Cations and hydration in catalytic RNA: molecular dynamics of the hepatitis delta virus ribozyme
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM062357
NIGMS NIH HHS - United States
GM62357
NIGMS NIH HHS - United States
GR067507
Wellcome Trust - United Kingdom
PubMed
16617077
PubMed Central
PMC1483112
DOI
10.1529/biophysj.105.079368
PII: S0006-3495(06)71761-1
Knihovny.cz E-zdroje
- MeSH
- hořčík chemie MeSH
- kationty dvojmocné chemie MeSH
- kationty jednomocné chemie MeSH
- konformace nukleové kyseliny MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- RNA katalytická chemie MeSH
- sekvence nukleotidů MeSH
- sodík chemie MeSH
- vazebná místa MeSH
- virus hepatitidy delta enzymologie MeSH
- voda chemie MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- hořčík MeSH
- kationty dvojmocné MeSH
- kationty jednomocné MeSH
- RNA katalytická MeSH
- sodík MeSH
- voda MeSH
The hepatitis delta virus (HDV) ribozyme is an RNA enzyme from the human pathogenic HDV. Cations play a crucial role in self-cleavage of the HDV ribozyme, by promoting both folding and chemistry. Experimental studies have revealed limited but intriguing details on the location and structural and catalytic functions of metal ions. Here, we analyze a total of approximately 200 ns of explicit-solvent molecular dynamics simulations to provide a complementary atomistic view of the binding of monovalent and divalent cations as well as water molecules to reaction precursor and product forms of the HDV ribozyme. Our simulations find that an Mg2+ cation binds stably, by both inner- and outer-sphere contacts, to the electronegative catalytic pocket of the reaction precursor, in a position to potentially support chemistry. In contrast, protonation of the catalytically involved C75 in the precursor or artificial placement of this Mg2+ into the product structure result in its swift expulsion from the active site. These findings are consistent with a concerted reaction mechanism in which C75 and hydrated Mg2+ act as general base and acid, respectively. Monovalent cations bind to the active site and elsewhere assisted by structurally bridging long-residency water molecules, but are generally delocalized.
Zobrazit více v PubMed
Lai, M. M. 1995. The molecular biology of hepatitis delta virus. Annu. Rev. Biochem. 64:259–286. PubMed
Perrotta, A. T., I. Shih, and M. D. Been. 1999. Imidazole rescue of a cytosine mutation in a self-cleaving ribozyme. Science. 286:123–126. PubMed
Nakano, S., D. M. Chadalavada, and P. C. Bevilacqua. 2000. General acid-base catalysis in the mechanism of a hepatitis delta virus ribozyme. Science. 287:1493–1497. PubMed
Ferre-D'Amare, A. R., K. Zhou, and J. A. Doudna. 1998. Crystal structure of a hepatitis delta virus ribozyme. Nature. 395:567–574. PubMed
Ferre-D'Amare, A. R., K. Zhou, and J. A. Doudna. 1998. A general module for RNA crystallization. J. Mol. Biol. 279:621–631. PubMed
Ke, A., K. Zhou, F. Ding, J. H. Cate, and J. A. Doudna. 2004. A conformational switch controls hepatitis delta virus ribozyme catalysis. Nature. 429:201–205. PubMed
Das, S. R., and J. A. Piccirilli. 2005. General acid catalysis by the hepatitis delta virus ribozyme. Nat. Chem. Biol. 1:45–52. PubMed
Nakano, S., D. J. Proctor, and P. C. Bevilacqua. 2001. Mechanistic characterization of the HDV genomic ribozyme: assessing the catalytic and structural contributions of divalent metal ions within a multichannel reaction mechanism. Biochemistry. 40:12022–12038. PubMed
Nakano, S., A. L. Cerrone, and P. C. Bevilacqua. 2003. Mechanistic characterization of the HDV genomic ribozyme: classifying the catalytic and structural metal ion sites within a multichannel reaction mechanism. Biochemistry. 42:2982–2994. PubMed
Pyle, A. M. 2002. Metal ions in the structure and function of RNA. J. Biol. Inorg. Chem. 7:679–690. PubMed
Hanna, R., and J. A. Doudna. 2000. Metal ions in ribozyme folding and catalysis. Curr. Opin. Chem. Biol. 4:166–170. PubMed
Murray, J. B., A. A. Seyhan, N. G. Walter, J. M. Burke, and W. G. Scott. 1998. The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone. Chem. Biol. 5:587–595. PubMed
Perrotta, A. T., and M. D. Been. 1990. The self-cleaving domain from the genomic RNA of hepatitis delta virus: sequence requirements and the effects of denaturant. Nucleic Acids Res. 18:6821–6827. PubMed PMC
Kawakami, J., P. K. Kumar, Y. A. Suh, F. Nishikawa, K. Kawakami, K. Taira, E. Ohtsuka, and S. Nishikawa. 1993. Identification of important bases in a single-stranded region (SSrC) of the hepatitis delta (delta) virus ribozyme. Eur. J. Biochem. 217:29–36. PubMed
Ferre-D'Amare, A. R., and J. A. Doudna. 2000. Crystallization and structure determination of a hepatitis delta virus ribozyme: use of the RNA-binding protein U1A as a crystallization module. J. Mol. Biol. 295:541–556. PubMed
Rangan, P., and S. A. Woodson. 2003. Structural requirement for Mg2+ binding in the group I intron core. J. Mol. Biol. 329:229–238. PubMed
Draper, D. E., D. Grilley, and A. M. Soto. 2005. Ions and RNA folding. Annu. Rev. Biophys. Biomol. Struct. 34:221–243. PubMed
Ennifar, E., P. Walter, and P. Dumas. 2003. A crystallographic study of the binding of 13 metal ions to two related RNA duplexes. Nucleic Acids Res. 32:2671–2682. PubMed PMC
Auffinger, P., L. Bielecki, and E. Westhof. 2004. Anion binding to nucleic acids. Structure. 12:379–388. PubMed
Reblova, K., N. Spackova, J. E. Sponer, J. Koca, and J. Sponer. 2003. Molecular dynamics simulations of RNA kissing-loop motifs reveal structural dynamics and formation of cation-binding pockets. Nucleic Acids Res. 31:6942–6952. PubMed PMC
Nakano, S., and P. C. Bevilacqua. 2001. Proton inventory of the genomic HDV ribozyme in Mg(2+)-containing solutions. J. Am. Chem. Soc. 123:11333–11334. PubMed
Shih, I. H., and M. D. Been. 1999. Ribozyme cleavage of a 2,5-phosphodiester linkage: mechanism and a restricted divalent metal-ion requirement. RNA. 5:1140–1148. PubMed PMC
Shih, I. H., and M. D. Been. 2002. Catalytic strategies of the hepatitis delta virus ribozymes. Annu. Rev. Biochem. 71:887–917. PubMed
Westhof, E. 1988. Water: An integral part of nucleic acid structure. Annu. Rev. Biophys. Biophys. Chem. 17:125–144. PubMed
Schneider, B., K. Patel, and H. M. Berman. 1998. Hydration of the phosphate group in double-helical DNA. Biophys. J. 75:2422–2434. PubMed PMC
Auffinger, P., and E. Westhof. 2001. RNA solvation: A molecular dynamics simulation perspective. Biopolymers. 56:266–274. PubMed
Schneider, C., M. Brandl, and J. Suhnel. 2001. Molecular dynamics simulation reveals conformational switching of water-mediated uracil-cytosine base-pairs in an RNA duplex. J. Mol. Biol. 305:659–667. PubMed
Brandl, M., M. Meyer, and J. Suhnel. 2000. Water-mediated base pairs in RNA: A quantum-chemical study. J. Phys. Chem. A. 104:11177–11187.
Reblova, K., N. Spackova, J. Koca, N. B. Leontis, and J. Sponer. 2004. Long-residency hydration, cation binding, and dynamics of loop E/helix IV rRNA-L25 protein complex. Biophys. J. 87:3397–3412. PubMed PMC
Csaszar, K., N. Spackova, R. Stefl, J. Sponer, and N. B. Leontis. 2001. Molecular dynamics of the frame-shifting pseudoknot from beet western yellows virus: the role of non-Watson-Crick base-pairing, ordered hydration, cation binding and base mutations on stability and unfolding. J. Mol. Biol. 313:1073–1091. PubMed
Guo, J. X., and W. H. Gmeiner. 2001. Molecular dynamics simulation of the human U2B'' protein complex with U2 snRNA hairpin IV in aqueous solution. Biophys. J. 81:630–642. PubMed PMC
Reblova, K., N. Spackova, R. Stefl, K. Csaszar, J. Koca, N. B. Leontis, and J. Sponer. 2003. Non-Watson-Crick basepairing and hydration in RNA motifs: molecular dynamics of 5S rRNA loop E. Biophys. J. 84:3564–3582. PubMed PMC
Spackova, N., T. E. Cheatham, F. Ryjacek, F. Lankas, L. van Meervelt, P. Hobza, and J. Sponer. 2003. Molecular dynamics simulations and thermodynamics analysis of DNA-drug complexes. Minor groove binding between 4′,6-diamidino-2-phenylindole and DNA duplexes in solution. J. Am. Chem. Soc. 125:1759–1769. PubMed
Razga, F., J. Koca, J. Sponer, and N. B. Leontis. 2005. Hinge-like motions in RNA kink-turns: The role of the second A-minor motif and nominally unpaired bases. Biophys. J. 88:3466–3485. PubMed PMC
Razga, F., N. Spackova, K. Reblova, J. Koca, N. B. Leontis, and J. Sponer. 2004. Ribosomal RNA kink-turn motif–a flexible molecular hinge. J. Biomol. Struct. Dyn. 22:183–194. PubMed
Auffinger, P., L. Bielecki, and E. Westhof. 2004. Symmetric K+ and Mg2+ ion-binding sites in the 5S rRNA loop E inferred from molecular dynamics simulations. J. Mol. Biol. 335:555–571. PubMed
Krasovska, M. V., J. Sefcikova, N. Spackova, J. Sponer, and N. G. Walter. 2005. Structural dynamics of precursor and product of the RNA enzyme from the hepatitis delta virus as revealed by molecular dynamics simulations. J. Mol. Biol. 351:731–748. PubMed
Accelrys Software, I. 1997. InsightII. San Diego, CA.
Gresh, N., J. E. Sponer, N. Spackova, J. Leszczynski, and J. Sponer. 2003. Theoretical study of binding of hydrated Zn(II) and Mg(II) cations to 5′-guanosine monophosphate. Toward polarizable molecular mechanics for DNA and RNA. J. Phys. Chem. B. 107:8669–8681.
Varnai, P., and K. Zakrzewska. 2004. DNA and its counterions: a molecular dynamics study. Nucleic Acids Res. 32:4269–4280. PubMed PMC
Wadkins, T. S., I. Shih, A. T. Perrotta, and M. D. Been. 2001. A pH-sensitive RNA tertiary interaction affects self-cleavage activity of the HDV ribozymes in the absence of added divalent metal ion. J. Mol. Biol. 305:1045–1055. PubMed
Case, D. A., D. A. Pearlman, J. W. Caldwell, T. E. Cheathan III, J. Wang, W. S. Ross, C. L. Simmerling, T. A. Darden, K. M. Merz, R. V. Stanton, A. L. Cheng, J. J. Vincent, M. Crowley, V. Tsui, H. Gohlke, R. J. Radmer, Y. Duan, J. Pitera, I. Massova, G. L. Seibel, U. C. Singh, P. K. Weiner, and P. A. Kollman. 2002. AMBER 7:2002. University of California, San Francisco, San Francisco, CA.
Cornell, W. D., P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman. 1995. A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J. Am. Chem. Soc. 117:5179–5197.
Wang, J. M., P. Cieplak, and P. A. Kollman. 2000. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 21:1049–1074.
Cheatham, T.E., P. Cieplak, and P.A. Kollman. 1999. A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat. J. Biomol. Struct. Dyn. 16:845–862. PubMed
Jorgensen, W. L., J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein. 1983. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79:926–935.
Aqvist, J. 1990. Ion water interaction potentials derived from free-energy perturbation simulations. J. Phys. Chem. 94:8021–8024.
Essmann, U., L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen. 1995. A smooth particle mesh Ewald method. J. Chem. Phys. 103:8577–8593.
Berendsen, H. J. C., J. P. M. Postma, W. F. Vangunsteren, A. Dinola, and J. R. Haak. 1984. Molecular-dynamics with coupling to an external bath. J. Chem. Phys. 81:3684–3690.
DeLano, W. L. 2002. The PyMOL Molecular Graphics System.
Humphrey, W., A. Dalke, and K. Schulten. 1996. VMD: Visual molecular dynamics. J. Mol. Graph. 14:33–38. PubMed
Schneider, B., and H. M. Berman. 1995. Hydration of the DNA bases is local. Biophys. J. 69:2661–2669. PubMed PMC
McRee, D. E. 1999. XtalView/Xfit—A versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125:156–165. PubMed
Gilson, M. K., K. A. Sharp, and B. H. Honig. 1988. Calculating the electrostatic potential of molecules in solution—method and error assessment. J. Comput. Chem. 9:327–335.
Schneider, B., Z. Moravek, and H. M. Berman. 2004. RNA conformational classes. Nucleic Acids Res. 32:1666–1677. PubMed PMC
Martinez, J. M., R. R. Pappalardo, and E. S. Marcos. 1999. First-principles ion-water interaction potentials for highly charged monatomic cations. Computer simulations of Al3+, Mg2+, and Be2+ in water. J. Am. Chem. Soc. 121:3175–3184.
Markham, G. D., J. P. Glusker, and C. W. Bock. 2002. The arrangement of first- and second-sphere water molecules in divalent magnesium complexes: Results from molecular orbital and density functional theory and from structural crystallography. J. Phys. Chem. B. 106:5118–5134.
Misra, V. K., and D. E. Draper. 1998. On the role of magnesium ions in RNA stability. Biopolymers. 48:113–135. PubMed
Misra, V. K., and D. E. Draper. 2002. The linkage between magnesium binding and RNA folding. J. Mol. Biol. 317:507–521. PubMed
Burgess, J. M. 1988. Ions in Solution. Ellis Horwood, Chichester, UK.
Auffinger, P., L. Bielecki, and E. Westhof. 2003. The Mg2+ binding sites of the 5S rRNA loop E motif as investigated by molecular dynamics simulations. Chem. Biol. 10:551–561. PubMed
Tanner, N. K., S. Schaff, G. Thill, E. Petit-Koskas, A. M. Crain-Denoyelle, and E. Westhof. 1994. A three-dimensional model of hepatitis delta virus ribozyme based on biochemical and mutational analyses. Curr. Biol. 4:488–498. PubMed
Leontis, N. B., J. Stombaugh, and E. Westhof. 2002. The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 30:3497–3531. PubMed PMC
Rueda, M., E. Cubero, C. A. Laughton, and M. Orozco. 2004. Exploring the counterion atmosphere around DNA: What can be learned from molecular dynamics simulations? Biophys. J. 87:800–811. PubMed PMC
Matysiak, M., J. Wrzesinski, and J. Ciesiolka. 1999. Sequential folding of the genomic ribozyme of the hepatitis delta virus: structural analysis of RNA transcription intermediates. J. Mol. Biol. 291:283–294. PubMed
Lafontaine, D. A., S. Ananvoranich, and J. P. Perreault. 1999. Presence of a coordinated metal ion in a trans-acting antigenomic delta ribozyme. Nucleic Acids Res. 27:3236–3243. PubMed PMC
Jeong, S., J. Sefcikova, R. A. Tinsley, D. Rueda, and N. G. Walter. 2003. Trans-acting hepatitis delta virus ribozyme: catalytic core and global structure are dependent on the 5′ substrate sequence. Biochemistry. 42:7727–7740. PubMed
Harris, D. A., R. A. Tinsley, and N. G. Walter. 2004. Terbium-mediated footprinting probes a catalytic conformational switch in the antigenomic hepatitis delta virus ribozyme. J. Mol. Biol. 341:389–403. PubMed
Pallan, P. S., W. S. Marshall, J. Harp, F. C. Jewett, Z. Wawrzak, B. A. Brown, A. Rich, and M. Egli. 2005. Crystal structure of a luteoviral RNA pseudoknot and model for a minimal ribosomal frameshifting motif. Biochemistry. 44:11315–11322. PubMed PMC
Yaremchuk, A., M. Tukalo, M. Grotli, and S. Cusack. 2001. A succession of substrate induced conformational changes ensures the amino acid specificity of Thermus thermophilus prolyl-tRNA synthetase: Comparison with histidyl-tRNA synthetase. J. Mol. Biol. 309:989–1002. PubMed
Nissen, P., J. A. Ippolito, N. Ban, P. B. Moore, and T. A. Steitz. 2001. RNA tertiary interactions in the large ribosomal subunit: The A-minor motif. Proc. Natl. Acad. Sci. USA. 98:4899–4903. PubMed PMC
Sponer, J., H. A. Gabb, J. Leszczynski, and P. Hobza. 1997. Base-base and deoxyribose-base stacking interactions in B-DNA and Z-DNA: A quantum-chemical study. Biophys. J. 73:76–87. PubMed PMC
Barone, F., F. Lankas, N. Spackova, J. Sponer, P. Karran, M. Bignami, and F. Mazzei. 2005. Structural and dynamic effects of single 7-hydro-8-oxoguanine bases located in a frameshift target DNA sequence. Biophys. Chem. 118:31–41. PubMed
Beveridge, D. L., G. Barreiro, K. S. Byun, D. A. Case, T. E. Cheatham, S. B. Dixit, E. Giudice, F. Lankas, R. Lavery, and J. H. Maddocks. 2004. Molecular dynamics simulations of the 136 unique tetranucleotide sequences of DNA oligonucleotides. I. Research design and results on d(C(p)G) steps. Biophys. J. 87:3799–3813. PubMed PMC
Fadrna, E., N. Spackova, R. Stefl, J. Koca, T. E. Cheatham, and J. Sponer. 2004. Molecular dynamics simulations of guanine quadruplex loops: Advances and force field limitations. Biophys. J. 87:227–242. PubMed PMC
Spackova, N., and J. Sponer. 2006. Molecular dynamics simulations of sarcin-ricin rRNA motif. Nucleic Acids Res. 34:697–708. PubMed PMC
Jurecka, P., J. Sponer, and P. Hobza. 2004. Potential energy surface of the cytosine dimer: MP2 complete basis set limit interaction energies, CCSD(T) correction term, and comparison with the AMBER force field. J. Phys. Chem. B. 108:5466–5471.
Sponer, J., P. Jurecka, and P. Hobza. 2004. Accurate interaction energies of hydrogen-bonded nucleic acid base pairs. J. Am. Chem. Soc. 126:10142–10151. PubMed
Sponer, J. E., N. Spackova, J. Leszczynski, and J. Sponer. 2005. Principles of RNA base pairing: Structures and energies of the trans Watson-Crick/sugar edge base pairs. J. Phys. Chem. B. 109:11399–11410. PubMed
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview
Extended molecular dynamics of a c-kit promoter quadruplex
The role of an active site Mg(2+) in HDV ribozyme self-cleavage: insights from QM/MM calculations
Disparate HDV ribozyme crystal structures represent intermediates on a rugged free-energy landscape
Theoretical studies of RNA catalysis: hybrid QM/MM methods and their comparison with MD and QM
Conformations of flanking bases in HIV-1 RNA DIS kissing complexes studied by molecular dynamics
Molecular dynamics simulations and their application to four-stranded DNA