Structural study of the Fox-1 RRM protein hydration reveals a role for key water molecules in RRM-RNA recognition
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
PubMed
28505313
PubMed Central
PMC5737849
DOI
10.1093/nar/gkx418
PII: 3823296
Knihovny.cz E-zdroje
- MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- motiv rozpoznávající RNA genetika MeSH
- mutageneze cílená MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- rekombinantní proteiny chemie genetika metabolismus MeSH
- RNA metabolismus MeSH
- sestřihové faktory chemie genetika metabolismus MeSH
- simulace molekulární dynamiky MeSH
- substituce aminokyselin MeSH
- vazebná místa MeSH
- voda chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RBFOX1 protein, human MeSH Prohlížeč
- rekombinantní proteiny MeSH
- RNA MeSH
- sestřihové faktory MeSH
- voda MeSH
The Fox-1 RNA recognition motif (RRM) domain is an important member of the RRM protein family. We report a 1.8 Å X-ray structure of the free Fox-1 containing six distinct monomers. We use this and the nuclear magnetic resonance (NMR) structure of the Fox-1 protein/RNA complex for molecular dynamics (MD) analyses of the structured hydration. The individual monomers of the X-ray structure show diverse hydration patterns, however, MD excellently reproduces the most occupied hydration sites. Simulations of the protein/RNA complex show hydration consistent with the isolated protein complemented by hydration sites specific to the protein/RNA interface. MD predicts intricate hydration sites with water-binding times extending up to hundreds of nanoseconds. We characterize two of them using NMR spectroscopy, RNA binding with switchSENSE and free-energy calculations of mutant proteins. Both hydration sites are experimentally confirmed and their abolishment reduces the binding free-energy. A quantitative agreement between theory and experiment is achieved for the S155A substitution but not for the S122A mutant. The S155 hydration site is evolutionarily conserved within the RRM domains. In conclusion, MD is an effective tool for predicting and interpreting the hydration patterns of protein/RNA complexes. Hydration is not easily detectable in NMR experiments but can affect stability of protein/RNA complexes.
Zobrazit více v PubMed
Underwood J.G., Boutz P.L., Dougherty J.D., Stoilov P., Black D.L.. Homologues of the Caenorhabditis Elegans Fox-1 protein are neuronal splicing regulators in mammals. Mol. Cell. Biol. 2005; 25:10005–10016. PubMed PMC
Nakahata S., Kawamoto S.. Tissue-dependent isoforms of mammalian Fox-1 homologs are associated with tissue-specific splicing activities. Nucleic Acids Res. 2005; 33:2078–2089. PubMed PMC
Hodgkin J., Zellan J.D., Albertson D.G.. Identification of a candidate primary sex determination locus, Fox-1, on the X-chromosome of Caenorhabditis-Elegans. Development. 1994; 120:3681–3689. PubMed
Auweter S.D., Fasan R., Reymond L., Underwood J.G., Black D.L., Pitsch S., Allain F.H.T.. Molecular basis of RNA recognition by the human alternative splicing factor Fox-1. EMBO J. 2006; 25:163–173. PubMed PMC
Brudno M., Gelfand M.S., Spengler S., Zorn M., Dubchak I., Conboy J.G.. Computational analysis of candidate intron regulatory elements for tissue-specific alternative Pre-mRNA splicing. Nucleic Acids Res. 2001; 29:2338–2348. PubMed PMC
Cléry A., Blatter M., Allain F.H.T.. RNA recognition motifs: Boring? Not quite. Curr. Opin. Struct. Biol. 2008; 18:290–298. PubMed
Tsuda K., Kuwasako K., Takahashi M., Someya T., Inoue M., Terada T., Kobayashi N., Shirouzu M., Kigawa T., Tanaka A. et al. . Structural basis for the sequence-specific RNA-recognition mechanism of human CUG-BP1 RRM3. Nucleic Acids Res. 2009; 37:5151–5166. PubMed PMC
Tintaru A.M., Hautbergue G.M., Hounslow A.M., Hung M.-L., Lian L.-Y., Craven C.J., Wilson S.A.. Structural and functional analysis of RNA and TAP binding to SF2/ASF. EMBO Rep. 2007; 8:756–762. PubMed PMC
Muto Y., Yokoyama S.. Structural insight into RNA recognition motifs: versatile molecular lego building blocks for biological systems. Wiley Interdiscip. Rev. RNA. 2012; 3:229–246. PubMed
Afroz T., Cienikova Z., Cléry A., Allain F.H.T.. Woodson SA, Allain FHT. One, Two, Three, Four! How Multiple RRMs read the genome sequence. Methods Enzymol. 2015; 558, Cambridge: Academic Press; 235–278. PubMed
Ball P. Water as an active constituent in cell biology. Chem. Rev. 2008; 108:74–108. PubMed
Biedermannová L., Schneider B.. Hydration of proteins and nucleic acids: advances in experiment and theory. A review. Biochim. Biophys. Acta Gen. Subj. 2016; 1860:1821–1835. PubMed
Westhof E. Water: an integral part of nucleic acid structure. Annu. Rev. Biophys. Bio. 1988; 17:125–144. PubMed
Thanki N., Thornton J.M., Goodfellow J.M.. Distributions of water around amino acid residues in proteins. J. Mol. Biol. 1988; 202:637–657. PubMed
Jayaram B., Jain T.. The role of water in protein-DNA recognition. Annu. Rev. Biophys. Biomolec. Struct. 2004; 33:343–361. PubMed
Barik A., Bahadur R.P.. Hydration of protein–RNA Recognition Sites. Nucleic Acids Res. 2014; 42:10148–10160. PubMed PMC
Bahadur R.P., Kannan S., Zacharias M.. Binding of the bacteriophage P22 N-peptide to the boxB RNA motif studied by molecular dynamics simulations. Biophys. J. 2009; 97:3139–3149. PubMed PMC
Hayashi T., Oshima H., Mashima T., Nagata T., Katahira M., Kinoshita M.. Binding of an RNA aptamer and a partial peptide of a prion protein: crucial importance of water entropy in molecular recognition. Nucleic Acids Res. 2014; 42:6861–6875. PubMed PMC
Barik A., Nithin C., Naga Bhushana R.K., Mukherjee S., Bahadur R.P.. Probing binding hot spots at protein–RNA recognition sites. Nucleic Acids Res. 2016; 44:e9. PubMed PMC
Ditzler M.A., Otyepka M., Sponer J., Walter N.G.. Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in. Acc. Chem. Res. 2010; 43:40–47. PubMed PMC
Šponer J., Banáš P., Jurečka P., Zgarbová M., Kührová P., Havrila M., Krepl M., Stadlbauer P., Otyepka M.. Molecular dynamics simulations of nucleic acids. From tetranucleotides to the ribosome. J. Phys. Chem. Lett. 2014; 5:1771–1782. PubMed
Hashem Y., Auffinger P.. A short guide for molecular dynamics simulations of RNA systems. Methods. 2009; 47:187–197. PubMed
Cheatham T.E., Kollman P.A.. Molecular dynamics simulations of nucleic acids. Annu. Rev. Phys. Chem. 2000; 51:435–471. PubMed
Šponer J., Krepl M., Banáš P., Kührová P., Zgarbová M., Jurečka P., Havrila M., Otyepka M.. How to understand atomistic molecular dynamics simulations of rna and protein–RNA complexes?. Wiley Interdiscip. Rev. RNA. 2017; 8, doi:10.1002/wrna.1405. PubMed
Auffinger P., Hashem Y.. Nucleic acid solvation: from outside to insight. Curr. Opin. Struct. Biol. 2007; 17:325–333. PubMed
Reblova K., Spackova N., Koca J., Leontis N.B., Sponer J.. Long-residency hydration, cation binding, and dynamics of loop E/helix IV rRNA-L25 protein complex. Biophys. J. 2004; 87:3397–3412. PubMed PMC
Spackova N., Reblova K., Sponer J.. Structural dynamics of the box C/D RNA kink-turn and its complex with proteins: the role of the A-minor 0 interaction, long-residency water bridges, and structural ion-binding sites revealed by molecular simulations. J. Phys. Chem. B. 2010; 114:10581–10593. PubMed
Guo J.X., Gmeiner W.H.. Molecular dynamics simulation of the human U2B “protein complex with U2 snRNA hairpin IV in aqueous solution. Biophys. J. 2001; 81:630–642. PubMed PMC
Kuehrova P., Otyepka M., Sponer J., Banas P.. Are waters around RNA more than just a solvent?—an insight from molecular dynamics simulations. J. Chem. Theory Comput. 2014; 10:401–411. PubMed
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L.. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983; 79:926–935.
Berendsen H.J.C., Grigera J.R., Straatsma T.P.. The missing term in effective pair potentials. J. Phys. Chem. 1987; 91:6269–6271.
Izadi S., Anandakrishnan R., Onufriev A.V.. Building water models: a different approach. J. Phys. Chem. Lett. 2014; 5:3863–3871. PubMed PMC
Besseova I., Banas P., Kuhrova P., Kosinova P., Otyepka M., Sponer J.. Simulations of A-RNA duplexes. The effect of sequence, solute force field, water model, and salt concentration. J. Phys. Chem. B. 2012; 116:9899–9916. PubMed
Meyer E. Internal water molecules and H-bonding in biological macromolecules: a review of structural features with functional implications. Protein Sci. 1992; 1:1543–1562. PubMed PMC
Daubner G.M., Cléry A., Allain F.H.T.. RRM–RNA recognition: NMR or crystallography…and new findings. Curr. Opin. Struct. Biol. 2013; 23:100–108. PubMed
Phan A.T., Leroy J.-L., Guéron M.. Determination of the residence time of water molecules hydrating B ΄ -DNA and B -DNA, by one-dimensional zero-enhancement nuclear overhauser effect spectroscopy. J. Mol. Biol. 1999; 286:505–519. PubMed
Auffinger P., Westhof E.. Water and ion binding around RNA and DNA (C,G) oligomers. J. Mol. Biol. 2000; 300:1113–1131. PubMed
Tarek M., Tobias D.J.. The dynamics of protein hydration water: a quantitative comparison of molecular dynamics simulations and neutron-scattering experiments. Biophys. J. 2000; 79:3244–3257. PubMed PMC
Denisov V.P., Halle B., Peters J., Hoerlein H.D.. Residence times of the buried water molecules in bovine pancreatic trypsin inhibitor and its G36S mutant. Biochemistry. 1995; 34:9046–9051. PubMed
Schneider C., Brandl M., Sühnel J.. Molecular dynamics simulation reveals conformational switching of water-mediated uracil-cytosine base-pairs in an RNA duplex. J. Mol. Biol. 2001; 305:659–667. PubMed
Rhodes M.M., Réblová K., Šponer J., Walter N.G.. Trapped water molecules are essential to structural dynamics and function of a ribozyme. Proc. Natl. Acad. Sci. U.S.A. 2006; 103:13380–13385. PubMed PMC
Krasovska M.V., Sefcikova J., Reblova K., Schneider B., Walter N.G., Sponer J.. Cations and hydration in catalytic RNA: molecular dynamics of the hepatitis delta virus ribozyme. Biophys. J. 2006; 91:626–638. PubMed PMC
Razga F., Zacharias M., Reblova K., Koca J., Sponer J.. RNA kink-turns as molecular elbows: hydration, cation binding, and large-scale dynamics. Structure. 2006; 14:825–835. PubMed
Kabsch W. XDS. Acta Crystallogr. D Biol. Crystallogr. 2010; 66:125–132. PubMed PMC
DiMaio F., Terwilliger T.C., Read R.J., Wlodawer A., Oberdorfer G., Wagner U., Valkov E., Alon A., Fass D., Axelrod H.L. et al. . Improved molecular replacement by density- and energy-guided protein structure optimization. Nature. 2011; 473:540–543. PubMed PMC
Afonine P.V., Grosse-Kunstleve R.W., Echols N., Headd J.J., Moriarty N.W., Mustyakimov M., Terwilliger T.C., Urzhumtsev A., Zwart P.H., Adams P.D.. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D. 2012; 68:352–367. PubMed PMC
Emsley P., Lohkamp B., Scott W.G., Cowtan K.. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010; 66:486–501. PubMed PMC
Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M., Ferguson D.M., Spellmeyer D.C., Fox T., Caldwell J.W., Kollman P.A.. A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J. Am. Chem. Soc. 1995; 117:5179–5197.
Wang J.M., Cieplak P., Kollman P.A.. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules. J. Comput. Chem. 2000; 21:1049–1074.
Hornak V., Abel R., Okur A., Strockbine B., Roitberg A., Simmerling C.. Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins. 2006; 65:712–725. PubMed PMC
Maier J.A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K., Simmerling C.. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015; 11:3696–3713. PubMed PMC
Perez A., Marchan I., Svozil D., Sponer J., Cheatham T.E., Laughton C.A., Orozco M.. Refinenement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys. J. 2007; 92:3817–3829. PubMed PMC
Zgarbova M., Otyepka M., Sponer J., Mladek A., Banas P., Cheatham T.E., Jurecka P.. Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theory Comput. 2011; 7:2886–2902. PubMed PMC
Joung I.S., Cheatham T.E.. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008; 112:9020–9041. PubMed PMC
Krepl M., Havrila M., Stadlbauer P., Banas P., Otyepka M., Pasulka J., Stefl R., Sponer J.. Can we execute stable microsecond-scale atomistic simulations of protein-RNA complexes?. J. Chem. Theory Comput. 2015; 11:1220–1243. PubMed
Krepl M., Cléry A., Blatter M., Allain F.H.T., Sponer J.. Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs. Nucleic Acids Res. 2016; 44:6452–6470. PubMed PMC
Case D.A.V.B., Berryman J.T., Betz R.M., Cai Q., Cerutti D.S., Cheatham T.E. III, Darden T.A., Duke R.E., Gohlke H., Goetz A.W. et al. . AMBER 14. 2014; San Francisco: University of California.
Roe D.R., Cheatham T.E.. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013; 9:3084–3095. PubMed
Humphrey W., Dalke A., Schulten K.. VMD: visual molecular dynamics. J. Mol. Graph. 1996; 14:33–38. PubMed
Merritt E.A., Bacon D.J.. Carter CW, Sweet RM. Raster3D: photorealistic molecular graphics. Macromolecular Crystallography, Pt B. 1997; 277, San Diego: Elsevier Academic Press Inc; 505–524. PubMed
Špačková N., Berger I., Šponer J.. Nanosecond molecular dynamics of zipper-like DNA duplex structures containing sheared G·A mismatch pairs. J. Am. Chem. Soc. 2000; 122:7564–7572.
Frishman D., Argos P.. Knowledge-based protein secondary structure assignment. Proteins. 1995; 23:566–579. PubMed
Kabsch W., Sander C.. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983; 22:2577–2637. PubMed
Steinbrecher T., Mobley D.L., Case D.A.. Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculations. J. Chem. Phys. 2007; 127:e214108. PubMed
Dominguez C., Schubert M., Duss O., Ravindranathan S., Allain F.H.T.. Structure determination and dynamics of protein–RNA complexes by NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 2011; 58:1–61. PubMed
Cléry A., Sohier T.J.M., Welte T., Langer A., Allain F.H.T.. switchSENSE: a new technology to study protein-RNA interactions. Methods. 2017; 118–119:137–145. PubMed
Laskowski R.A., Rullmann J.A.C., MacArthur M.W., Kaptein R., Thornton J.M.. AQUA and PROCHECK-NMR: Programs for Checking the Quality of Protein Structures Solved by NMR. J. Biomol. NMR. 1996; 8:477–486. PubMed
Li Y., Sutch B.T., Bui H.-H., Gallaher T.K., Haworth I.S.. Modeling of the Water Network at Protein–RNA Interfaces. J. Chem. Inf. Model. 2011; 51:1347–1352. PubMed
Das U., Chen S., Fuxreiter M., Vaguine A.A., Richelle J., Berman H.M., Wodak S.J.. Checking Nucleic Acid Crystal Structures. Acta Crystallogr. D. 2001; 57:813–828. PubMed
Davis I.W., Leaver-Fay A., Chen V.B., Block J.N., Kapral G.J., Wang X., Murray L.W., Arendall W.B., Snoeyink J., Richardson J.S. et al. . MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 2007; 35:W375–W383. PubMed PMC
Wlodawer A., Minor W., Dauter Z., Jaskolski M.. Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J. 2008; 275:1–21. PubMed PMC
Chen X., Weber I., Harrison R.W.. Hydration water and bulk water in proteins have distinct properties in radial distributions calculated from 105 atomic resolution crystal structures. J. Phys. Chem. B. 2008; 112:12073–12080. PubMed PMC
Carugo O., Argos P.. Reliability of atomic displacement parameters in protein crystal structures. Acta Crystallogr. D. 1999; 55:473–478. PubMed
Pendley S.S., Yu Y.B., Cheatham T.E.. Molecular dynamics guided study of salt bridge length dependence in both fluorinated and non-fluorinated parallel dimeric coiled-coils. Proteins. 2009; 74:612–629. PubMed PMC
Knezevic J., Langer A., Hampel P.A., Kaiser W., Strasser R., Rant U.. Quantitation of affinity, avidity, and binding kinetics of protein analytes with a dynamically switchable biosurface. J. Am. Chem. Soc. 2012; 134:15225–15228. PubMed
Langer A., Schräml M., Strasser R., Daub H., Myers T., Heindl D., Rant U.. Polymerase/DNA interactions and enzymatic activity: multi-parameter analysis with electro-switchable biosurfaces. Sci. Rep. 2015; 5:e12066. PubMed PMC
Chiang C.-H., Grauffel C., Wu L.-S., Kuo P.-H., Doudeva L.G., Lim C., Shen C.-K.J., Yuan H.S.. Structural analysis of disease-related TDP-43 D169G mutation: linking enhanced stability and caspase cleavage efficiency to protein accumulation. Sci. Rep. 2016; 6:e21581. PubMed PMC
Morgan C.E., Meagher J.L., Levengood J.D., Delproposto J., Rollins C., Stuckey J.A., Tolbert B.S.. The first crystal structure of the UP1 domain of hnRNP A1 bound to RNA reveals a new look for an old RNA binding protein. J. Mol. Biol. 2015; 427:3241–3257. PubMed PMC
Amrane S., Rebora K., Zniber I., Dupuy D., Mackereth C.D.. Backbone-independent nucleic acid binding by splicing factor SUP-12 reveals key aspects of molecular recognition. Nat. Commun. 2014; 5:e4595. PubMed
Moursy A., Allain F.H.-T., Cléry A.. Characterization of the RNA recognition mode of hnRNP G extends its role in SMN2 splicing regulation. Nucleic Acids Res. 2014; 42:6659–6672. PubMed PMC
Jenkins J.L., Agrawal A.A., Gupta A., Green M.R., Kielkopf C.L.. U2AF65 adapts to diverse Pre-mRNA splice sites through conformational selection of specific and promiscuous RNA recognition motifs. Nucleic Acids Res. 2013; 41:3859–3873. PubMed PMC
Safaee N., Kozlov G., Noronha A.M., Xie J., Wilds C.J., Gehring K.. Interdomain allostery promotes assembly of the Poly(A) mRNA complex with PABP and eIF4G. Mol. Cell. 2012; 48:375–386. PubMed
Wang H., Zeng F., Liu Q., Liu H., Liu Z., Niu L., Teng M., Li X.. The structure of the ARE-binding Domains of Hu Antigen R (HuR) undergoes conformational changes during RNA binding. Acta Crystallogr. D. 2013; 69:373–380. PubMed
Ohyama T., Nagata T., Tsuda K., Kobayashi N., Imai T., Okano H., Yamazaki T., Katahira M.. Structure of Musashi1 in a complex with target RNA: the role of aromatic stacking interactions. Nucleic Acids Res. 2011; 40:3218–3231. PubMed PMC
Tsuda K., Someya T., Kuwasako K., Takahashi M., He F., Unzai S., Inoue M., Harada T., Watanabe S., Terada T. et al. . Structural basis for the dual RNA-recognition modes of human Tra2-β RRM. Nucleic Acids Res. 2011; 39:1538–1553. PubMed PMC
Teplova M., Song J., Gaw H.Y., Teplov A., Patel D.J.. Structural insights into RNA recognition by the alternate-splicing regulator CUG-binding protein 1. Structure. 2010; 18:1364–1377. PubMed PMC
Pancevac C., Goldstone D.C., Ramos A., Taylor I.A.. Structure of the Rna15 RRM–RNA complex reveals the molecular basis of GU specificity in transcriptional 3΄-end processing factors. Nucleic Acids Res. 2010; 38:3119–3132. PubMed PMC
Woda J., Schneider B., Patel K., Mistry K., Berman H.M.. An analysis of the relationship between hydration and protein-DNA interactions. Biophys. J. 1998; 75:2170–2177. PubMed PMC
Morávek Z., Neidle S., Schneider B.. Protein and drug interactions in the minor groove of DNA. Nucleic Acids Res. 2002; 30:1182–1191. PubMed PMC
Steinbrecher T., Joung I., Case D.A.. Soft-core potentials in thermodynamic integration: comparing one- and two-step transformations. J. Comput. Chem. 2011; 32:3253–3263. PubMed PMC
In Vitro Evolution Reveals Noncationic Protein-RNA Interaction Mediated by Metal Ions
MD simulations reveal the basis for dynamic assembly of Hfq-RNA complexes
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview