Molecular mechanism of preQ1 riboswitch action: a molecular dynamics study
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM063162
NIGMS NIH HHS - United States
GM063162-09A1
NIGMS NIH HHS - United States
PubMed
22998634
PubMed Central
PMC3505677
DOI
10.1021/jp309230v
Knihovny.cz E-zdroje
- MeSH
- bakteriální RNA chemie MeSH
- krystalografie rentgenová MeSH
- molekulární modely MeSH
- riboswitch * MeSH
- simulace molekulární dynamiky * MeSH
- Thermoanaerobacter chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- bakteriální RNA MeSH
- riboswitch * MeSH
Riboswitches often occur in the 5'-untranslated regions of bacterial mRNA where they regulate gene expression. The preQ(1) riboswitch controls the biosynthesis of a hypermodified nucleoside queuosine in response to binding the queuosine metabolic intermediate. Structures of the ligand-bound and ligand-free states of the preQ(1) riboswitch from Thermoanaerobacter tengcongensis were determined recently by X-ray crystallography. We used multiple, microsecond-long molecular dynamics simulations (29 μs in total) to characterize the structural dynamics of preQ(1) riboswitches in both states. We observed different stabilities of the stem in the bound and free states, resulting in different accessibilities of the ribosome-binding site. These differences are related to different stacking interactions between nucleotides of the stem and the associated loop, which itself adopts different conformations in the bound and free states. We suggest that the loop not only serves to bind preQ(1) but also transmits information about ligand binding from the ligand-binding pocket to the stem, which has implications for mRNA accessibility to the ribosome. We explain functional results obscured by a high salt crystallization medium and help to refine regions of disordered electron density, which demonstrates the predictive power of our approach. Besides investigating the functional dynamics of the riboswitch, we have also utilized this unique small folded RNA system for analysis of performance of the RNA force field on the μs time scale. The latest AMBER parmbsc0χ(OL3) RNA force field is capable of providing stable trajectories of the folded molecule on the μs time scale. On the other hand, force fields that are not properly balanced lead to significant structural perturbations on the sub-μs time scale, which could easily lead to inappropriate interpretation of the simulation data.
Zobrazit více v PubMed
Barrick JE, Breaker RR. Genome Biol. 2007;8:1. PubMed PMC
Serganov A. Rna Biol. 2010;7:98. PubMed
Liberman JA, Wedekind JE. WIREs RNA. 2012;3:369. PubMed PMC
Zhang J, Lau MW, Ferre-D'Amare AR. Biochemistry-Us. 2010;49:9123. PubMed PMC
Blouin S, Mulhbacher J, Penedo JC, Lafontaine DA. Chembiochem. 2009;10:400. PubMed
Liberman JA, Wedekind JE. Curr Opin Struct Biol. 2011;21:327. PubMed PMC
Montange RK, Batey RT. Annu Rev Biophys. 2008;37:117. PubMed
Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A. Nucleic Acids Res. 2005;33:D121. PubMed PMC
Weinberg Z, Barrick JE, Yao Z, Roth A, Kim JN, Gore J, Wang JX, Lee ER, Block KF, Sudarsan N, Neph S, Tompa M, Ruzzo WL, Breaker RR. Nucleic Acids Res. 2007;35:4809. PubMed PMC
Meyer MM, Roth A, Chervin SM, Garcia GA, Breaker RR. RNA. 2008;14:685. PubMed PMC
Roth A, Winkler WC, Regulski EE, Lee BWK, Lim J, Jona I, Barrick JE, Ritwik A, Kim JN, Welz R, Iwata-Reuyl D, Breaker RR. Nat Struct Mol Biol. 2007;14:308. PubMed
Rieder U, Lang K, Kreutz C, Polacek N, Micura R. Chembiochem. 2009;10:1141. PubMed
Spitale RC, Torelli AT, Krucinska J, Bandarian V, Wedekind JE. J Biol Chem. 2009;284:11012. PubMed PMC
Klein DJ, Edwards TE, Ferre-D'Amare AR. Nat Struct Mol Biol. 2009;16:343. PubMed PMC
Kang M, Peterson R, Feigon J. Mol Cell. 2009;33:784. PubMed
Jenkins JL, Krucinska J, McCarty RM, Bandarian V, Wedekind JE. J Biol Chem. 2011;286:24626. PubMed PMC
Ditzler MA, Otyepka M, Sponer J, Walter NG. Accounts Chem Res. 2010;43:40. PubMed PMC
Razga F, Zacharias M, Reblova K, Koca J, Sponer J. Structure. 2006;14:825. PubMed
Sklenovsky P, Florova P, Banas P, Reblova K, Lankas F, Otyepka M, Sponer J. J Chem Theory Comput. 2011;7:2963. PubMed
Reblova K, Spackova N, Stefl R, Csaszar K, Koca J, Leontis NB, Sponer J. Biophys J. 2003;84:3564. PubMed PMC
Reblova K, Strelcova Z, Kulhanek P, Besscova I, Mathews DH, Van Nostrand K, Yildirim I, Turner DH, Sponer J. J Chem Theory Comput. 2010;6:910. PubMed PMC
Spackova N, Sponer J. Nucleic Acids Research. 2006;34:697. PubMed PMC
Mlynsky V, Banas P, Hollas D, Reblova K, Walter NG, Sponer J, Otyepka M. J Phys Chem B. 2010;114:6642. PubMed PMC
Banas P, Walter NG, Sponer J, Otyepka M. J Phys Chem B. 2010;114:8701. PubMed PMC
Reblova K, Lankas F, Razga F, Krasovska MV, Koca J, Sponer J. Biopolymers. 2006;82:504. PubMed
Besseova I, Reblova K, Leontis NB, Sponer J. Nucleic Acids Res. 2010;38:6247. PubMed PMC
Villa A, Wohnert J, Stock G. Nucleic Acids Res. 2009;37:4774. PubMed PMC
Sharma M, Bulusu G, Mitra A. RNA. 2009;15:1673. PubMed PMC
Kelley JM, Hamelberg D. Nucleic Acids Res. 2010;38:1392. PubMed PMC
Petrone PM, Dewhurst J, Tommasi R, Whitehead L, Pomerantz AK. J Mol Graphics Modell. 2011;30:179. PubMed
Nguyen PH, Derreumaux P, Stock G. J Phys Chem B. 2009;113:9340. PubMed
Priyakumar UD, MacKerell AD. J Mol Biol. 2010;396:1422. PubMed PMC
Priyakumar UD. J Phys Chem B. 2010;114:9920. PubMed
Huang W, Kim J, Jha S, Aboul-Ela F. Nucleic Acids Res. 2009;37:6528. PubMed PMC
Doshi U, Kelley JM, Hamelberg D. RNA. 2012;18:300. PubMed PMC
Quarta G, Sin K, Schlick T. Plos Comput Biol. 2012;8 e1002368. PubMed PMC
Eichhorn CD, Feng J, Suddala KC, Walter NG, Brooks CL, Al-Hashimi HM. Nucleic Acids Res. 2012;40:1345. PubMed PMC
Feng J, Walter NG, Brooks CL. J Am Chem Soc. 2011;133:4196. PubMed PMC
Veeraraghavan N, Ganguly A, Golden BL, Bevilacqua PC, Hammes-Schiffer S. J Phys Chem B. 2011;115:8346. PubMed PMC
Veeraraghavan N, Ganguly A, Chen JH, Bevilacqua PC, Hammes-Schiffer S, Golden BL. Biochemistry-Us. 2011;50:2672. PubMed PMC
Veeraraghavan N, Bevilacqua PC, Hammes-Schiffer S. J Mol Biol. 2010;402:278. PubMed PMC
Lee TS, Giambasu GM, Harris ME, York DM. J Phys Chem Lett. 2011;2:2538. PubMed PMC
Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. J Am Chem Soc. 1995;117:5179.
Wang JM, Cieplak P, Kollman PA. J Comput Chem. 2000;21:1049.
Banas P, Hollas D, Zgarbova M, Jurecka P, Orozco M, Cheatham TE, Sponer J, Otyepka M. J Chem Theory Comput. 2010;6:3836. PubMed PMC
MacKerell AD, Banavali NK. J Comput Chem. 2000;21:105.
Deng NJ, Cieplak P. Biophys J. 2010;98:627. PubMed PMC
Faustino I, Perez A, Orozco M. Biophys J. 2010;99:1876. PubMed PMC
Reblova K, Fadrna E, Sarzynska J, Kulinski T, Kulhanek P, Ennifar E, Koca J, Sponer J. Biophys J. 2007;93:3932. PubMed PMC
Besseova I, Otyepka M, Reblova K, Sponer J. Phys Chem Chem Phys. 2009;11:10701. PubMed
Florova P, Sklenovsky P, Banas P, Otyepka M. J Chem Theory Comput. 2010;6:3569. PubMed
DeLano WL. The PyMOL Molecular Graphics System. Palo Alto, CA, USA: DeLano Scientific LLC; 2008.
Csaszar K, Spackova N, Stefl R, Sponer J, Leontis NB. J Mol Biol. 2001;313:1073. PubMed
Su L, Chen LQ, Egli M, Berger JM, Rich A. Nat Struct Biol. 1999;6:285. PubMed PMC
Krasovska MV, Sefcikova J, Spackova N, Sponer J, Walter NG. J Mol Biol. 2005;351:731. PubMed
Ferre-D'Amare AR, Zhou KH, Doudna JA. Nature. 1998;395:567. PubMed
Nixon PL, Rangan A, Kim YG, Rich A, Hoffman DW, Hennig M, Giedroc DP. J Mol Biol. 2002;322:621. PubMed
Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, Debolt S, Ferguson D, Seibel G, Kollman P. Computer Physics Communications. 1995;91:1.
Aqvist J. J Phys Chem-Us. 1990;94:8021.
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. J Chem Phys. 1983;79:926.
Reblova K, Sponer JE, Spackova N, Besseova I, Sponer J. J Phys Chem B. 2011;115:13897. PubMed
Cornell WD, Cieplak P, Bayly CI, Kollman PA. J Am Chem Soc. 1993;115:9620.
Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR. J Chem Phys. 1984;81:3684.
Darden T, York D, Pedersen L. J Chem Phys. 1993;98:10089.
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. J Chem Phys. 1995;103:8577.
Case DA, Darden TA, Cheatham TE, 3rd, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA. AMBER 11. San Francisco: University of California; 2010.
Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, Laughton CA, Orozco M. Biophys J. 2007;92:3817. PubMed PMC
Zgarbova M, Otyepka M, Sponer J, Mladek A, Banas P, Cheatham TE, Jurecka P. Journal of Chemical Theory and Computation. 2011;7:2886. PubMed PMC
Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K. J Comput Chem. 2005;26:1781. PubMed PMC
Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. J Comput Chem. 1983;4:187.
Martyna GJ, Tobias DJ, Klein ML. J Chem Phys. 1994;101:4177.
Feller SE, Zhang YH, Pastor RW, Brooks BR. J Chem Phys. 1995;103:4613.
Lu XJ, Olson WK. Nat Protoc. 2008;3:1213. PubMed PMC
Humphrey W, Dalke A, Schulten K. J Mol Graphics. 1996;14:33. PubMed
Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA. P Natl Acad Sci USA. 2001;98:4899. PubMed PMC
Zirbel CL, Sponer JE, Sponer J, Stombaugh J, Leontis NB. Nucleic Acids Research. 2009;37:4898. PubMed PMC
Besseova I, Banas P, Kührova P, Kosinova P, Otyepka M, Sponer J. J Phys Chem B. 2012 Accepted. PubMed
Denning EJ, Priyakumar UD, Nilsson L, Mackerell AD. J Comput Chem. 2011;32:1929. PubMed PMC
Olieric V, Rieder U, Lang K, Serganov A, Schulze-Briese C, Micura R, Dumas P, Ennifar E. RNA. 2009;15:707. PubMed PMC
Lu XJ, Olson WK, Bussemaker HJ. Nucleic Acids Res. 2010;38:4868. PubMed PMC
Mladek A, Sponer JE, Kulhanek P, Lu XJ, Olson WK, Sponer J. J Chem Theory Comput. 2012;8:335. PubMed PMC
O'Toole AS, Miller S, Haines N, Zink MC, Serra MJ. Nucleic Acids Res. 2006;34:3338. PubMed PMC
Banas P, Jurecka P, Walter NG, Sponer J, Otyepka M. Methods. 2009;49:202. PubMed PMC
Zhang Q, Kang MJ, Peterson RD, Feigon J. J Am Chem Soc. 2011;133:5190. PubMed PMC
Rieder U, Kreutz C, Micura R. P Natl Acad Sci USA. 2010;107:10804. PubMed PMC
Santner T, Rieder U, Kreutz C, Micura R. J Am Chem Soc. 2012;134:11928. PubMed
Banas P, Mladek A, Otyepka M, Zgarbova M, Jurecka P, Svozil D, Lankas F, Sponer J. J Chem Theory Comput. 2012;8:2448. PubMed
Gong Z, Zhao YJ, Chen CJ, Xiao Y. J Biomol Struct Dyn. 2011;29:403. PubMed
Leontis NB, Stombaugh J, Westhof E. Nucleic Acids Res. 2002;30:3497. PubMed PMC
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview
Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies
The role of an active site Mg(2+) in HDV ribozyme self-cleavage: insights from QM/MM calculations
Disparate HDV ribozyme crystal structures represent intermediates on a rugged free-energy landscape