Effects of a 12-Week Very-Low Carbohydrate High-Fat Diet on Maximal Aerobic Capacity, High-Intensity Intermittent Exercise, and Cardiac Autonomic Regulation: Non-randomized Parallel-Group Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31379612
PubMed Central
PMC6652046
DOI
10.3389/fphys.2019.00912
Knihovny.cz E-zdroje
- Klíčová slova
- 30-15 intermittent fitness test, graded exercise test, heart rate variability, nutritional ketosis, β-hydroxybutyrate,
- Publikační typ
- časopisecké články MeSH
PURPOSE: The aim of this non-randomized parallel group study was to examine the 12 week effects of a very low-carbohydrate high-fat diet (VLCHF) on maximal cardiorespiratory capacity, high-intensity interval training (HIIT) performance, and cardiac autonomic regulation. METHODS: Twenty-four recreationally trained participants allocated to either a VLCHF (N = 12) or a habitual diet (HD; N = 12) group completed 12 weeks of a diet and exercise (VLCHF) or an exercise only intervention (HD). Maximal graded exercise tests (GXT) were performed at baseline, after 4, 8, and 12 weeks. A supervised HIIT session and the 30-15 Intermittent Fitness Test (30-15IFT) were conducted once a week. RESULTS: Total time to exhaustion (TTE) in both GXT and 30-15IFT largely increased in both VLCHF (p = 0.005, BF10 = 11.30 and p = 0.001, BF10 ≥ 100, respectively) and HD (p = 0.018, BF10 = 3.87 and p = 0.001, BF10 ≥ 100, respectively) groups after 12 weeks. Absolute maximal oxygen uptake ( V ˙ O2max) was not changed in both groups but relative V ˙ O2max increased in VLCHF in concert with reductions in body mass (66.7 ± 10.2-63.1 ± 8.5 kg). Cardiac autonomic regulation did not reveal any between-group differences after 12 weeks. VLCHF diet induced an increase in β-hydroxybutyrate, which tended to normalize during the intervention period. CONCLUSION: The 12 week VLCHF diet did not impair high-intensity continuous or intermittent exercise lasting up to 25 min, nor did it impair maximal cardiorespiratory performance or autonomic nervous system (ANS) activity.
Zobrazit více v PubMed
Bergström J., Hermansen L., Hultman E., Saltin B. (1967). Diet, muscle glycogen and physical performance. Acta physiol. Scand. 71 140–150. 10.1111/j.1748-1716.1967.tb03720.x PubMed DOI
Buchheit M. (2008). The 30-15 intermittent fitness test:accuracy for individualizing interval training of young intermittent sport players. J. Strength Cond. Res. 22 365–374. 10.1519/JSC.0b013e3181635b2e PubMed DOI
Buchheit M. (2014). Monitoring training status with HR measures: do all roads lead to Rome? Front. Physiol. 5:73. 10.3389/fphys.2014.00073 PubMed DOI PMC
Buchheit M., Laursen P. B. (2013). High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sports Med. 43 313–338. 10.1007/s40279-013-0029-x PubMed DOI
Buchheit M., Laursen P. B. (2014). Dr. Boullosa’s forgotten pieces don’t fit the puzzle. Sports Med. 44 1171–1175. 10.1007/s40279-014-0191-9 PubMed DOI
Burke L. M. (2015). Re-examining high-fat diets for sports performance: did we call the ‘nail in the coffin’too soon? Sports Med. 45 33–49. 10.1007/s40279-015-0393-9 PubMed DOI PMC
Burke L. M., Hawley J. A. (2018). Swifter, higher, stronger: what ’ s on the menu? Science 362 781–787. 10.1126/science.aau2093 PubMed DOI
Burke L. M., Ross M. L., Garvican-lewis L. A., Welvaert M., Heikura I. A., Forbes S. G., et al. (2017). Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J. Physiol. 595 2785–2807. 10.1113/JP273230 PubMed DOI PMC
Camm M., Malik J. T., Bigger G., Breithardt S., Cerutti R. J., Cohen P., et al. (1996). Heart rate variability: standards of measurement, physiological interpretation and clinical use. task force of the european society of cardiology and the north american society of pacing and electrophysiology. Eur. Heart J. 17 354–381. PubMed
Cassidy S., Thoma C., Houghton D., Trenell M. I. (2017). High-intensity interval training?: a review of its impact on glucose control and cardiometabolic health. Diabetologia 60 7–23. 10.1007/s00125-016-4106-1 PubMed DOI PMC
Cipryan L., Plews D. J., Ferretti A., Maffetone P. B., Laursen P. B. (2018). Effects of a 4-week very low-carbohydrate diet on high-intensity interval training responses. J. Sports Sci. Med. 17 259–267. PubMed PMC
Cohen J. (1988). Statistical Power Analysis for the Behavioural Sciences (2nd Erlbau). Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers.
Cox P. J., Clarke K. (2014). Acute nutritional ketosis: implications for exercise performance and metabolism. Extrem. Physiol. Med. 3 1–9. 10.1186/2046-7648-3-17 PubMed DOI PMC
Feinman R. D., Pogozelski W. K., Astrup A., Bernstein R. K., Fine E. J., Westman E. C., et al. (2015). Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base. Nutrition 31 1–13. 10.1016/j.nut.2014.06.011 PubMed DOI
Fleming J., Sharman M. (2003). Endurance capacity and high-intensity exercise performance responses to a high fat diet. Int. J. Sport Nutr. Exerc. Metab. 13 466–478. 10.1123/ijsnem.13.4.466 PubMed DOI
Gillen J. B., Gibala M. J. (2018). Interval training: a time-efficient exercise strategy to improve cardiometabolic health. Appl. Physiol. Nutr. Metab. 43 3–4. 10.1139/apnm-2013-0187 PubMed DOI
Heatherly A. J., Killen L. G., Smith A. F., Waldman H. S., Seltmann C. L., Hollingsworth A., et al. (2018). Effects of Ad libitum low-carbohydrate high-fat dieting in middle-age male runners. Med. Sci. Sports Exerc. 50 570–579. 10.1249/MSS.0000000000001477 PubMed DOI
Helge J. W. (2002). Long-term fat diet adaptation effects on performance, training capacity, and fat utilization. Med. Sci. Sports Exerc. 34 1499–1504. 10.1249/01.MSS.0000027691.95769.B5 PubMed DOI
Jeffreys H. (1961). Theory of Probability, 3rd Edn. Oxford: Oxford University Press.
Keller U. (2011). Dietary proteins in obesity and in diabetes. Int. J. Vitam. Nutr. Res. 81 125–133. 10.1024/0300-9831/a000059 PubMed DOI
Kephart W., Pledge C., Roberson P., Mumford P., Romero M., Mobley C., et al. (2018). The three-month effects of a ketogenic diet on body composition, blood parameters, and performance metrics in crossfit trainees: a pilot study. Sports 6:1. 10.3390/sports6010001 PubMed DOI PMC
Langfort J., Zarzeczny R., Pilis W., Nazar K., Kaciuba-Uścitko H. (1997). The effect of a low-carbohydrate diet on performance, hormonal and metabolic responses to a 30-s bout of supramaximal exercise. Eur. J. Appl. Physiol. Occup. Physiol. 76 128–133. 10.1007/s004210050224 PubMed DOI
Lima-Silva A. E., Pires F. O., Bertuzzi R., Silva-Cavalcante M. D., Oliveira R. S. F., Kiss M. A., et al. (2013). Effects of a low- or a high-carbohydrate diet on performance, energy system contribution, and metabolic responses during supramaximal exercise. Appl. Physiol. Nutr. Metab. 38 928–934. 10.1139/apnm-2012-0467 PubMed DOI
Mckenzie A. L., Hallberg S. J., Creighton B. C., Volk B. M., Link M., Abner M. K., et al. (2017). A novel intervention including individualized nutritional recommendations reduces hemoglobin A1c level, medication use, and weight in type 2 diabetes. JMIR Diabetes 2:e5. 10.2196/diabetes.6981 PubMed DOI PMC
McSwiney F. T., Wardrop B., Hyde P. N., Lafountain R. A., Volek J. S., Doyle L. (2017). Keto-adaptation enhances exercise performanceand body composition responses to training inendurance athletes. Metabolism 81 25–34. 10.1016/j.metabol.2017.10.010 PubMed DOI
Miller V. J., Villamena F. A., Volek J. S. (2018). Nutritional ketosis and mitohormesis: potential implications for mitochondrial function and human health. J. Nutr. Metab. 2018:5157645. 10.1155/2018/5157645 PubMed DOI PMC
Paoli A., Bianco A., Grimaldi K. A. (2015). The ketogenic diet and sport: a possible marriage? Exerc. Sport Sci. Rev. 43 153–162. 10.1249/JES.0000000000000050 PubMed DOI
Pellizzer A., Straznicky N. E., Lim S., Kamen P. W., Krum H. (1999). Reduced dietary fat intake increases parasympathetic activity in healthy premenopausal women. Clin. Exp. Pharmacol. Physiol. 26 656–660. 10.1046/j.1440-1681.1999.03103.x PubMed DOI
Plews D. J., Laursen P. B., Buchheit M. (2016). Day-to-day heart rate variability (HRV) recordings in world champion rowers: appreciating unique athlete characteristics. Int. J. Sports Physiol. Perform. 12 697–703. 10.1123/ijspp.2016-0343 PubMed DOI
Plews D. J., Laursen P. B., Kilding A. E., Buchheit M. (2012). Heart rate variability in elite triathletes, is variation in variability the key to effective training? a case comparison. Eur. J. Appl. Physiol. 112 3729–3741. 10.1007/s00421-012-2354-4 PubMed DOI
Plews D. J., Scott B., Altini M., Wood M., Kilding A. E., Laursen P. B. (2017). Comparison of heart-rate-variability recording with smartphone photoplethysmography, polar H7 chest strap, and electrocardiography. Int. J. Sports Physiol. Perform. 12 1324–1328. 10.1123/ijspp.2016-0668 PubMed DOI
Soeters M. R., Soeters P. B., Schooneman M. G., Houten S. M., Romijn J. A. (2012). Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation. Am. J. Physiol. Endocrinol. Metab. 303 1397–1407. 10.1152/ajpendo.00397.2012 PubMed DOI
Tschakert G., Hofmann P. (2013). High-intensity intermittent exercise: methodological and physiological aspects. Int. J. Sports Physiol. Perform. 8 600–610. 10.1123/ijspp.8.6.600 PubMed DOI
Urbain P., Strom L., Morawski L., Wehrle A., Deibert P., Bertz H. (2017). Impact of a 6-week non-energy-restricted ketogenic diet on physical fitness, body composition and biochemical parameters in healthy adults. Nutr. Metab. 14:17. 10.1186/s12986-017-0175-5 PubMed DOI PMC
van Loon L. J., Greenhaff P. L., Constantin-Teodosiu D., Saris W. H., Wagenmakers A. J. (2001). The effects of increasing exercise intensity on muscle fuel utilisation in humans. J. Physiol. 536 295–304. 10.1111/j.1469-7793.2001.00295.x PubMed DOI PMC
Veldhorst M. A., Westerterp-Plantenga M. S., Westerterp K. R. (2009). Gluconeogenesis and energy expenditure after a high-protein, carbohydrate-free diet. Am. J. Clin. Nutr. 90 519–526. 10.3945/ajcn.2009.27834.1 PubMed DOI
Volek J. S., Phinney S. D. (2012). The Art and Science of Low Carbohydrate Performance (39798th ed). Miami: Beyond Obesity LLC.
Volek J. S., Freidenreich D. J., Saenz C., Kunces L. J., Creighton B. C., Bartley J. M., et al. (2016). Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism 65 100–110. 10.1016/j.metabol.2015.10.028 PubMed DOI
Volek J. S., Noakes T., Phinney S. D. (2015). Rethinking fat as a fuel for endurance exercise. Eur. J. Sport Sci. 15 13–20. 10.1080/17461391.2014.959564 PubMed DOI
Webster C. C., Noakes T. D., Chacko S. K., Swart J., Kohn T. A., Smith J. A. (2016). Gluconeogenesis during endurance exercise in cyclists habituated to a long-term low carbohydrate high-fat diet. J. Physiol. 594 4389–4405. 10.1113/JP271934 PubMed DOI PMC
Wulsin L. R., Horn P. S., Perry J. L., Massaro J. M., Agostino R. B. D. (2016). Autonomic imbalance as a predictor of metabolic risks, cardiovascular disease, diabetes, and mortality. J. Clin. Endocrinol. Metab. 100 2443–2448. 10.1210/jc.2015-1748 PubMed DOI
Yeo W. K., Carey A. L., Burke L., Spriet L. L., Hawley J. A. (2011). Fat adaptation in well-trained athletes: effects on cell metabolism. Appl. Physiol. Nutr. Metab. 36 12–22. 10.1139/H10-089 PubMed DOI
Young H. A., Benton D. (2018). Heart-rate variability: a biomarker to study the influence of nutrition on physiological and psychological health? Behav. Pharmacol. 29 140–151. 10.1097/FBP.0000000000000383 PubMed DOI PMC
Zajac A., Poprzecki S., Maszczyk A., Czuba M., Michalczyk M., Zydek G. (2014). The effects of a ketogenic diet on exercise metabolism and physical performance in off-road cyclists. Nutrients 6 2493–2508. 10.3390/nu6072493 PubMed DOI PMC