QM/MM studies of hairpin ribozyme self-cleavage suggest the feasibility of multiple competing reaction mechanisms
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM062357
NIGMS NIH HHS - United States
R01 GM062357-09
NIGMS NIH HHS - United States
R01 GM062357-10
NIGMS NIH HHS - United States
GM62357
NIGMS NIH HHS - United States
PubMed
22014231
PubMed Central
PMC3223549
DOI
10.1021/jp206963g
Knihovny.cz E-zdroje
- MeSH
- katalýza MeSH
- kvantová teorie * MeSH
- kyslík chemie MeSH
- protony MeSH
- RNA katalytická chemie metabolismus MeSH
- simulace molekulární dynamiky * MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- hairpin ribozyme MeSH Prohlížeč
- kyslík MeSH
- protony MeSH
- RNA katalytická MeSH
The hairpin ribozyme is a prominent member of small ribozymes since it does not require metal ions to achieve catalysis. Guanine 8 (G8) and adenine 38 (A38) have been identified as key participants in self-cleavage and -ligation. We have carried out hybrid quantum-mechanical/molecular mechanical (QM/MM) calculations to evaluate the energy along several putative reaction pathways. The error of our DFT description of the QM region was tested and shown to be ~1 kcal/mol. We find that self-cleavage of the hairpin ribozyme may follow several competing microscopic reaction mechanisms, all with calculated activation barriers in good agreement with those from experiment (20-21 kcal/mol). The initial nucleophilic attack of the A-1(2'-OH) group on the scissile phosphate is predicted to be rate-limiting in all these mechanisms. An unprotonated G8(-) (together with A38H(+)) yields a feasible activation barrier (20.4 kcal/mol). Proton transfer to a nonbridging phosphate oxygen also leads to feasible reaction pathways. Finally, our calculations consider thio-substitutions of one or both nonbridging oxygens of the scissile phosphate and predict that they have only a negligible effect on the reaction barrier, as observed experimentally.
Zobrazit více v PubMed
Buzayan JM, Hampel A, Bruening G. Nucleic Acids Res. 1986;14:9729–9743. PubMed PMC
Buzayan JM, Feldstein PA, Segrelles C, Bruening G. Nucleic Acids Res. 1988;16:4009–4023. PubMed PMC
van Tol H, Buzayan JM, Feldstein PA, Eckstein F, Bruening G. Nucleic Acids Res. 1990;18:1971–1975. PubMed PMC
Fedor MJ. Annu. Rev. Biophys. 2009;38:271–299. PubMed
Lilley DM. Trends Biochem. Sci. 2003;28:495–501. PubMed
Fedor MJ. J. Mol. Biol. 2000;297:269–291. PubMed
Walter NG, Burke JM. Curr. Opin. Chem. Biol. 1998;2:24–30. PubMed
Cochrane JC, Strobel SA. Acc. Chem. Res. 2008;41:1027–1035. PubMed
Pinard R, Hampel KJ, Heckman JE, Lambert D, Chan PA, Major F, Burke JM. EMBO J. 2001;20:6434–6442. PubMed PMC
Kuzmin YI, Da Costa CP, Fedor MJ. J. Mol. Biol. 2004;340:233–251. PubMed
Rupert PB, Ferre-D'Amare AR. Nature. 2001;410:780–786. PubMed
Rupert PB, Massey AP, Sigurdsson ST, Ferre-D'Amare AR. Science. 2002;298:1421–1424. PubMed
Salter J, Krucinska J, Alam S, Grum-Tokars V, Wedekind JE. Biochemistry. 2006;45:686–700. PubMed PMC
Lebruska LL, Kuzmine II, Fedor MJ. Chem. Biol. 2002;9:465–473. PubMed
Bevilacqua PC. Biochemistry. 2003;42:2259–2265. PubMed
Walter NG. Mol. Cell. 2007;28:923–929. PubMed PMC
Nam KH, Gao JL, York DM. J. Am. Chem. Soc. 2008;130:4680–4691. PubMed PMC
Nam K, Gao JL, York DM. RNA. 2008;14:1501–1507. PubMed PMC
Kuzmin YI, Da Costa CP, Cottrell JW, Fedor MJ. J. Mol. Biol. 2005;349:989–1010. PubMed
Guo M, Spitale RC, Volpini R, Krucinska J, Cristalli G, Carey PR, Wedekind JE. J. Am. Chem. Soc. 2009;131:12908–12909. PubMed PMC
Cottrell JW, Scott LG, Fedor MJ. J. Biol. Chem. 2011;286:17658–17664. PubMed PMC
Rhodes MM, Reblova K, Sponer J, Walter NG. Proc. Natl. Acad. Sci. U.S.A. 2006;103:13380–13385. PubMed PMC
Ditzler MA, Sponer J, Walter NG. RNA. 2009;15:560–575. PubMed PMC
Mlynsky V, Banas P, Hollas D, Reblova K, Walter NG, Sponer J, Otyepka M. J. Phys. Chem. B. 2010;114:6642–6652. PubMed PMC
Zirbel CL, Sponer JE, Sponer J, Stombaugh J, Leontis NB. Nucleic Acids Res. 2009;37:4898–4918. PubMed PMC
Liu L, Cottrell JW, Scott LG, Fedor MJ. Nat. Chem. Biol. 2009;5:351–357. PubMed PMC
Wilson TJ, Lilley DM. RNA. 2011;17:213–221. PubMed PMC
Cottrell JW, Kuzmin YI, Fedor MJ. J. Biol. Chem. 2007;282:13498–13507. PubMed
Suydam IT, Levandoski SD, Strobel SA. Biochemistry. 2010;49:3723–3732. PubMed PMC
Lide DR, editor. CRC Handbook of Chemistry and Physics. 83rd ed. CRC; Boca Raton: 2003.
Torelli AT, Krucinska J, Wedekind JE. RNA. 2007;13:1052–1070. PubMed PMC
Macelrevey C, Salter JD, Krucinska J, Wedekind JE. RNA. 2008;14:1600–1616. PubMed PMC
Torelli AT, Spitale RC, Krucinska J, Wedekind JE. Biochem. Biophys. Res. Commun. 2008;371:154–158. PubMed PMC
Spitale RC, Volpini R, Heller MG, Krucinska J, Cristalli G, Wedekind JE. J. Am. Chem. Soc. 2009;131:6093–6095. PubMed PMC
Warshel A, Levitt M. J. Mol. Biol. 1976;103:227–249. PubMed
Banas P, Jurecka P, Walter NG, Sponer J, Otyepka M. Methods. 2009;49:202–216. PubMed PMC
Otyepka M, Banas P, Magistrato A, Carloni P, Damborsky J. Proteins: Struct., Funct., Bioinf. 2008;70:707–717. PubMed
Banas P, Rulisek L, Hanosova V, Svozil D, Walter NG, Sponer J, Otyepka M. J. Phys. Chem. B. 2008;112:11177–11187. PubMed PMC
Warshel A, Sharma PK, Kato M, Xiang Y, Liu HB, Olsson MHM. Chem. Rev. 2006;106:3210–3235. PubMed
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, et al. Gaussian 09. Gaussian, Inc.; Wallingford CT: 2009.
Scalmani G, Frisch MJ. J. Chem. Phys. 2010;132:114110. PubMed
Halkier A, Helgaker T, Jorgensen P, Klopper W, Koch H, Olsen J, Wilson AK. Chem. Phys. Lett. 1998;286:243–252.
Halkier A, Helgaker T, Jorgensen P, Klopper W, Olsen J. Chem Phys Lett. 1999;302:437–446.
Jurecka P, Hobza P. Chem Phys Lett. 2002;365:89–94.
Jurecka P, Hobza P. J. Am. Chem. Soc. 2003;125:15608–15613. PubMed
Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K. J. Phys. Chem. 1996;100:19357–19363.
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr., Vreven T, Kudin KN, Burant JC, et al. Gaussian 03. Gaussian, Inc.; Pittsburgh: 2003.
Wang JM, Cieplak P, Kollman PA. J. Comput. Chem. 2000;21:1049–1074.
Becke AD. Phys. Rev. A. 1988;38:3098–3100. PubMed
Lee CT, Yang WT, Parr RG. Phys. Rev. B. 1988;37:785–789. PubMed
Dunlap BI. J. Chem. Phys. 1983;78:3140–3142.
Dunlap BI. J. Mol. Struct. THEOCHEM. 2000;529:37–40.
Perreault DM, Anslyn EV. Angew. Chem., Int. Ed. Engl. 1997;36:432–450.
Lynch BJ, Fast PL, Harris M, Truhlar DG. J. Phys. Chem. A. 2000;104:4811–4815.
Lynch BJ, Truhlar DG. J. Phys. Chem. A. 2001;105:2936–2941.
Sponer J, Jurecka P, Marchan I, Luque FJ, Orozco M, Hobza P. Chem.-Eur. J. 2006;12:2854–2865. PubMed
Warshel A. Computer Modeling of Chemical Reactions in Enzymes and Solutions. John Wiley and Sons; New York: 1991.
Torres RA, Himo F, Bruice TC, Noodleman L, Lovell T. J. Am. Chem. Soc. 2003;125:9861–9867. PubMed
Liu Y, Gregersen BA, Lopez X, York DM. J. Phys. Chem. B. 2005;109:19987–20003. PubMed
Lopez X, Dejaegere A, Leclerc F, York DM, Karplus M. J. Phys. Chem. B. 2006;110:11525–11539. PubMed
Liu Y, Gregersen BA, Hengge A, York DM. Biochemistry. 2006;45:10043–10053. PubMed
Liu H, Robinet JJ, Ananvoranich S, Gauld JW. J. Phys. Chem. B. 2007;111:439–445. PubMed
Chval Z, Chvalova D, Leclerc F. J. Phys. Chem. B. 2011;115:10943–10956. PubMed
Boero M, Terakura K, Tateno M. J. Am. Chem. Soc. 2002;124:8949–8957. PubMed
Liu HN, Robinet JJ, Ananvoranich S, Gauld JW. J. Phys. Chem. B. 2007;111:439–445. PubMed
Tomasi J, Mennucci B, Cammi R. Chem. Rev. 2005;105:2999–3093. PubMed
Colominas C, Luque FJ, Orozco M. J. Am. Chem. Soc. 1996;118:6811–6821.
Zgarbova M, Jurecka P, Banas P, Otyepka M, Sponer JE, Leontis NB, Zirbel CL, Sponer J. J. Phys. Chem. A. 2011;115:11277–11292. PubMed
Young KJ, Gill F, Grasby JA. Nucleic Acids Res. 1997;25:3760–3766. PubMed PMC
Gao J, Ma S, Major DT, Nam K, Pu J, Truhlar DG. Chem. Rev. 2006;106:3188–3209. PubMed PMC
Ditzler MA, Otyepka M, Sponer J, Walter NG. Acc. Chem. Res. 2009 PubMed PMC
Hobza P, Sponer J. Chem. Rev. 1999;99:3247–3276. PubMed
Sponer J, Jurecka P, Hobza P. J. Am. Chem. Soc. 2004;126:10142–10151. PubMed
Morgado CA, Jurecka P, Svozil D, Hobza P, Sponer J. Phys. Chem. Chem. Phys. 2010;12:3522–3534. PubMed
Riley KE, Pitonak M, Jurecka P, Hobza P. Chem. Rev. 2010;110:5023–5063. PubMed
Lin H, Truhlar DG. Theor. Chem. Acc. 2007;117:185–199.
Nam K, Cui Q, Gao JL, York DM. J. Chem. Theory Comput. 2007;3:486–504. PubMed
Iyengar SS, Schlegel HB, Voth GA. J. Phys. Chem. A. 2003;107:7269–7277.
Voth GA, Rega N, Iyengar SS, Schlegel HB, Vreven T, Frisch MJ. J. Phys. Chem. B. 2004;108:4210–4220.
Bevilacqua PC, Brown TS, Nakano S, Yajima R. Biopolymers. 2004;73:90–109. PubMed
Banas P, Walter NG, Sponer J, Otyepka M. J. Phys. Chem. B. 2010;114:8701–8712. PubMed PMC
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview
Chemical feasibility of the general acid/base mechanism of glmS ribozyme self-cleavage
The role of an active site Mg(2+) in HDV ribozyme self-cleavage: insights from QM/MM calculations