Extensive molecular dynamics simulations showing that canonical G8 and protonated A38H+ forms are most consistent with crystal structures of hairpin ribozyme
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM062357-08
NIGMS NIH HHS - United States
R01 GM062357-03S2
NIGMS NIH HHS - United States
R01 GM062357-08S1
NIGMS NIH HHS - United States
R01 GM062357
NIGMS NIH HHS - United States
GM62357
NIGMS NIH HHS - United States
PubMed
20420375
PubMed Central
PMC2872159
DOI
10.1021/jp1001258
Knihovny.cz E-zdroje
- MeSH
- adenin chemie MeSH
- guanin chemie MeSH
- katalytická doména MeSH
- katalýza MeSH
- konformace nukleové kyseliny MeSH
- krystalografie rentgenová MeSH
- protony * MeSH
- RNA katalytická chemie metabolismus MeSH
- simulace molekulární dynamiky * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- adenin MeSH
- guanin MeSH
- hairpin ribozyme MeSH Prohlížeč
- protony * MeSH
- RNA katalytická MeSH
The hairpin ribozyme is a prominent member of the group of small catalytic RNAs (RNA enzymes or ribozymes) because it does not require metal ions to achieve catalysis. Biochemical and structural data have implicated guanine 8 (G8) and adenine 38 (A38) as catalytic participants in cleavage and ligation catalyzed by the hairpin ribozyme, yet their exact role in catalysis remains disputed. To gain insight into dynamics in the active site of a minimal self-cleaving hairpin ribozyme, we have performed extensive classical, explicit-solvent molecular dynamics (MD) simulations on time scales of 50-150 ns. Starting from the available X-ray crystal structures, we investigated the structural impact of the protonation states of G8 and A38, and the inactivating A-1(2'-methoxy) substitution employed in crystallography. Our simulations reveal that a canonical G8 agrees well with the crystal structures while a deprotonated G8 profoundly distorts the active site. Thus MD simulations do not support a straightforward participation of the deprotonated G8 in catalysis. By comparison, the G8 enol tautomer is structurally well tolerated, causing only local rearrangements in the active site. Furthermore, a protonated A38H(+) is more consistent with the crystallography data than a canonical A38. The simulations thus support the notion that A38H(+) is the dominant form in the crystals, grown at pH 6. In most simulations, the canonical A38 departs from the scissile phosphate and substantially perturbs the structures of the active site and S-turn. Yet, we occasionally also observe formation of a stable A-1(2'-OH)...A38(N1) hydrogen bond, which documents the ability of the ribozyme to form this hydrogen bond, consistent with a potential role of A38 as general base catalyst. The presence of this hydrogen bond is, however, incompatible with the expected in-line attack angle necessary for self-cleavage, requiring a rapid transition of the deprotonated 2'-oxyanion to a position more favorable for in-line attack after proton transfer from A-1(2'-OH) to A38(N1). The simulations revealed a potential force field artifact, occasional but irreversible formation of "ladder-like", underwound A-RNA structure in one of the external helices. Although it does not affect the catalytic center of the hairpin ribozyme, further studies are under way to better assess possible influence of such force field behavior on long RNA simulations.
Zobrazit více v PubMed
Buzayan JM, Hampel A, Bruening G. Nucleic Acids Res. 1986;14:9729. PubMed PMC
Buzayan JM, Feldstein PA, Segrelles C, Bruening G. Nucleic Acids Res. 1988;16:4009. PubMed PMC
van Tol H, Buzayan JM, Feldstein PA, Eckstein F, Bruening G. Nucleic Acids Res. 1990;18:1971. PubMed PMC
Walter NG, Burke JM. Curr. Opin. Chem. Biol. 1998;2:24. PubMed
Fedor MJ. J. Mol. Biol. 2000;297:269. PubMed
Fedor MJ. Annu. Rev. Biophys. 2009;38:271. PubMed
Murray JB, Seyhan AA, Walter NG, Burke JM, Scott WG. Chem. Biol. 1998;5:587. PubMed
Rhodes MM, Reblova K, Sponer J, Walter NG. Proc. Natl. Acad. Sci. USA. 2006;103:13380. PubMed PMC
Krasovska MV, Sefcikova J, Reblova K, Schneider B, Walter NG, Sponer J. Biophys. J. 2006;91:626. PubMed PMC
Krasovska MV, Sefcikova J, Spackova N, Sponer J, Walter NG. J. Mol. Biol. 2005;351:731. PubMed
Salter J, Krucinska J, Alam S, Grum-Tokars V, Wedekind JE. Biochemistry. 2006;45:686. PubMed PMC
Park H, Lee SJ. Chem. Theory Comput. 2006;2:858. PubMed
Walter NG. Mol. Cell. 2007;28:923. PubMed PMC
Cochrane JC, Strobel SA. Acc. Chem. Res. 2008;41:1027. PubMed
Pinard R, Hampel KJ, Heckman JE, Lambert D, Chan PA, Major F, Burke JM. EMBO J. 2001;20:6434. PubMed PMC
Kuzmin YI, Da Costa CP, Fedor MJ. J. Mol. Biol. 2004;340:233. PubMed
Ditzler MA, Rueda D, Mo JJ, Hakansson K, Walter NG. Nucleic Acids Res. 2008;36:7088. PubMed PMC
Rupert PB, Ferre-D’Amare AR. Nature. 2001;410:780. PubMed
Rupert PB, Massey AP, Sigurdsson ST, Ferre-D’Amare AR. Science. 2002;298:1421. PubMed
Liu L, Cottrell JW, Scott LG, Fedor MJ. Nat. Chem. Biol. 2009;5:351. PubMed PMC
Bevilacqua PC, Brown TS, Nakano S, Yajima R. Biopolymers. 2004;73:90. PubMed
Lebruska LL, Kuzmine II, Fedor MJ. Chem. Biol. 2002;9:465. PubMed
Ditzler MA, Sponer J, Walter NG. RNA. 2009;15:560. PubMed PMC
Nam K, Gao JL, York DM. RNA. 2008;14:1501. PubMed PMC
Nam KH, Gao JL, York DM. J. Am. Chem. Soc. 2008;130:4680. PubMed PMC
Kuzmin YI, Da Costa CP, Cottrell JW, Fedor MJ. J. Mol. Biol. 2005;349:989. PubMed
Cottrell JW, Kuzmin YI, Fedor MJ. J. Biol. Chem. 2007;282:13498. PubMed
Torelli AT, Krucinska J, Wedekind JE. RNA. 2007;13:1052. PubMed PMC
Macelrevey C, Salter JD, Krucinska J, Wedekind JE. RNA. 2008;14:1600. PubMed PMC
Torelli AT, Spitale RC, Krucinska J, Wedekind JE. Biochem. Biophys. Res. Commun. 2008;371:154. PubMed PMC
Spitale RC, Volpini R, Heller MG, Krucinska J, Cristalli G, Wedekind JE. J. Am. Chem. Soc. 2009;131:6093. PubMed PMC
Guo M, Spitale RC, Volpini R, Krucinska J, Cristalli G, Carey PR, Wedekind JE. J. Am. Chem. Soc. 2009;131:12908. PubMed PMC
Case DA, D TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA. University of California, San Francisco. 2006
Wang JM, Cieplak P, Kollman PA. J. Comput. Chem. 2000;21:1049.
Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, Laughton CA, Orozco M. Biophys. J. 2007;92:3817. PubMed PMC
Joung IS, Cheatham TE. J. Phys. Chem. B. 2008;112:9020. PubMed PMC
Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. J. Am. Chem. Soc. 1995;117:5179.
Cornell WD, Cieplak P, Bayly CI, Kollman PA. J. Am. Chem. Soc. 1993;115:9620.
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery J,JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03. Gaussian, Inc.; Pittsburgh: 2003.
Ditzler MA, Otyepka M, Sponer J, Walter NG. Acc. Chem. Res. 2009 PubMed PMC
Zirbel CL, Sponer JE, Sponer J, Stombaugh J, Leontis NB. Nucleic Acids Res. 2009;37:4898. PubMed PMC
Perez A, Lankas F, Luque FJ, Orozco M. Nucleic Acids Res. 2008;36:2379. PubMed PMC
Perez A, Luque FJ, Orozco M. J. Am. Chem. Soc. 2007;129:14739. PubMed
McDowell SE, Spackova N, Sponer J, Walter NG. Biopolymers. 2007;85:169. PubMed PMC
Sponer J, Spackova N. Methods. 2007;43:278. PubMed PMC
Spackova N, Sponer J. Nucleic Acids Res. 2006;34:697. PubMed PMC
Reblova K, Lankas F, Razga F, Krasovska MV, Koca J, Sponer J. Biopolymers. 2006;82:504. PubMed
Besseova I, Otyepka M, Reblova K, Sponer J. Phys. Chem. Chem. Phys. 2009;11:10701. PubMed
Fadrna E, Spackova N, Stefl R, Koca J, Cheatham TE, Sponer J. Biophys. J. 2004;87:227. PubMed PMC
Banas P, Jurecka P, Walter NG, Sponer J, Otyepka M. Methods. 2009;49:202. PubMed PMC
Fadrna E, Spackova N, Sarzynska J, Koca J, Orozco M, Cheatham TE, Kulinski T, Sponer J. J.Chem. Theory Comput. 2009;5:2514. PubMed
Reblova K, Fadrna E, Sarzynska J, Kulinski T, Kulhanek P, Ennifar E, Koca J, Sponer J. Biophys. J. 2007;93:3932. PubMed PMC
Banas P, Rulisek L, Hanosova V, Svozil D, Walter NG, Sponer J, Otyepka M. J. Phys. Chem. B. 2008;112:11177. PubMed PMC
Ryder SP, Strobel SA. Nucleic Acids Res. 2002;30:1287. PubMed PMC
Alam S, Grum-Tokars V, Krucinska J, Kundracik ML, Wedekind JE. Biochemistry. 2005;44:14396. PubMed
Cai ZP, Tinoco I. Biochemistry. 1996;35:6026. PubMed
Butcher SE, Allain FHT, Feigon J. Nat. Struct. Biol. 1999;6:212. PubMed
Hampel KJ, Burke JM. Biochemistry. 2001;40:3723. PubMed
Buck J, Li YL, Richter C, Vergne J, Maurel MC, Schwalbe H. ChemBioChem. 2009;10:2100. PubMed
Auffinger P, Hashem Y. Curr. Opin. Struct. Biol. 2007;17:325. PubMed
Orozco M, Noy A, Perez A. Curr. Opin. Struct. Biol. 2008;18:185. PubMed
Cheatham TE. Curr. Opin. Struct. Biol. 2004;14:360. PubMed
Mackerell AD. J. Comput. Chem. 2004;25:1584. PubMed
Hall KB. Curr. Opin. Chem. Biol. 2008;12:612. PubMed PMC
Chen AA, Draper DE, Pappu RV. J. Mol. Biol. 2009;390:805. PubMed PMC
Huang W, Kim J, Jha S, Aboul-Ela F. Nucleic Acids Res. 2009;37:6528. PubMed PMC
Romanowska J, Setny P, Trylska J. J. Phys. Chem. B. 2008;112:15227. PubMed PMC
Chin K, Sharp KA, Honig B, Pyle AM. Nat. Struct. Biol. 1999;6:1055. PubMed
Tang CL, Alexov E, Pyle AM, Honig B. Biophys. J. 2002;82:131a.
Tang CL, Alexov E, Pyle AM, Honig B. J. Mol. Biol. 2007;366:1475. PubMed
Ode H, Matsuo Y, Neya S, Hoshino T. J. Comput. Chem. 2008;29:2531. PubMed
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview
Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies
Chemical feasibility of the general acid/base mechanism of glmS ribozyme self-cleavage
Molecular mechanism of preQ1 riboswitch action: a molecular dynamics study
Structure and mechanical properties of the ribosomal L1 stalk three-way junction