The role of an active site Mg(2+) in HDV ribozyme self-cleavage: insights from QM/MM calculations
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM062357
NIGMS NIH HHS - United States
GM62357
NIGMS NIH HHS - United States
PubMed
25412464
PubMed Central
PMC4256098
DOI
10.1039/c4cp03857f
Knihovny.cz E-zdroje
- MeSH
- hepatitida D virologie MeSH
- hořčík chemie MeSH
- katalytická doména MeSH
- konformace nukleové kyseliny MeSH
- krystalografie rentgenová MeSH
- kvantová teorie MeSH
- lidé MeSH
- molekulární modely MeSH
- RNA katalytická chemie MeSH
- RNA virová chemie MeSH
- termodynamika MeSH
- virus hepatitidy delta chemie enzymologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- hairpin ribozyme MeSH Prohlížeč
- hořčík MeSH
- RNA katalytická MeSH
- RNA virová MeSH
The hepatitis delta virus (HDV) ribozyme is a catalytic RNA motif embedded in the human pathogenic HDV RNA. It catalyzes self-cleavage of its sugar-phosphate backbone with direct participation of the active site cytosine C75. Biochemical and structural data support a general acid role of C75. Here, we used hybrid quantum mechanical/molecular mechanical (QM/MM) calculations to probe the reaction mechanism and changes in Gibbs energy along the ribozyme's reaction pathway with an N3-protonated C75H(+) in the active site, which acts as the general acid, and a partially hydrated Mg(2+) ion with one deprotonated, inner-shell coordinated water molecule that acts as the general base. We followed eight reaction paths with a distinct position and coordination of the catalytically important active site Mg(2+) ion. For six of them, we observed feasible activation barriers ranging from 14.2 to 21.9 kcal mol(-1), indicating that the specific position of the Mg(2+) ion in the active site is predicted to strongly affect the kinetics of self-cleavage. The deprotonation of the U-1(2'-OH) nucleophile and the nucleophilic attack of the resulting U-1(2'-O(-)) on the scissile phosphodiester are found to be separate steps, as deprotonation precedes the nucleophilic attack. This sequential mechanism of the HDV ribozyme differs from the concerted nucleophilic activation and attack suggested for the hairpin ribozyme. We estimate the pKa of the U-1(2'-OH) group to range from 8.8 to 11.2, suggesting that it is lowered by several units from that of a free ribose, comparable to and most likely smaller than the pKa of the solvated active site Mg(2+) ion. Our results thus support the notion that the structure of the HDV ribozyme, and particularly the positioning of the active site Mg(2+) ion, facilitate deprotonation and activation of the 2'-OH nucleophile.
Zobrazit více v PubMed
Doudna JA, Lorsch JR. Nat Struct Mol Biol. 2005;12:395–402. PubMed
Nakano S, Chadalavada DM, Bevilacqua PC. Science. 2000;287:1493–1497. PubMed
Perrotta AT, Shih IH, Been MD. Science. 1999;286:123–126. PubMed
Fedor MJ, Williamson JR. Nat Rev Mol Cell Biol. 2005;6:399–412. PubMed
Bevilacqua PC, Brown TS, Nakano S, Yajima R. Biopolymers. 2004;73:90–109. PubMed
Gong B, Chen JH, Chase E, Chadalavada DM, Yajima R, Golden BL, Bevilacqua PC, Carey PR. J Am Chem Soc. 2007;129:13335–13342. PubMed
Lilley DM. Trends Biochem Sci. 2003;28:495–501. PubMed
Ke AL, Zhou KH, Ding F, Cate JHD, Doudna JA. Nature. 2004;429:201–205. PubMed
Krasovska MV, Sefcikova J, Spackova N, Sponer J, Walter NG. Journal of Molecular Biology. 2005;351:731–748. PubMed
Krasovska MV, Sefcikova J, Spackova N, Sponer J, Walter NG. J Mol Biol. 2005;351:731–748. PubMed
Krasovska MV, Sefcikova J, Reblova K, Schneider B, Walter NG, Sponer J. Biophys J. 2006;91:626–638. PubMed PMC
Banas P, Rulisek L, Hanosova V, Svozil D, Walter NG, Sponer J, Otyepka M. J Phys Chem B. 2008;112:11177–11187. PubMed PMC
Das SR, Piccirilli JA. Nat Chem Biol. 2005;1:45–52. PubMed
Chen JH, Yajima R, Chadalavada DM, Chase E, Bevilacqua PC, Golden BL. Biochemistry. 2010;49:6508–6518. PubMed
Ferre-D'Amare AR, Zhou K, Doudna JA. Nature. 1998;395:567–574. PubMed
Chadalavada DM, Knudsen SM, Nakano S, Bevilacqua PC. J Mol Biol. 2000;301:349–367. PubMed
Golden BL. Biochemistry. 2011;50:9424–9433. PubMed PMC
Veeraraghavan N, Ganguly A, Chen JH, Bevilacqua PC, Hammes-Schiffer S, Golden BL. Biochemistry. 2011;50:2672–2682. PubMed PMC
Ganguly A, Bevilacqua PC, Hammes-Schiffer S. J Phys Chem Lett. 2011;2:2906–2911. PubMed PMC
Ganguly A, Thaplyal P, Rosta E, Bevilacqua PC, Hammes-Schiffer S. Journal of the American Chemical Society. 2014;136:1483–1496. PubMed PMC
Mlynsky V, Banas P, Walter NG, Sponer J, Otyepka M. J Phys Chem B. 2011;115:13911–13924. PubMed PMC
Mlynsky V, Banas P, Sponer J, van der Kamp MW, Mulholland AJ, Otyepka M. Journal of Chemical Theory and Computation. 2014;10:1608–1622. PubMed
D TA, Case DA, Cheatham TE, III, Simmerling CL, Wang J, Duke RE, Luo R, W RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, AW G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, B SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, R DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, G S, Kovalenko A, Kollman PA. AMBER 12. University of California; San Francisco: 2012.
Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. Journal of the American Chemical Society. 1995;117:5179–5197.
Wang JM, Cieplak P, Kollman PA. Journal of Computational Chemistry. 2000;21:1049–1074.
Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, Laughton CA, Orozco M. Biophys J. 2007;92:3817–3829. PubMed PMC
Banas P, Hollas D, Zgarbova M, Jurecka P, Orozco M, Cheatham TE, Sponer J, Otyepka M. Journal of Chemical Theory and Computation. 2010;6:3836–3849. PubMed PMC
Zgarbova M, Otyepka M, Sponer J, Mladek A, Banas P, Cheatham TE, 3rd, Jurecka P. Journal of Chemical Theory and Computation. 2011;7:2886–2902. PubMed PMC
Sklenovsky P, Florova P, Banas P, Reblova K, Lankas F, Otyepka M, Sponer J. Journal of Chemical Theory and Computation. 2011;7:2963–2980. PubMed
Banas P, Sklenovsky P, Wedekind JE, Sponer J, Otyepka M. Journal of Physical Chemistry B. 2012;116:12721–12734. PubMed PMC
Kuhrova P, Banas P, Best RB, Sponer J, Otyepka M. Journal of Chemical Theory and Computation. 2013;9:2115–2125. PubMed
Besseova I, Banas P, Kuhrova P, Kosinova P, Otyepka M, Sponer J. Journal of Physical Chemistry B. 2012;116:9899–9916. PubMed
Cheatham TE, Case DA. Biopolymers. 2013;99:969–977. PubMed PMC
Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K. J Phys Chem. 1996;100:19357–19363.
Frisch MJ, T GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, et al. Gaussian 09. Gaussian, Inc.; Wallingford CT: 2009.
Lynch BJ, Fast PL, Harris M, Truhlar DG. Journal of Physical Chemistry A. 2000;104:4811–4815.
Lynch BJ, Truhlar DG. Journal of Physical Chemistry A. 2001;105:2936–2941.
Banas P, Jurecka P, Walter NG, Sponer J, Otyepka M. Methods. 2009;49:202–216. PubMed PMC
Otyepka M, Banas P, Magistrato A, Carloni P, Damborsky J. Proteins. 2008;70:707–717. PubMed
Dahm SC, Derrick WB, Uhlenbeck OC. Biochemistry. 1993;32:13040–13045. PubMed
Sponer J, Banas P, Jurecka P, Zgarbova M, Kuhrova P, Havrila M, Krepl M, Stadlbauer P, Otyepka M. Journal of Physical Chemistry Letters. 2014;5:1771–1782. PubMed
Gresh N, Sponer JE, Spackova N, Leszczynski J, Sponer J. J Phys Chem B. 2003;107:8669–8681.
Ditzler MA, Otyepka M, Sponer J, Walter NG. Accounts of Chemical Research. 2010;43:40–47. PubMed PMC
Shih IH, Been MD. Biochemistry. 2000;39:9055–9066. PubMed
Thaplyal P, Ganguly A, Golden BL, Hammes-Schiffer S, Bevilacqua PC. Biochemistry. 2013;52:6499–6514. PubMed PMC
Warshel A, Sharma PK, Kato M, Xiang Y, Liu HB, Olsson MHM. Chem Rev. 2006;106:3210–3235. PubMed
Hertel KJ, Herschlag D, Uhlenbeck OC. Biochemistry. 1994;33:3374–3385. PubMed
Young KJ, Gill F, Grasby JA. Nucleic Acids Res. 1997;25:3760–3766. PubMed PMC
McCarthy TJ, Plog MA, Floy SA, Jansen JA, Soukup JK, Soukup GA. Chem Biol. 2005;12:1221–1226. PubMed
Wilson TJ, McLeod AC, Lilley DM. EMBO J. 2007;26:2489–2500. PubMed PMC
Izatt RM, Hansen LD, Rytting JH, Christensen JJ. J Am Chem Soc. 1965;87:2760–2761. PubMed
Usher DA, Richardson DI, Jr, Oakenfull DG. J Am Chem Soc. 1970;92:4699–4712. PubMed
Jarvinen P, Oivanen M, Lonnberg H. J Org Chem. 1991;56:5396–5401.
Li YF, Breaker RR. J Am Chem Soc. 1999;121:5364–5372.
Lyne PD, Karplus M. J Am Chem Soc. 2000;122:166–167.
Davies JE, Doltsinis NL, Kirby AJ, Roussev CD, Sprik M. J Am Chem Soc. 2002;124:6594–6599. PubMed
Acharya S, Foldesi A, Chattopadhyaya J. J Org Chem. 2003;68:1906–1910. PubMed
Nakano S, Bevilacqua PC. J Am Chem Soc. 2001;123:11333–11334. PubMed
Sripathi KN, Tay WW, Banas P, Otyepka M, Sponer J, Walter NG. RNA. 2014;20:1–17. PubMed PMC
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview
Chemical feasibility of the general acid/base mechanism of glmS ribozyme self-cleavage