Reference simulations of noncanonical nucleic acids with different χ variants of the AMBER force field: quadruplex DNA, quadruplex RNA and Z-DNA
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 GM081411
NIGMS NIH HHS - United States
PubMed
23197943
PubMed Central
PMC3506181
DOI
10.1021/ct300275s
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Refinement of empirical force fields for nucleic acids requires their extensive testing using as wide range of systems as possible. However, finding unambiguous reference data is not easy. In this paper, we analyze four systems which we suggest should be included in standard portfolio of molecules to test nucleic acids force fields, namely, parallel and antiparallel stranded DNA guanine quadruplex stems, RNA quadruplex stem, and Z-DNA. We highlight parameters that should be monitored to assess the force field performance. The work is primarily based on 8.4 μs of 100-250 ns trajectories analyzed in detail followed by 9.6 μs of additional selected back up trajectories that were monitored to verify that the results of the initial analyses are correct. Four versions of the Cornell et al. AMBER force field are tested, including an entirely new parmχ(OL4) variant with χ dihedral specifically reparametrized for DNA molecules containing syn nucleotides. We test also different water models and ion conditions. While improvement for DNA quadruplexes is visible, the force fields still do not fully represent the intricate Z-DNA backbone conformation.
Zobrazit více v PubMed
Ditzler MA, Otyepka M, Sponer J, Walter NG. Acc Chem Res. 2010;43:40–47. PubMed PMC
Besseova I, Otyepka M, Reblova K, Sponer J. Phys Chem Chem Phys. 2009;11:10701–10711. PubMed
Gaillard T, Case DA. J Chem Theory Comput. 2011;7:3181–3198. PubMed PMC
Šponer J, Cang X, Cheatham TE., III Methods. in press.
Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. J Am Chem Soc. 1995;117:5179–5197.
Cheatham TE, III, Cieplak P, Kollman PA. J Biomol Struct Dyn. 1999;16:845–862. PubMed
Wang J, Cieplak P, Kollman PA. J Comp Chem. 2000;21:1049–1074.
Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, Laughton CA, Orozco M. Biophys J. 2007;92:3817–3829. PubMed PMC
Banas P, Hollas D, Zgarbova M, Jurecka P, Orozco M, Cheatham TE, Sponer J, Otyepka M. J Chem Theory Comput. 2010;6:3836–3849. PubMed PMC
Zgarbova M, Otyepka M, Sponer J, Mladek A, Banas P, Cheatham TE, Jurecka P. J Chem Theory Comput. 2011;7:2886–2902. PubMed PMC
Ode H, Matsuo Y, Neya S, Hoshino T. J Comput Chem. 2008;29:2531–2542. PubMed
Yildirim I, Stern HA, Kennedy SD, Tubbs JD, Turner DH. J Chem Theory Comput. 2010;6:1520–1531. PubMed PMC
Yildirim I, Kennedy SD, Stern HA, Hart JM, Kierzek R, Turner DH. J Chem Theory Comput. 2011;8:172–181. PubMed PMC
Foloppe N, MacKerell AD. J Comput Chem. 2000;21:86–104.
Denning EJ, Priyakumar UD, Nilsson L, Mackerell AD. J Comput Chem. 2011;32:1929–1943. PubMed PMC
Hart K, Foloppe N, Baker CM, Denning EJ, Nilsson L, MacKerell AD. J Chem Theory Comput. 2012;8:348–362. PubMed PMC
Cheatham TE, III, Miller JL, Fox T, Darden TA, Kollman PA. J Amer Chem Soc. 1995;117:4193–4194.
Cheatham TE, III, Kollman PA. J Amer Chem Soc. 1997;119:4805–4825.
Fadrna E, Spackova N, Stefl R, Koca J, Cheatham TE, Sponer J. Biophys J. 2004;87:227–242. PubMed PMC
Svozil D, Sponer JE, Marchan I, Perez A, Cheatham TE, 3rd, Forti F, Luque FJ, Orozco M, Sponer J. J Phys Chem B. 2008;112:8188–8197. PubMed
Mlynsky V, Banas P, Hollas D, Reblova K, Walter NG, Sponer J, Otyepka M. J Phys Chem B. 2010;114:6642–6652. PubMed PMC
Fadrna E, Spackova N, Sarzynska J, Koca J, Orozco M, Cheatham TE, Kulinski T, Sponer J. J Chem Theory Comput. 2009;5:2514–2530. PubMed
Spackova N, Sponer J. Nucleic Acids Res. 2006;34:697–708. PubMed PMC
Mladek A, Sponer JE, Kulhanek P, Lu XJ, Olson WK, Sponer J. J Chem Theory Comput. 2012;8:335–347. PubMed PMC
Svozil D, Kalina J, Omelka M, Schneider B. Nucleic Acids Res. 2008;36:3690–3706. PubMed PMC
Sponer J, Spackova N. Methods. 2007;43:278–290. PubMed PMC
Phillips K, Dauter Z, Murchie AIH, Lilley DMJ, Luisi B. J Mol Biol. 1997;273:171–182. PubMed
Deng JP, Xiong Y, Sundaralingam M. Proc Natl Acad Sci USA. 2001;98:13665–13670. PubMed PMC
Tereshko V, Wilds CJ, Minasov G, Prakash TP, Maier MA, Howard A, Wawrzak Z, Manoharan M, Egli M. Nucleic Acids Res. 2001;29:1208–1215. PubMed PMC
Case DA, TAD, Cheatham TE, III, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, RCW, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, KFW, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Yang L, CT, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman aPA. Amber. Vol. 10. University of California; San Francisco: 2008.
Cheatham TE, Cieplak P, Kollman PA. J Biomol Struct Dyn. 1999;16:845–862. PubMed
Krishnan R, Binkley JS, Seeger R, Pople JA. J Chem Phys. 1980;72:650–654.
Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PV. J Comput Chem. 1983;4:294–301.
Gill PMW, Johnson BG, Pople JA. J Chem Phys. 1992;96:7178–7179.
Frisch MJ, Pople JA, Binkley JS. J Chem Phys. 1984;80:3265–3269.
Klamt A, Schuurmann G. J Chem Soc, Perkin Trans. 1993;2:799–805.
Ahlrichs R, Bar M, Haser M, Horn H, Kolmel C. Chem Phys Lett. 1989;162:165–169.
Halkier A, Helgaker T, Jorgensen P, Klopper W, Koch H, Olsen J, Wilson AK. Chem Phys Lett. 1998;286:243–252.
Halkier A, Helgaker T, Jorgensen P, Klopper W, Olsen J. Chem Phys Lett. 1999;302:437–446.
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Laham A, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, Revision C.02. Gaussian, Inc; Wallingford, CT: 2004.
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. J Chem Phys. 1983;79:926–935.
Jorgensen WL. J Am Chem Soc. 1981;103:335–340.
Berendsen HJC, Grigera JR, Straatsma TP. J Phys Chem. 1987;91:6269–6271.
Mahoney MW, Jorgensen WL. J Chem Phys. 2000;112:8910–8922.
Aqvist J. J Phys Chem. 1990;94:8021–8024.
Dang LX, Kollman PA. J Phys Chem. 1995;99:55–58.
Smith DE, Dang LX. J Chem Phys. 1994;100:3757–3766.
Sklenovsky P, Florova P, Banas P, Reblova K, Lankas F, Otyepka M, Sponer J. J Chem Theory Comput. 2011;7:2963–2980. PubMed
Darden T, York D, Pedersen L. J Chem Phys. 1993;98:10089–10092.
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. J Chem Phys. 1995;103:8577–8593.
Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR. J Chem Phys. 1984;81:3684–3690.
Reblova K, Fadrna E, Sarzynska J, Kulinski T, Kulhanek P, Ennifar E, Koca J, Sponer J. Biophys J. 2007;93:3932–3949. PubMed PMC
Besseova I, Otyepka M, Reblova K, Sponer J. Phys Chem Chem Phys. 2009;11:10701–10711. PubMed
Humphrey W, Dalke A, Schulten K. J Mol Graph. 1996;14:33. PubMed
Altona C, Sundaralingam M. J Am Chem Soc. 1972;94:8205. PubMed
Haider S, Parkinson GN, Neidle S. J Mol Biol. 2002;320:189–200. PubMed
Horvath MP, Schultz SC. J Mol Biol. 2001;310:367–377. PubMed
Hazel P, Parkinson GN, Neidle S. J Am Chem Soc. 2006;128:5480–5487. PubMed
Campbell NH, Smith DL, Reszka AP, Neidle S, O’Hagan D. Org Biomol Chem. 2011;9:1328–1331. PubMed
Gill ML, Strobel SA, Loria JP. Nucleic Acids Res. 2006;34:4506–4514. PubMed PMC
Brzezinski K, Brzuszkiewicz A, Dauter M, Kubicki M, Jaskolski M, Dauter Z. Nucleic Acids Res. 2011;39:6238–6248. PubMed PMC
Dauter Z, Adamiak DA. Acta Crystallogr, Sect D: Biol Crystallogr. 2001;57:990–995. PubMed
Gessner RV, Frederick CA, Quigley GJ, Rich A, Wang AHJ. J Biol Chem. 1989;264:7921–7935. PubMed
Lee J, Kim YG, Kim KK, Seok C. J Phys Chem B. 2010;114:9872–9881. PubMed
Wang AHJ, Quigley GJ, Kolpak FJ, Vandermarel G, Vanboom JH, Rich A. Science. 1981;211:171–176. PubMed
Dickerson RE, Grzeskowiak K, Grzeskowiak M, Kopka ML, Larsen T, Lipanov A, Prive GG, Quintana J, Schultze P, Yanagi K, Yuan H, Yoon HC. Nucleosides, Nucleotides Nucleic Acids. 1991;10:3–24.
Sponer J, Kypr J. J Biomol Struct Dyn. 1993;11:277–292. PubMed
Dickerson RE, Goodsell DS, Neidle S. Proc Natl Acad Sci USA. 1994;91:3579–3583. PubMed PMC
Kielkopf CL, Ding S, Kuhn P, Rees DC. J Mol Biol. 2000;296:787–801. PubMed
Atomistic Insights Into Interaction of Doxorubicin With DNA: From Duplex to Nucleosome
Refinement of the Sugar Puckering Torsion Potential in the AMBER DNA Force Field
Computer Folding of Parallel DNA G-Quadruplex: Hitchhiker's Guide to the Conformational Space
Complex Biophysical and Computational Analyses of G-Quadruplex Ligands: The Porphyrin Stacks Back
Assessing the Current State of Amber Force Field Modifications for DNA─2023 Edition
c-kit2 G-quadruplex stabilized via a covalent probe: exploring G-quartet asymmetry
2,6-diaminopurine promotes repair of DNA lesions under prebiotic conditions
Insight into formation propensity of pseudocircular DNA G-hairpins
Structure of a DNA G-Quadruplex Related to Osteoporosis with a G-A Bulge Forming a Pseudo-loop
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview
Sequential electron transfer governs the UV-induced self-repair of DNA photolesions
Assessing the Current State of Amber Force Field Modifications for DNA
Conformations of Human Telomeric G-Quadruplex Studied Using a Nucleotide-Independent Nitroxide Label
Extended molecular dynamics of a c-kit promoter quadruplex