Extensive molecular dynamics simulations showing that canonical G8 and protonated A38H+ forms are most consistent with crystal structures of hairpin ribozyme

. 2010 May 20 ; 114 (19) : 6642-52.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid20420375

Grantová podpora
R01 GM062357-08 NIGMS NIH HHS - United States
R01 GM062357-03S2 NIGMS NIH HHS - United States
R01 GM062357-08S1 NIGMS NIH HHS - United States
R01 GM062357 NIGMS NIH HHS - United States
GM62357 NIGMS NIH HHS - United States

The hairpin ribozyme is a prominent member of the group of small catalytic RNAs (RNA enzymes or ribozymes) because it does not require metal ions to achieve catalysis. Biochemical and structural data have implicated guanine 8 (G8) and adenine 38 (A38) as catalytic participants in cleavage and ligation catalyzed by the hairpin ribozyme, yet their exact role in catalysis remains disputed. To gain insight into dynamics in the active site of a minimal self-cleaving hairpin ribozyme, we have performed extensive classical, explicit-solvent molecular dynamics (MD) simulations on time scales of 50-150 ns. Starting from the available X-ray crystal structures, we investigated the structural impact of the protonation states of G8 and A38, and the inactivating A-1(2'-methoxy) substitution employed in crystallography. Our simulations reveal that a canonical G8 agrees well with the crystal structures while a deprotonated G8 profoundly distorts the active site. Thus MD simulations do not support a straightforward participation of the deprotonated G8 in catalysis. By comparison, the G8 enol tautomer is structurally well tolerated, causing only local rearrangements in the active site. Furthermore, a protonated A38H(+) is more consistent with the crystallography data than a canonical A38. The simulations thus support the notion that A38H(+) is the dominant form in the crystals, grown at pH 6. In most simulations, the canonical A38 departs from the scissile phosphate and substantially perturbs the structures of the active site and S-turn. Yet, we occasionally also observe formation of a stable A-1(2'-OH)...A38(N1) hydrogen bond, which documents the ability of the ribozyme to form this hydrogen bond, consistent with a potential role of A38 as general base catalyst. The presence of this hydrogen bond is, however, incompatible with the expected in-line attack angle necessary for self-cleavage, requiring a rapid transition of the deprotonated 2'-oxyanion to a position more favorable for in-line attack after proton transfer from A-1(2'-OH) to A38(N1). The simulations revealed a potential force field artifact, occasional but irreversible formation of "ladder-like", underwound A-RNA structure in one of the external helices. Although it does not affect the catalytic center of the hairpin ribozyme, further studies are under way to better assess possible influence of such force field behavior on long RNA simulations.

Zobrazit více v PubMed

Buzayan JM, Hampel A, Bruening G. Nucleic Acids Res. 1986;14:9729. PubMed PMC

Buzayan JM, Feldstein PA, Segrelles C, Bruening G. Nucleic Acids Res. 1988;16:4009. PubMed PMC

van Tol H, Buzayan JM, Feldstein PA, Eckstein F, Bruening G. Nucleic Acids Res. 1990;18:1971. PubMed PMC

Walter NG, Burke JM. Curr. Opin. Chem. Biol. 1998;2:24. PubMed

Fedor MJ. J. Mol. Biol. 2000;297:269. PubMed

Fedor MJ. Annu. Rev. Biophys. 2009;38:271. PubMed

Murray JB, Seyhan AA, Walter NG, Burke JM, Scott WG. Chem. Biol. 1998;5:587. PubMed

Rhodes MM, Reblova K, Sponer J, Walter NG. Proc. Natl. Acad. Sci. USA. 2006;103:13380. PubMed PMC

Krasovska MV, Sefcikova J, Reblova K, Schneider B, Walter NG, Sponer J. Biophys. J. 2006;91:626. PubMed PMC

Krasovska MV, Sefcikova J, Spackova N, Sponer J, Walter NG. J. Mol. Biol. 2005;351:731. PubMed

Salter J, Krucinska J, Alam S, Grum-Tokars V, Wedekind JE. Biochemistry. 2006;45:686. PubMed PMC

Park H, Lee SJ. Chem. Theory Comput. 2006;2:858. PubMed

Walter NG. Mol. Cell. 2007;28:923. PubMed PMC

Cochrane JC, Strobel SA. Acc. Chem. Res. 2008;41:1027. PubMed

Pinard R, Hampel KJ, Heckman JE, Lambert D, Chan PA, Major F, Burke JM. EMBO J. 2001;20:6434. PubMed PMC

Kuzmin YI, Da Costa CP, Fedor MJ. J. Mol. Biol. 2004;340:233. PubMed

Ditzler MA, Rueda D, Mo JJ, Hakansson K, Walter NG. Nucleic Acids Res. 2008;36:7088. PubMed PMC

Rupert PB, Ferre-D’Amare AR. Nature. 2001;410:780. PubMed

Rupert PB, Massey AP, Sigurdsson ST, Ferre-D’Amare AR. Science. 2002;298:1421. PubMed

Liu L, Cottrell JW, Scott LG, Fedor MJ. Nat. Chem. Biol. 2009;5:351. PubMed PMC

Bevilacqua PC, Brown TS, Nakano S, Yajima R. Biopolymers. 2004;73:90. PubMed

Lebruska LL, Kuzmine II, Fedor MJ. Chem. Biol. 2002;9:465. PubMed

Ditzler MA, Sponer J, Walter NG. RNA. 2009;15:560. PubMed PMC

Nam K, Gao JL, York DM. RNA. 2008;14:1501. PubMed PMC

Nam KH, Gao JL, York DM. J. Am. Chem. Soc. 2008;130:4680. PubMed PMC

Kuzmin YI, Da Costa CP, Cottrell JW, Fedor MJ. J. Mol. Biol. 2005;349:989. PubMed

Cottrell JW, Kuzmin YI, Fedor MJ. J. Biol. Chem. 2007;282:13498. PubMed

Torelli AT, Krucinska J, Wedekind JE. RNA. 2007;13:1052. PubMed PMC

Macelrevey C, Salter JD, Krucinska J, Wedekind JE. RNA. 2008;14:1600. PubMed PMC

Torelli AT, Spitale RC, Krucinska J, Wedekind JE. Biochem. Biophys. Res. Commun. 2008;371:154. PubMed PMC

Spitale RC, Volpini R, Heller MG, Krucinska J, Cristalli G, Wedekind JE. J. Am. Chem. Soc. 2009;131:6093. PubMed PMC

Guo M, Spitale RC, Volpini R, Krucinska J, Cristalli G, Carey PR, Wedekind JE. J. Am. Chem. Soc. 2009;131:12908. PubMed PMC

Case DA, D TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA. University of California, San Francisco. 2006

Wang JM, Cieplak P, Kollman PA. J. Comput. Chem. 2000;21:1049.

Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, Laughton CA, Orozco M. Biophys. J. 2007;92:3817. PubMed PMC

Joung IS, Cheatham TE. J. Phys. Chem. B. 2008;112:9020. PubMed PMC

Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. J. Am. Chem. Soc. 1995;117:5179.

Cornell WD, Cieplak P, Bayly CI, Kollman PA. J. Am. Chem. Soc. 1993;115:9620.

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery J,JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03. Gaussian, Inc.; Pittsburgh: 2003.

Ditzler MA, Otyepka M, Sponer J, Walter NG. Acc. Chem. Res. 2009 PubMed PMC

Zirbel CL, Sponer JE, Sponer J, Stombaugh J, Leontis NB. Nucleic Acids Res. 2009;37:4898. PubMed PMC

Perez A, Lankas F, Luque FJ, Orozco M. Nucleic Acids Res. 2008;36:2379. PubMed PMC

Perez A, Luque FJ, Orozco M. J. Am. Chem. Soc. 2007;129:14739. PubMed

McDowell SE, Spackova N, Sponer J, Walter NG. Biopolymers. 2007;85:169. PubMed PMC

Sponer J, Spackova N. Methods. 2007;43:278. PubMed PMC

Spackova N, Sponer J. Nucleic Acids Res. 2006;34:697. PubMed PMC

Reblova K, Lankas F, Razga F, Krasovska MV, Koca J, Sponer J. Biopolymers. 2006;82:504. PubMed

Besseova I, Otyepka M, Reblova K, Sponer J. Phys. Chem. Chem. Phys. 2009;11:10701. PubMed

Fadrna E, Spackova N, Stefl R, Koca J, Cheatham TE, Sponer J. Biophys. J. 2004;87:227. PubMed PMC

Banas P, Jurecka P, Walter NG, Sponer J, Otyepka M. Methods. 2009;49:202. PubMed PMC

Fadrna E, Spackova N, Sarzynska J, Koca J, Orozco M, Cheatham TE, Kulinski T, Sponer J. J.Chem. Theory Comput. 2009;5:2514. PubMed

Reblova K, Fadrna E, Sarzynska J, Kulinski T, Kulhanek P, Ennifar E, Koca J, Sponer J. Biophys. J. 2007;93:3932. PubMed PMC

Banas P, Rulisek L, Hanosova V, Svozil D, Walter NG, Sponer J, Otyepka M. J. Phys. Chem. B. 2008;112:11177. PubMed PMC

Ryder SP, Strobel SA. Nucleic Acids Res. 2002;30:1287. PubMed PMC

Alam S, Grum-Tokars V, Krucinska J, Kundracik ML, Wedekind JE. Biochemistry. 2005;44:14396. PubMed

Cai ZP, Tinoco I. Biochemistry. 1996;35:6026. PubMed

Butcher SE, Allain FHT, Feigon J. Nat. Struct. Biol. 1999;6:212. PubMed

Hampel KJ, Burke JM. Biochemistry. 2001;40:3723. PubMed

Buck J, Li YL, Richter C, Vergne J, Maurel MC, Schwalbe H. ChemBioChem. 2009;10:2100. PubMed

Auffinger P, Hashem Y. Curr. Opin. Struct. Biol. 2007;17:325. PubMed

Orozco M, Noy A, Perez A. Curr. Opin. Struct. Biol. 2008;18:185. PubMed

Cheatham TE. Curr. Opin. Struct. Biol. 2004;14:360. PubMed

Mackerell AD. J. Comput. Chem. 2004;25:1584. PubMed

Hall KB. Curr. Opin. Chem. Biol. 2008;12:612. PubMed PMC

Chen AA, Draper DE, Pappu RV. J. Mol. Biol. 2009;390:805. PubMed PMC

Huang W, Kim J, Jha S, Aboul-Ela F. Nucleic Acids Res. 2009;37:6528. PubMed PMC

Romanowska J, Setny P, Trylska J. J. Phys. Chem. B. 2008;112:15227. PubMed PMC

Chin K, Sharp KA, Honig B, Pyle AM. Nat. Struct. Biol. 1999;6:1055. PubMed

Tang CL, Alexov E, Pyle AM, Honig B. Biophys. J. 2002;82:131a.

Tang CL, Alexov E, Pyle AM, Honig B. J. Mol. Biol. 2007;366:1475. PubMed

Ode H, Matsuo Y, Neya S, Hoshino T. J. Comput. Chem. 2008;29:2531. PubMed

Leontis NB, Westhof E. RNA. 2001;7:499. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Simple Adjustment of Intranucleotide Base-Phosphate Interaction in the OL3 AMBER Force Field Improves RNA Simulations

. 2023 Nov 28 ; 19 (22) : 8423-8433. [epub] 20231109

An intricate balance of hydrogen bonding, ion atmosphere and dynamics facilitates a seamless uracil to cytosine substitution in the U-turn of the neomycin-sensing riboswitch

. 2018 Jul 27 ; 46 (13) : 6528-6543.

RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview

. 2018 Apr 25 ; 118 (8) : 4177-4338. [epub] 20180103

Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies

. 2016 Sep 13 ; 12 (9) : 4534-48. [epub] 20160804

Chemical feasibility of the general acid/base mechanism of glmS ribozyme self-cleavage

. 2015 Oct ; 103 (10) : 550-62.

Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters

. 2013 May 14 ; 9 (5) : 2339-2354.

Molecular mechanism of preQ1 riboswitch action: a molecular dynamics study

. 2012 Oct 25 ; 116 (42) : 12721-34. [epub] 20121012

Reference simulations of noncanonical nucleic acids with different χ variants of the AMBER force field: quadruplex DNA, quadruplex RNA and Z-DNA

. 2012 Jul 10 ; 8 (7) : 2506-2520. [epub] 20120605

Structure and mechanical properties of the ribosomal L1 stalk three-way junction

. 2012 Jul ; 40 (13) : 6290-303. [epub] 20120326

Molecular dynamics simulations of G-DNA and perspectives on the simulation of nucleic acid structures

. 2012 May ; 57 (1) : 25-39. [epub] 20120416

QM/MM studies of hairpin ribozyme self-cleavage suggest the feasibility of multiple competing reaction mechanisms

. 2011 Dec 01 ; 115 (47) : 13911-24. [epub] 20111108

Performance of Molecular Mechanics Force Fields for RNA Simulations: Stability of UUCG and GNRA Hairpins

. 2010 Dec 14 ; 6 (12) : 3836-3849. [epub] 20101109

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...