. Mechanism of the Translation Termination Reaction on the Ribosome. Biochemistry 2009, 48, 11296–11303. 10.1021/bi9017297. PubMed DOI
Korostelev A.; Asahara H.; Lancaster L.; Laurberg M.; Hirschi A.; Zhua J. Y.; Trakhanov S.; Scott W. G.; Noller H. F. Crystal Structure of a Translation Termination Complex Formed with Release Factor RF2. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 19684–19689. 10.1073/pnas.0810953105. PubMed DOI PMC
Weixlbaumer A.; Jin H.; Neubauer C.; Voorhees R. M.; Petry S.; Kelley A. C.; Ramakrishnan V. Insights into Translational Termination from the Structure of RF2 Bound to the Ribosome. Science 2008, 322, 953–956. 10.1126/science.1164840. PubMed DOI PMC
Shaw J. J.; Trobro S.; He S. L.; Aqvist J.; Green R. A Role for the 2 ’ OH of Peptidyl-tRNA Substrate in Peptide Release on the Ribosome Revealed through RF-Mediated Rescue. Chem. Biol. 2012, 19, 983–993. 10.1016/j.chembiol.2012.06.011. PubMed DOI PMC
Giambasu G. M.; Lee T. S.; Scott W. G.; York D. M. Mapping L1 Ligase Ribozyme Conformational Switch. J. Mol. Biol. 2012, 423, 106–122. 10.1016/j.jmb.2012.06.035. PubMed DOI PMC
Robertson M. P.; Scott W. G. The Structural Basis of Ribozyme-catalyzed RNA Assembly. Science 2007, 315, 1549–1553. 10.1126/science.1136231. PubMed DOI
Shechner D. M.; Grant R. A.; Bagby S. C.; Koldobskaya Y.; Piccirilli J. A.; Bartel D. P. Crystal Structure of the Catalytic Core of an RNA-Polymerase Ribozyme. Science 2009, 326, 1271–1275. 10.1126/science.1174676. PubMed DOI PMC
Berezniak T.; Jaschke A.; Smith J. C.; Imhof P. Stereoselection in the Diels-alderase Ribozyme: A Molecular Dynamics Study. J. Comput. Chem. 2012, 33, 1603–1614. 10.1002/jcc.22993. PubMed DOI
Berezniak T.; Zahran M.; Imhof P.; Jaschke A.; Smith J. C. Magnesium-Dependent Active-Site Conformational Selection in the Diels-Alderase Ribozyme. J. Am. Chem. Soc. 2010, 132, 12587–12596. 10.1021/ja101370e. PubMed DOI
Lopez X.; York D. M.; Dejaegere A.; Karplus M. Theoretical Studies on the Hydrolysis of Phosphate Diesters in the Gas Phase, Solution, and RNase A. Int. J. Quantum Chem. 2002, 86, 10–26. 10.1002/qua.1601. DOI
Formoso E.; Matxain J. M.; Lopez X.; York D. M. Molecular Dynamics Simulation of Bovine Pancreatic Ribonuclease A-CpA and Transition State-like Complexes. J. Phys. Chem. B 2010, 114, 7371–7382. 10.1021/jp909004y. PubMed DOI PMC
Gu H.; Zhang S. M.; Wong K. Y.; Radak B. K.; Dissanayake T.; Kellerman D. L.; Dai Q.; Miyagi M.; Anderson V. E.; York D. M.; et al. Experimental and Computational Analysis of the Transition State for Ribonuclease A-catalyzed RNA 2 ’-O-transphosphorylation. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 13002–13007. 10.1073/pnas.1215086110. PubMed DOI PMC
Harris M. E.; Piccirilli J. A.; York D. M. Integration of Kinetic Isotope Effect Analyses to Elucidate Ribonuclease Mechanism. Biochim. Biophys. Acta, Proteins Proteomics 2015, 1854, 1801–1808. 10.1016/j.bbapap.2015.04.022. PubMed DOI PMC
Nowotny M.; Cerritelli S. M.; Ghirlando R.; Gaidamakov S. A.; Crouch R. J.; Yang W. Specific Recognition of RNA/DNA Hybrid and Enhancement of Human RNase H1 Activity by HBD. EMBO J. 2008, 27, 1172–1181. 10.1038/emboj.2008.44. PubMed DOI PMC
Nowotny M.; Gaidamakov S. A.; Crouch R. J.; Yang W. Crystal Structures of RNase H Nound to an RNA/DNA Hybrid: Substrate Specificity and Metal-dependent Catalysis. Cell 2005, 121, 1005–1016. 10.1016/j.cell.2005.04.024. PubMed DOI
Nowotny M.; Gaidamakov S. A.; Ghirlando R.; Cerritelli S. M.; Crouch R. J.; Yang W. Structure of Human RNase h1 Complexed with an RNA/DNA Hybrid: Insight into HIV Reverse Transcription. Mol. Mol. Cell 2007, 28, 264–276. 10.1016/j.molcel.2007.08.015. PubMed DOI
Nowotny M.; Yang W. Stepwise Analyses of Metal Ions in RNase H Catalysis from Substrate Destabilization to Product Release. EMBO J. 2006, 25, 1924–1933. 10.1038/sj.emboj.7601076. PubMed DOI PMC
De Vivo M.; Dal Peraro M.; Klein M. L. Phosphodiester Cleavage in Ribonuclease H Occurs via an Associative Two-metal-aided Catalytic Mechanism. J. Am. Chem. Soc. 2008, 130, 10955–10962. 10.1021/ja8005786. PubMed DOI PMC
Elsasser B.; Fels G. Atomistic Details of the Associative Phosphodiester Cleavage in Human Ribonuclease H. Phys. Chem. Chem. Phys. 2010, 12, 11081–11088. 10.1039/c001097a. PubMed DOI
Rosta E.; Nowotny M.; Yang W.; Hummer G. Catalytic Mechanism of RNA Backbone Cleavage by Ribonuclease H from Quantum Mechanics/Molecular Mechanics Simulations. J. Am. Chem. Soc. 2011, 133, 8934–8941. 10.1021/ja200173a. PubMed DOI PMC
Haruki M.; Tsunaka Y.; Morikawa M.; Iwai S.; Kanaya S. Catalysis by Escherichia coli Ribonuclease HI is Facilitated by a Phosphate Group of the Substrate. Biochemistry 2000, 39, 13939–13944. 10.1021/bi001469+. PubMed DOI
Uchiyama Y.; Miura Y.; Inoue H.; Ohtsuka E.; Ueno Y.; Ikehara M.; Iwai S. Studies of the Interactions between Escherichia-Coli Ribonuclease Hi and Its Substrate. J. Mol. Biol. 1994, 243, 782–791. 10.1016/0022-2836(94)90047-7. PubMed DOI
Sgrignani J.; Magistrato A. QM/MM MD Simulations on the Enzymatic Pathway of the Human Flap Endonuclease (hFEN1) Elucidating Common Cleavage Pathways to RNase H Enzymes. ACS Catal. 2015, 5, 3864–3875. 10.1021/acscatal.5b00178. DOI
Haurwitz R. E.; Jinek M.; Wiedenheft B.; Zhou K.; Doudna J. A. Sequence- and Structure-specific RNA Processing by a CRISPR Endonuclease. Science 2010, 329, 1355–1358. 10.1126/science.1192272. PubMed DOI PMC
Šponer J. E.; Šponer J.; Nováková O.; Brabec V.; Šedo O.; Zdráhal Z.; Costanzo G.; Pino S.; Saladino R.; Di Mauro E. Emergence of the First Catalytic Oligonucleotides in a Formamide-Based Origin Scenario. Chem. - Eur. J. 2016, 22, 3572–3586. 10.1002/chem.201503906. PubMed DOI
Sponer J. E.; Szabla R.; Gora R. W.; Saitta A. M.; Pietrucci F.; Saija F.; Di Mauro E.; Saladino R.; Ferus M.; Civis S.; et al. Prebiotic Synthesis of Nucleic Acids and their Building Blocks at the Atomic Level - Merging Models and Mechanisms from Advanced Computations and Experiments. Phys. Chem. Chem. Phys. 2016, 18, 20047–20066. 10.1039/C6CP00670A. PubMed DOI
Gupta A.; Bansal M. Local Structural and Environmental Factors Define the Efficiency of an RNA Pseudoknot Involved in Programmed Ribosomal Frameshift Process. J. Phys. Chem. B 2014, 118, 11905–11920. 10.1021/jp507154u. PubMed DOI
Zhang Y.; Zhang J.; Wang W. Atomistic Analysis of Pseudoknotted RNA Unfolding. J. Am. Chem. Soc. 2011, 133, 6882–6885. 10.1021/ja1109425. PubMed DOI
Bian Y. Q.; Zhang J.; Wang J.; Wang J. H.; Wang W. Free Energy Landscape and Multiple Folding Pathways of an H-Type RNA Pseudoknot. PLoS One 2015, 10, e0129089.10.1371/journal.pone.0129089. PubMed DOI PMC
Jung S.; Schlick T. Candidate RNA Structures for Domain 3 of the Foot-and-mouth-disease Virus Internal Ribosome Entry Site. Nucleic Acids Res. 2013, 41, 1483–1495. 10.1093/nar/gks1302. PubMed DOI PMC
Jung S.; Schlick T. Interconversion between Parallel and Antiparallel Conformations of a 4H RNA junction in Domain 3 of Foot-and-Mouth Disease Virus IRES Captured by Dynamics Simulations. Biophys. J. 2014, 106, 447–458. 10.1016/j.bpj.2013.12.008. PubMed DOI PMC
Frank J.; Ruben L. Gonzalez J. Structure and Dynamics of a Processive Brownian Motor: The Translating Ribosome. Annu. Rev. Biochem. 2010, 79, 381–412. 10.1146/annurev-biochem-060408-173330. PubMed DOI PMC
Munro J. B.; Altman R. B.; Tung C. S.; Cate J. H. D.; Sanbonmatsu K. Y.; Blanchard S. C. Spontaneous Formation of the Unlocked State of the Ribosome is a Multistep Process. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 709–714. 10.1073/pnas.0908597107. PubMed DOI PMC
Juneja A.; Nilsson L.; Villa A. Effect of Mutations on Internal Dynamics of an RNA Hairpin from Hepatitis B Virus. Biophys. Chem. 2016, 218, 7–13. 10.1016/j.bpc.2016.08.001. PubMed DOI
Macchion B. N.; Strömberg R.; Nilsson L. Analysis of the Stability and Flexibility of RNA Complexes Containing Bulge Loops of Different Sizes. J. Biomol. Struct. Dyn. 2008, 26, 163–173. 10.1080/07391102.2008.10507232. PubMed DOI
Li W.; Frank J. Transfer RNA in the Hybrid P/E State: Correlating Molecular Dynamics Simulations with Cryo-EM Data. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 16540–16545. 10.1073/pnas.0708094104. PubMed DOI PMC
Singharoy A.; Teo I.; McGreevy R.; Stone J. E.; Zhao J. H.; Schulten K. Molecular Dynamics-based Model Refinement and Validation for Sub-5 Angstrom Cryo-electron Microscopy Maps. eLife 2016, 5, e1610510.7554/eLife.16105. PubMed DOI PMC
Trabuco L. G.; Villa E.; Mitra K.; Frank J.; Schulten K. Flexible Fitting of Atomic Structures into Electron Microscopy Maps Using Molecular Dynamics. Structure 2008, 16, 673–683. 10.1016/j.str.2008.03.005. PubMed DOI PMC
Villa E.; Sengupta J.; Trabuco L. G.; LeBarron J.; Baxter W. T.; Shaikh T. R.; Grassucci R. A.; Nissen P.; Ehrenberg M.; Schulten K.; et al. Ribosome-induced Changes in Elongation Factor Tu Conformation Control GTP Hydrolysis. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 1063–1068. 10.1073/pnas.0811370106. PubMed DOI PMC
Ahmed A.; Whitford P. C.; Sanbonmatsu K. Y.; Tama F. Consensus Among Flexible Fitting Approaches Improves the Interpretation of Cryo-EM Data. J. Struct. Biol. 2012, 177, 561–570. 10.1016/j.jsb.2011.10.002. PubMed DOI PMC
Wilson D. N.; Beckmann R. The Ribosomal Tunnel as a Functional Environment for Nascent Polypeptide Folding and Translational Stalling. Curr. Opin. Struct. Biol. 2011, 21, 274–282. 10.1016/j.sbi.2011.01.007. PubMed DOI
Seidelt B.; Innis C. A.; Wilson D. N.; Gartmann M.; Armache J.-P.; Villa E.; Trabuco L. G.; Becker T.; Mielke T.; Schulten K.; et al. Structural Insight into Nascent Polypeptide Chain–Mediated Translational Stalling. Science 2009, 326, 1412–1415. 10.1126/science.1177662. PubMed DOI PMC
Fulle S.; Gohlke H. Statics of the Ribosomal Exit Tunnel: Implications for Cotranslational Peptide Folding, Elongation Regulation, and Antibiotics Binding. J. Mol. Biol. 2009, 387, 502–517. 10.1016/j.jmb.2009.01.037. PubMed DOI
Ishida H.; Hayward S. Path of Nascent Polypeptide in Exit Tunnel Revealed by Molecular Dynamics Simulation of Ribosome. Biophys. J. 2008, 95, 5962–5973. 10.1529/biophysj.108.134890. PubMed DOI PMC
Trabuco L. G.; Harrison C. B.; Schreiner E.; Schulten K. Recognition of the Regulatory Nascent Chain TnaC by the Ribosome. Structure 2010, 18, 627–637. 10.1016/j.str.2010.02.011. PubMed DOI PMC
Ge X.; Roux B. Absolute Binding Free Energy Calculations of Sparsomycin Analogs to the Bacterial Ribosome. J. Phys. Chem. B 2010, 114, 9525–9539. 10.1021/jp100579y. PubMed DOI
Sanbonmatsu K. Y.; Joseph S. Understanding Discrimination by the Ribosome: Stability Testing and Groove Measurement of Codon-anticodon Pairs. J. Mol. Biol. 2003, 328, 33–47. 10.1016/S0022-2836(03)00236-5. PubMed DOI
Allnér O.; Nilsson L. Nucleotide Modifications and tRNA Anticodon–mRNA Codon Interactions on the Ribosome. RNA 2011, 17, 2177–2188. 10.1261/rna.029231.111. PubMed DOI PMC
Burton B.; Zimmermann M. T.; Jernigan R. L.; Wang Y. A Computational Investigation on the Connection between Dynamics Properties of Ribosomal Proteins and Ribosome Assembly. PLoS Comput. Biol. 2012, 8, e1002530.10.1371/journal.pcbi.1002530. PubMed DOI PMC
Caulfield T.; Devkota B. Motion of Transfer RNA from the A/T State into the A-site using Docking and Simulations. Proteins: Struct., Funct., Genet. 2012, 80, 2489–2500. 10.1002/prot.24131. PubMed DOI
Yingling Y. G.; Shapiro B. A. Dynamic Behavior of the Telomerase RNA Hairpin Structure and its Relationship to Dyskeratosis Congenita. J. Mol. Biol. 2005, 348, 27–42. 10.1016/j.jmb.2005.02.015. PubMed DOI
Yildirim I.; Park H.; Disney M. D.; Schatz G. C. A Dynamic Structural Model of Expanded RNA CAG Repeats: A Refined X-ray Structure and Computational Investigations Using Molecular Dynamics and Umbrella Sampling Simulations. J. Am. Chem. Soc. 2013, 135, 3528–3538. 10.1021/ja3108627. PubMed DOI PMC
Yildirim I.; Chakraborty D.; Disney M. D.; Wales D. J.; Schatz G. C. Computational Investigation of RNA CUG Repeats Responsible for Myotonic Dystrophy 1. J. Chem. Theory Comput. 2015, 11, 4943–4958. 10.1021/acs.jctc.5b00728. PubMed DOI PMC
Bochicchio A.; Rossetti G.; Tabarrini O.; Krauβ S.; Carloni P. Molecular View of Ligands Specificity for CAG Repeats in Anti-Huntington Therapy. J. Chem. Theory Comput. 2015, 11, 4911–4922. 10.1021/acs.jctc.5b00208. PubMed DOI
Chen J. L.; VanEtten D. M.; Fountain M. A.; Yildirim I.; Disney M. D. Structure and Dynamics of RNA Repeat Expansions That Cause Huntington’s Disease and Myotonic Dystrophy Type 1. Biochemistry 2017, 56, 3463–3474. 10.1021/acs.biochem.7b00252. PubMed DOI PMC
Pan F.; Man V. H.; Roland C.; Sagui C. Structure and Dynamics of DNA and RNA Double Helices of CAG and GAC Trinucleotide Repeats. Biophys. J. 2017, 113, 19–36. 10.1016/j.bpj.2017.05.041. PubMed DOI PMC
Acceleration of Molecular Simulations by Parametric Time-Lagged tSNE Metadynamics
Automatic Learning of Hydrogen-Bond Fixes in the AMBER RNA Force Field
The influence of Holliday junction sequence and dynamics on DNA crystal self-assembly
RNA kink-turns are highly anisotropic with respect to lateral displacement of the flanking stems
MD simulations reveal the basis for dynamic assembly of Hfq-RNA complexes
Local-to-global signal transduction at the core of a Mn2+ sensing riboswitch
Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions
Structural dynamics of propeller loop: towards folding of RNA G-quadruplex