Understanding the Sequence Preference of Recurrent RNA Building Blocks using Quantum Chemistry: The Intrastrand RNA Dinucleotide Platform
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 GM034809
NIGMS NIH HHS - United States
R01 GM034809-26
NIGMS NIH HHS - United States
R01 GM096889
NIGMS NIH HHS - United States
R01 GM096889-02
NIGMS NIH HHS - United States
PubMed
22712001
PubMed Central
PMC3375708
DOI
10.1021/ct200712b
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Folded RNA molecules are shaped by an astonishing variety of highly conserved noncanonical molecular interactions and backbone topologies. The dinucleotide platform is a widespread recurrent RNA modular building submotif formed by the side-by-side pairing of bases from two consecutive nucleotides within a single strand, with highly specific sequence preferences. This unique arrangement of bases is cemented by an intricate network of noncanonical hydrogen bonds and facilitated by a distinctive backbone topology. The present study investigates the gas-phase intrinsic stabilities of the three most common RNA dinucleotide platforms - 5'-GpU-3', ApA, and UpC - via state-of-the-art quantum-chemical (QM) techniques. The mean stability of base-base interactions decreases with sequence in the order GpU > ApA > UpC. Bader's atoms-in-molecules analysis reveals that the N2(G)…O4(U) hydrogen bond of the GpU platform is stronger than the corresponding hydrogen bonds in the other two platforms. The mixed-pucker sugar-phosphate backbone conformation found in most GpU platforms, in which the 5'-ribose sugar (G) is in the C2'-endo form and the 3'-sugar (U) in the C3'-endo form, is intrinsically more stable than the standard A-RNA backbone arrangement, partially as a result of a favorable O2'…O2P intra-platform interaction. Our results thus validate the hypothesis of Lu et al. (Lu Xiang-Jun, et al. Nucleic Acids Res. 2010, 38, 4868-4876), that the superior stability of GpU platforms is partially mediated by the strong O2'…O2P hydrogen bond. In contrast, ApA and especially UpC platform-compatible backbone conformations are rather diverse and do not display any characteristic structural features. The average stabilities of ApA and UpC derived backbone conformers are also lower than those of GpU platforms. Thus, the observed structural and evolutionary patterns of the dinucleotide platforms can be accounted for, to a large extent, by their intrinsic properties as described by modern QM calculations. In contrast, we show that the dinucleotide platform is not properly described in the course of atomistic explicit-solvent simulations. Our work also gives methodological insights into QM calculations of experimental RNA backbone geometries. Such calculations are inherently complicated by rather large data and refinement uncertainties in the available RNA experimental structures, which often preclude reliable energy computations.
Zobrazit více v PubMed
Leontis NB, Westhof E. RNA. 2001;7:499–512. PubMed PMC
Leontis NB, Stombaugh J, Westhof E. Nucleic Acids Res. 2002;30:3497–3531. PubMed PMC
Sponer J, Sponer JE, Petrov AI, Leontis NB. J. Phys. Chem. B. 2010;114:15723–15741. PubMed PMC
Leontis NB, Westhof E. Curr. Opin. Struct. Biol. 2003;13:300–308. PubMed
Zirbel CL, Sponer JE, Sponer J, Stombaugh J, Leontis NB. Nucleic Acids Res. 2009;37:4898–4918. PubMed PMC
Zgarbova M, Jurecka P, Banas P, Otyepka M, Sponer JE, Leontis BN, Zirbel CL, Sponer J. J. Phys. Chem. A. 2011;115:11277–11292. PubMed
Sponer JE, Leszczynski J, Sychrovsky V, Sponer J. J. Phys. Chem. B. 2005;109:18680–18689. PubMed
Sponer JE, Spackova N, Kulhanek P, Leszczynski J, Sponer J. J. Phys. Chem. A. 2005;109:2292–2301. PubMed
Sharma P, Sponer JE, Sponer J, Sharma S, Bhattacharyya D, Mitra A. J. Phys. Chem. B. 2010;114:3307–3320. PubMed
Mladek A, Sharma P, Mitra A, Bhattacharyya D, Sponer J, Sponer JE. J. Phys. Chem. B. 2009;113:1743–1755. PubMed
Sponer JE, Spackova N, Leszczynski J, Sponer J. J. Phys. Chem. B. 2005;109:11399–11410. PubMed
Sponer JE, Reblova K, Mokdad A, Sychrovsky V, Leszczynski J, Sponer J. J. Phys. Chem. B. 2007;111:9153–9164. PubMed
Vokacova Z, Sponer J, Sponer JE, Sychrovsky V. J. Phys. Chem. B. 2007;111:10813–10824. PubMed
Chawla M, Sharma P, Hader S, Bhattacharyya D, Mitra A. J. Phys. Chem. B. 2001;115:1469–1484. PubMed
Sharma P, Sharma S, Chawla M, Mitra A. J. Mol. Model. 2009;15:633–649. PubMed
Oliva R, Cavallo L, Tramontano A. Nucleic Acids Res. 2006;34:865–879. PubMed PMC
Oliva R, Cavallo L. J. Phys. Chem. B. 2009;113:15670–15678. PubMed
Mladek A, Sponer JE, Jurecka P, Banas P, Otyepka M, Svozil D, Sponer J. J. Chem. Theory Comput. 2010;6:3817–3835.
Svozil D, Sponer JE, Marchan I, Perez A, Cheatham TE, Forti F, Luque FJ, Orozco M, Sponer J. J. Phys. Chem. B. 2008;112:8188–8197. PubMed
Mackerell AD. J. Phys. Chem. B. 2009;113:3235–3244. PubMed PMC
Foloppe N, Mackerell AD. J. Phys. Chem. B. 1999;103:10955–10964.
Bosch D, Foloppe N, Pastor N, Pardo L, Campillo M. J. Mol. Struct.:THEOCHEM. 2001;537:283–305.
Wang FF, Gong L-D, Zhao D-X. J. Mol. Struct.:THEOCHEM. 2009;909:49–56.
Leulliot N, Ghomi M, Scalmani G, Berthier G. J. Phys. Chem. A. 1999;103:8716–8724.
Shishkin OV, Gorb L, Zhikol OA, Leszczynski J. J. Biomol. Struct. Dyn. 2004;21:537–553. PubMed
Millen AL, Manderville RA, Wetmore SD. J. Phys. Chem. B. 2010;144:4373–4382. PubMed
Churchill CDM, Wetmore SD. Phys. Chem. Chem. Phys. 2011;13:16373–16383. PubMed
Poltev VI, Anisimov VM, Danilov VI, Deriabina A, Gonzalez E, Jurkiewiez A, Les A, Polteva N. J. Biomol. Struct. Dyn. 2008;25:563–571. PubMed
Denning EJ, Priyakumar UD, Nilsson L, Mackerell AD. J. Comput. Chem. 2011;32:1929–1943. PubMed PMC
Zgarbova M, Otyepka M, Sponer J, Mladek A, Banas P, Cheatham TE, III., Jurecka P. J. Chem. Theory Comput. 2011;7:2886–2902. PubMed PMC
Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, III., Laughton CA, Orozco M. Biophys. J. 2007;92:3817–3829. PubMed PMC
Banas P, Hollas D, Zgarbova M, Jurecka P, Orozco M, Cheatham TE, III., Sponer J, Otyepka M. J. Chem. Theory Comput. 2010;6:3836–3849. PubMed PMC
Lu X-J, Olson WK, Bussemaker H. J. Nucleic Acids Res. 2010;38:4868–4876. PubMed PMC
Wimberly BT, Guymon R, McCutcheon JP, White SW, Ramakrishnan V. Cell. 1999;97:491–502. PubMed
Correll CC, Beneken J, Plantinga MJ, Lubbers M, Chan YL. Nucleic Acids Res. 2003;31:6806–6818. PubMed PMC
Olieric V, Rieder U, Lang K, Serganov A, Schulze-Briese C, Micura R, Dumas P, Ennifar E. RNA. 2009;15:707–715. PubMed PMC
Chi YI, Martick M, Lares M, Kim R, Scott WG, Kim SH. PLoS Biol. 2008;6:2060–2068. PubMed PMC
Klein DJ, Schmeing TM, Moore PB, Steitz TA. EMBO J. 2001;20(15):4214–4221. PubMed PMC
Cate JH, Gooding AR, Podell E, Zhou K, Golden BL, Szewczak AA, Kundrot CE, Cech TR, Doudna JA. Science. 1996;273:1678–1685. PubMed
Ke A, Zhou K, Ding F, Cate JH, Doudna JA. Nature. 2004;429:201–205. PubMed
Hauenstein S, Zhang CM, Hou YM, Perona J. J. Nat. Struct. Mol. Biol. 2004;11:1134–1141. PubMed
Lu X-J, Olson WK. Nucleic Acids Res. 2003;31:5108–5121. PubMed PMC
Lu X-J, Olson WK. Nat. Protoc. 2008;3:1213–1227. PubMed PMC
Richardson JS, Schneider B, Murray LW, Kapral GJ, Immormino RM, Headd JJ, Richardson DC, Ham D, Hershkovits E, Williams LD, Keating KS, Pyle AM, Micallef D, Westbrook J, Berman HM. RNA. 2008;14:465–481. PubMed PMC
Schneider B, Moravek Z, Berman HM. Nucleic Acids Res. 2004;32:1666–1677. PubMed PMC
Batey RT, Sagar MB, Doudna JA. J. Mol. Biol. 2001;307:229–246. PubMed
Klein DJ, Moore PB, Steitz TA. J. Mol. Biol. 2004;340:141–177. PubMed
Juneau K, Podell E, Harrington DJ, Cech TR. Structure. 2001;9:221–231. PubMed
Zhao Y, Truhlar DG. Theor. Chem. Acc. 2008;120:215–241.
Tao J, Perdew JP, Staroverov VN, Scuseria GE. Phys. Rev. Lett. 2003;91:146401–146405. PubMed
Jurecka P, Cerny J, Hobza P, Salahub DR. J. Comput. Chem. 2007;28:555–569. PubMed
Ahlrichs R, Bar M, Haser M, Horn H, Kolmel C. Chem. Phys. Lett. 1989;162:165–169.
Kendall RA, Fruchtl HA. Theor. Chim. Acta. 1997;97:158–163.
Feyereisen MW, Fitzgerald G, Komornicki A. Chem. Phys. Lett. 1993;208:359–363.
Vahtras O, Almlof J, Feyereisen MW. Chem. Phys. Lett. 1993;213:514–518.
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03. Revision E.01 Gaussian, Inc.; Wallingford, CT: 2004.
Dunning TH., Jr. J. Chem. Phys. 1989;90:1007–1023.
Dunning TH., Jr. J. Phys. Chem. A. 2000;104:9062–9080.
Halkier A, Helgaker T, Jorgensen P, Klopper W, Olsen J. Chem. Phys. Lett. 1999;302:437–446.
Helgaker T, Klopper W, Koch H, Noga J. J. Chem. Phys. 1997;106:9639–9646.
Werner HJ, Manby FR, Knowles PJ. J. Chem. Phys. 2003;118:8149–8160.
Sponer J, Leszczynski J, Hobza P. Biopolymers. 2001;61:3–31. PubMed
Jurecka P, Nachtigall P, Hobza P. Phys. Chem. Chem. Phys. 2001;3:4578–4582.
Boys SF, Bernardi F. Mol. Phys. 1970;19:553–566.
MOLPRO. version 2006.1 Cardiff University; Cardiff, U.K.: 2006.
Bader RFW. Atoms in Molecules. A Quantum Theory. Oxford University Press; Oxford, U.K.: 1990.
Bader RFW. Chem. Rev. 1991;91:893–928.
Bader RFW. J. Phys. Chem. A. 1999;103:304–314.
Biegler-Konig F, Schonbohm J, Bayles D. J. Comput. Chem. 2001;22:545–559.
Biegler-Konig F, Schonbohm J. J. Comput. Chem. 2002;23:1489–1494. PubMed
Hobza P, Sponer J, Cubero E, Orozco M, Luque JF. J. Phys. Chem. B. 2000;104:6286–6292.
Newton MD. J. Am. Chem. Soc. 1973;95:256–258. PubMed
Govil G. Biopolymers. 1976;15:2303–2307. PubMed
Ditzler MA, Otyepka M, Sponer J, Walter NG. Acc. Chem. Res. 2010;43:40–47. PubMed PMC
Spackova N, Sponer J. Nucleic Acids Res. 2006;34:697–708. PubMed PMC
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview
Molecular mechanism of preQ1 riboswitch action: a molecular dynamics study