Atomistic Picture of Opening-Closing Dynamics of DNA Holliday Junction Obtained by Molecular Simulations

. 2023 May 08 ; 63 (9) : 2794-2809. [epub] 20230426

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37126365

Holliday junction (HJ) is a noncanonical four-way DNA structure with a prominent role in DNA repair, recombination, and DNA nanotechnology. By rearranging its four arms, HJ can adopt either closed or open state. With enzymes typically recognizing only a single state, acquiring detailed knowledge of the rearrangement process is an important step toward fully understanding the biological function of HJs. Here, we carried out standard all-atom molecular dynamics (MD) simulations of the spontaneous opening-closing transitions, which revealed complex conformational transitions of HJs with an involvement of previously unconsidered "half-closed" intermediates. Detailed free-energy landscapes of the transitions were obtained by sophisticated enhanced sampling simulations. Because the force field overstabilizes the closed conformation of HJs, we developed a system-specific modification which for the first time allows the observation of spontaneous opening-closing HJ transitions in unbiased MD simulations and opens the possibilities for more accurate HJ computational studies of biological processes and nanomaterials.

Zobrazit více v PubMed

Holliday R. A mechanism for gene conversion in fungi. Genet. Res. 1964, 5, 282–304. 10.1017/S0016672300001233. PubMed DOI

Duckett D. R.; Murchie A. I. H.; Diekmann S.; von Kitzing E.; Kemper B.; Lilley D. M. J. The Structure of the Holliday Junction, and Its Resolution. Cell 1988, 55, 79–89. 10.1016/0092-8674(88)90011-6. PubMed DOI

Wright W. D.; Shah S. S.; Heyer W.-D. Homologous Recombination and the Repair of DNA Double-Strand Breaks. J. Biol. Chem. 2018, 293, 10524–10535. 10.1074/jbc.TM118.000372. PubMed DOI PMC

Karymov M. A.; Chinnaraj M.; Bogdanov A.; Srinivasan A. R.; Zheng G.; Olson W. K.; Lyubchenko Y. L. Structure, Dynamics, and Branch Migration of a DNA Holliday Junction: A Single-Molecule Fluorescence and Modeling Study. Biophys. J. 2008, 95, 4372–4383. 10.1529/BIOPHYSJ.108.135103. PubMed DOI PMC

Karymov M.; Daniel D.; Sankey O. F.; Lyubchenko Y. L. Holliday Junction Dynamics and Branch Migration: Single-Molecule Analysis. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 8186–8191. 10.1073/pnas.0407210102. PubMed DOI PMC

Lushnikov A. Y.; Bogdanov A.; Lyubchenko Y. L. DNA Recombination: Holliday junctions dynamics and branch migration. J. Biol. Chem. 2003, 278, 43130–43134. 10.1074/jbc.M308228200. PubMed DOI

Yan J.; Hong S.; Guan Z.; He W.; Zhang D.; Yin P. Structural Insights into Sequence-Dependent Holliday Junction Resolution by the Chloroplast Resolvase MOC1. Nat. Commun. 2020, 11, 1417.10.1038/s41467-020-15242-8. PubMed DOI PMC

Lin S. H.; Zhao D.; Deng V.; Birdsall V. K.; Ho S.; Buzovetsky O.; Etson C. M.; Mukerji I. Integration Host Factor Binds DNA Holliday Junctions. Int. J. Mol. Sci. 2022, 24, 580.10.3390/ijms24010580. PubMed DOI PMC

Slone S. M.; Li C. Y.; Yoo J.; Aksimentiev A. Molecular Mechanics of DNA Bricks: In Situ Structure, Mechanical Properties and Ionic Conductivity. New J. Phys. 2016, 18, 055012.10.1088/1367-2630/18/5/055012. DOI

Seeman N. C.; Kallenbach N. R. Design of Immobile Nucleic Acid Junctions. Biophys. J. 1983, 44, 201–209. 10.1016/S0006-3495(83)84292-1. PubMed DOI PMC

Mao C.; Sun W.; Seeman N. C. Designed Two-Dimensional DNA Holliday Junction Arrays Visualized by Atomic Force Microscopy. Annu. Rev. Biophys. Biomol. Struct. 1999, 121, 5437–5443. 10.1021/ja9900398. DOI

Kallenbach N. R.; Ma R.-I.; Seeman N. C. An Immobile Nucleic Acid Junction Constructed from Oligonucleotides. Nature 1983, 305, 829–831. 10.1038/305829a0. DOI

Ho P. S. Structure of the Holliday Junction: Applications beyond Recombination. Biochem. Soc. Trans. 2017, 45, 1149–1158. 10.1042/BST20170048. PubMed DOI

Simmons C. R.; MacCulloch T.; Krepl M.; Matthies M.; Buchberger A.; Crawford I.; Šponer J.; Šulc P.; Stephanopoulos N.; Yan H. The Influence of Holliday Junction Sequence and Dynamics on DNA Crystal Self-Assembly. Nat. Commun. 2022, 13, 3112–3119. 10.1038/s41467-022-30779-6. PubMed DOI PMC

Simmons C. R.; MacCulloch T.; Zhang F.; Liu Y.; Stephanopoulos N.; Yan H. A Self-Assembled Rhombohedral DNA Crystal Scaffold with Tunable Cavity Sizes and High-Resolution Structural Detail. Angew. Chem. 2020, 132, 18778–18785. 10.1002/ANGE.202005505. PubMed DOI

Joo C.; McKinney S. A.; Lilley D. M. J.; Ha T. Exploring Rare Conformational Species and Ionic Effects in DNA Holliday Junctions Using Single-Molecule Spectroscopy. J. Mol. Biol. 2004, 341, 739–751. 10.1016/j.jmb.2004.06.024. PubMed DOI

McKinney S. A.; Déclais A. C.; Lilley D. M. J.; Ha T. Structural Dynamics of Individual Holliday Junctions. Nat. Struct. Biol. 2003, 10, 93–97. 10.1038/nsb883. PubMed DOI

Litke J. L.; Li Y.; Nocka L. M.; Mukerji I. Probing the Ion Binding Site in a DNA Holliday Junction Using Förster Resonance Energy Transfer (FRET). Int. J. Mol. Sci. 2016, 17, 366.10.3390/ijms17030366. PubMed DOI PMC

Thachuk C.; Winfree E.; Soloveichik D.. Leakless DNA Strand Displacement Systems. International Workshop on DNA-Based Computers; Springer: Cham, 2015; pp 133–153.

Khuu P. A.; Voth A. R.; Hays F. A.; Ho P. S. The Stacked-X DNA Holliday Junction and Protein Recognition. J. Mol. Recognit. 2006, 19, 234–242. 10.1002/jmr.765. PubMed DOI PMC

Zettl T.; Shi X.; Bonilla S.; Sedlak S. M.; Lipfert J.; Herschlag D. The Structural Ensemble of a Holliday Junction Determined by X-Ray Scattering Interference. Nucleic Acids Res. 2020, 48, 8090–8098. 10.1093/nar/gkaa509. PubMed DOI PMC

Duckett D. R.; Murchie A. I. H.; Lilley D. M. J. The Role of Metal Ions in the Conformation of the Four-Way DNA Junction. EMBO J. 1990, 9, 583–590. 10.1002/j.1460-2075.1990.tb08146.x. PubMed DOI PMC

Grupa U.; Liebl K.; Zacharias M. Orientation Dependence of DNA Blunt-End Stacking Studied by Free-Energy Simulations. J. Phys. Chem. B 2021, 125, 13850–13857. 10.1021/acs.jpcb.1c07829. PubMed DOI

Ghimire M. L.; Gibbs D. R.; Mahmoud R.; Dhakal S.; Reiner J. E. Nanopore Analysis as a Tool for Studying Rapid Holliday Junction Dynamics and Analyte Binding. Anal. Chem. 2022, 94, 10027–10034. 10.1021/acs.analchem.2c00342. PubMed DOI

Overmars F. J. J.; Altona C. NMR study of the exchange rate between two stacked conformers of a model holliday junction. J. Mol. Biol. 1997, 273, 519–524. 10.1006/JMBI.1997.1340. PubMed DOI

Miick S. M.; Fee R. S.; Millar D. P.; Chazin W. J.; Zimm B. H. Crossover Isomer Bias Is the Primary Sequence-Dependent Property of Immobilized Holliday Junctions. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 9080–9084. 10.1073/pnas.94.17.9080. PubMed DOI PMC

Grainger R. J.; Murchie A. I. H.; Lilley D. M. J. Exchange between Stacking Conformers in a Four-Way DNA Junction. Biochemistry 1998, 37, 23–32. 10.1021/bi9721492. PubMed DOI

Lu M.; Guo Q.; Seeman N. C.; Kallenbach N. R. Parallel and Antiparallel Holliday Junctions Differ in Structure and Stability. J. Mol. Biol. 1991, 221, 1419–1432. 10.1016/0022-2836(91)90942-Y. PubMed DOI

Yoo J.; Winogradoff D.; Aksimentiev A. Molecular Dynamics Simulations of DNA–DNA and DNA–Protein Interactions. Curr. Opin. Struct. Biol. 2020, 64, 88–96. 10.1016/j.sbi.2020.06.007. PubMed DOI

Pérez A.; Luque F. J.; Orozco M. Frontiers in Molecular Dynamics Simulations of DNA. Acc. Chem. Res. 2012, 45, 196–205. 10.1021/ar2001217. PubMed DOI

Šponer J.; Bussi G.; Krepl M.; Banáš P.; Bottaro S.; Cunha R. A.; Gil-Ley A.; Pinamonti G.; Poblete S.; Jurečka P.; Walter N. G.; Otyepka M. RNA Structural Dynamics as Captured by Molecular Simulations: A Comprehensive Overview. Chem. Rev. 2018, 118, 4177–4338. 10.1021/acs.chemrev.7b00427. PubMed DOI PMC

Yu J.; Ha T.; Schulten K. Conformational Model of the Holliday Junction Transition Deduced from Molecular Dynamics Simulations. Nucleic Acids Res. 2004, 32, 6683–6695. 10.1093/nar/gkh1006. PubMed DOI PMC

Wheatley E. G.; Pieniazek S. N.; Mukerji I.; Beveridge D. L. Molecular Dynamics of a DNA Holliday Junction: The Inverted Repeat Sequence d(CCGGTACCGG)4. Biophys. J. 2012, 102, 552–560. 10.1016/j.bpj.2011.11.4023. PubMed DOI PMC

Yoo J.; Aksimentiev A. In Situ Structure and Dynamics of DNA Origami Determined through Molecular Dynamics Simulations. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 20099–20104. 10.1073/pnas.1316521110. PubMed DOI PMC

Górecka K. M.; Krepl M.; Szlachcic A.; Poznański J.; Šponer J.; Nowotny M. RuvC Uses Dynamic Probing of the Holliday Junction to Achieve Sequence Specificity and Efficient Resolution. Nat. Commun. 2019, 10, 4102–4110. 10.1038/s41467-019-11900-8. PubMed DOI PMC

Lin H.; Zhang D.; Zuo K.; Yuan C.; Li J.; Huang M.; Lin Z. Structural Basis of Sequence-Specific Holliday Junction Cleavage by MOC1. Nat. Chem. Biol. 2019, 15, 1241–1248. 10.1038/s41589-019-0377-4. PubMed DOI

Yoo J.; Aksimentiev A. New Tricks for Old Dogs: Improving the Accuracy of Biomolecular Force Fields by Pair-Specific Corrections to Non-Bonded Interactions. Phys. Chem. Chem. Phys. 2018, 20, 8432–8449. 10.1039/c7cp08185e. PubMed DOI PMC

Zhou R.; Yang O.; Déclais A. C.; Jin H.; Gwon G. H.; Freeman A. D. J.; Cho Y.; Lilley D. M. J.; Ha T. Junction Resolving Enzymes Use Multivalency to Keep the Holliday Junction Dynamic. Nat. Chem. Biol. 2019, 15, 269–275. 10.1038/s41589-018-0209-y. PubMed DOI PMC

Chen A. A.; García A. E. High-Resolution Reversible Folding of Hyperstable RNA Tetraloops Using Molecular Dynamics Simulations. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 16820–16825. 10.1073/pnas.1309392110. PubMed DOI PMC

Kruse H.; Banáš P.; Šponer J. Investigations of Stacked DNA Base-Pair Steps: Highly Accurate Stacking Interaction Energies, Energy Decomposition, and Many-Body Stacking Effects. J. Chem. Theory Comput. 2019, 15, 95–115. 10.1021/acs.jctc.8b00643. PubMed DOI

Hohng S.; Zhou R.; Nahas M. K.; Yu J.; Schulten K.; Lilley D. M. J.; Ha T. Fluorescence-Force Spectroscopy Maps Two-Dimensional Reaction Landscape of the Holliday Junction. Science 2007, 318, 279–283. 10.1126/science.1146113. PubMed DOI PMC

Simmons C. R.; Zhang F.; Birktoft J. J.; Qi X.; Han D.; Liu Y.; Sha R.; Abdallah H. O.; Hernandez C.; Ohayon Y. P.; Seeman N. C.; Yan H. Construction and Structure Determination of a Three-Dimensional DNA Crystal. J. Am. Chem. Soc. 2016, 138, 10047–10054. 10.1021/jacs.6b06508. PubMed DOI

Barducci A.; Bussi G.; Parrinello M. Well-Tempered Metadynamics: A Smoothly Converging and Tunable Free-Energy Method. Phys. Rev. Lett. 2008, 100, 020603–020604. 10.1103/PhysRevLett.100.020603. PubMed DOI

Bussi G. Hamiltonian Replica Exchange in GROMACS: A Flexible Implementation. Mol. Phys. 2014, 112, 379–384. 10.1080/00268976.2013.824126. DOI

Zgarbová M.; Šponer J.; Otyepka M.; Cheatham T. E.; Galindo-Murillo R.; Jurečka P. Refinement of the Sugar-Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA. J. Chem. Theory Comput. 2015, 11, 5723–5736. 10.1021/acs.jctc.5b00716. PubMed DOI

Zgarbova M.; Luque F. J.; Šponer J.; Cheatham T. E.; Otyepka M.; Jurečka P. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters. J. Chem. Theory Comput. 2013, 9, 2339–2354. 10.1021/ct400154j. PubMed DOI PMC

Krepl M.; Zgarbová M.; Stadlbauer P.; Otyepka M.; Banáš P.; Koča J.; Cheatham T. E.; Jurečka P.; Šponer J. Reference Simulations of Noncanonical Nucleic Acids with Different χ Variants of the AMBER Force Field: Quadruplex DNA, Quadruplex RNA, and Z-DNA. J. Chem. Theory Comput. 2012, 8, 2506–2520. 10.1021/ct300275s. PubMed DOI PMC

Cornell W. D.; Cieplak P.; Bayly C. I.; Gould I. R.; Merz K. M.; Ferguson D. M.; Spellmeyer D. C.; Fox T.; Caldwell J. W.; Kollman P. A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197. 10.1021/ja00124a002. DOI

Steinbrecher T.; Latzer J.; Case D. A. Revised AMBER Parameters for Bioorganic Phosphates. J. Chem. Theory Comput. 2012, 8, 4405–4412. 10.1021/ct300613v. PubMed DOI PMC

Joung I. S.; Cheatham T. E. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B 2008, 112, 9020–9041. 10.1021/jp8001614. PubMed DOI PMC

Li P.; Song L. F.; Merz K. M. Systematic Parameterization of Monovalent Ions Employing the Nonbonded Model. J. Chem. Theory Comput. 2015, 11, 1645–1657. 10.1021/ct500918t. PubMed DOI

Chen A. A.; Draper D. E.; Pappu R. V. Molecular Simulation Studies of Monovalent Counterion-Mediated Interactions in a Model RNA Kissing Loop. J. Mol. Biol. 2009, 390, 805–819. 10.1016/j.jmb.2009.05.071. PubMed DOI PMC

Hub J. S.; De Groot B. L.; Grubmü H.; Groenhof G. Quantifying Artifacts in Ewald Simulations of Inhomogeneous Systems with a Net Charge. J. Chem. Theor. Comput. 2014, 10, 381–390. 10.1021/ct400626b. PubMed DOI

Cooper J. P.; Hagerman P. J. Geometry of a Branched DNA Structure in Solution. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 7336–7340. 10.1073/pnas.86.19.7336. PubMed DOI PMC

Pasi M.; Maddocks J. H.; Lavery R. Analyzing Ion Distributions around DNA: Sequence-Dependence of Potassium Ion Distributions from Microsecond Molecular Dynamics. Nucleic Acids Res. 2015, 43, 2412–2423. 10.1093/nar/gkv080. PubMed DOI PMC

Salsbury A. M.; Lemkul J. A. Recent Developments in Empirical Atomistic Force Fields for Nucleic Acids and Applications to Studies of Folding and Dynamics. Curr. Opin. Struct. Biol. 2021, 67, 9–17. 10.1016/J.SBI.2020.08.003. PubMed DOI PMC

Gkionis K.; Kruse H.; Platts J. A.; Mládek A.; Koča J.; Šponer J. Ion Binding to Quadruplex DNA Stems. Comparison of MM and QM Descriptions Reveals Sizable Polarization Effects Not Included in Contemporary Simulations. J. Chem. Theory Comput. 2014, 10, 1326–1340. 10.1021/CT4009969. PubMed DOI

Banáš P.; Mládek A.; Otyepka M.; Zgarbová M.; Jurečka P.; Svozil D.; Lankaš F.; Šponer J. Can We Accurately Describe the Structure of Adenine Tracts in B-DNA? Reference Quantum-Chemical Computations Reveal Overstabilization of Stacking by Molecular Mechanics. J. Chem. Theory Comput. 2012, 8, 2448–2460. 10.1021/ct3001238. PubMed DOI

Häse F.; Zacharias M. Free Energy Analysis and Mechanism of Base Pair Stacking in Nicked DNA. Nucleic Acids Res. 2016, 44, gkw607–7108. 10.1093/nar/gkw607. PubMed DOI PMC

Bergonzo C.; Henriksen N. M.; Roe D. R.; Cheatham T. E. Highly Sampled Tetranucleotide and Tetraloop Motifs Enable Evaluation of Common RNA Force Fields. RNA 2015, 21, 1578–1590. 10.1261/rna.051102.115. PubMed DOI PMC

Mlýnský V.; Janeček M.; Kührová P.; Fröhlking T.; Otyepka M.; Bussi G.; Banás P.; Šponer J. Toward Convergence in Folding Simulations of RNA Tetraloops: Comparison of Enhanced Sampling Techniques and Effects of Force Field Modifications. J. Chem. Theory Comput. 2022, 18, 2642–2656. 10.1021/acs.jctc.1c01222. PubMed DOI

Lustgarten O.; Carmieli R.; Motiei L.; Margulies D. A Molecular Secret Sharing Scheme. Angew. Chem. 2019, 131, 190–194. 10.1002/ANGE.201809855. PubMed DOI

Izadi S.; Anandakrishnan R.; Onufriev A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871. 10.1021/jz501780a. PubMed DOI PMC

Sun T.; Minhas V.; Korolev N.; Mirzoev A.; Lyubartsev A. P.; Nordenskiöld L. Bottom-Up Coarse-Grained Modeling of DNA. Front. Mol. Biosci. 2021, 8, 1–17. 10.3389/fmolb.2021.645527. PubMed DOI PMC

Wyatt H. D. M.; West S. C. Holliday Junction Resolvases. Cold Spring Harbor Perspect. Biol. 2014, 6, a023192.10.1101/cshperspect.a023192. PubMed DOI PMC

Šponer J.; Šponer J. E.; Mládek A.; Jurečka P.; Banáš P.; Otyepka M. Nature and Magnitude of Aromatic Base Stacking in DNA and RNA: Quantum Chemistry, Molecular Mechanics, and Experiment. Biopolymers 2013, 99, 978–988. 10.1002/bip.22322. PubMed DOI

Case D. A.; Ben-Shalom I. Y.; Brozell S. R.; Cerutti D. S.; Cheatham T. E. III; Cruzeiro V. W. D.; Darden T. A.; Duke R. E.; Ghoreishi D.; Gilson M. K.; Gohlke H.; Goetz A. W.; Greene D.; Harris R.; Homeyer N.; Huang Y.; Izadi S.; Kovalenko A.; Kurtzman T.; Lee T. S.; LeGrand S.; Li P.; Lin C.; Liu J.; Luchko T.; Luo R.; Mermelstein D.; Merz K. M.; Miao Y.; Monard G.; Nguyen C.; Nguyen H.; Omelyan I.; Onufriev A.; Pan F.; Qi R.; Roe D. R.; Roitberg A.; Sagui C.; Schott-Verdugo S.; Shen J.; Simmerling C. L.; Smith J.; Salomon-Ferrer R.; Swails J.; Walker R. C.; Wang J.; Wei H.; Wolf R. M.; Wu X.; Xiao L.; York D. M.; Kollman P. A.. Amber 2018; University of California: San Francisco, 2018.

Li P.; Song L. F.; Merz K. M. Parameterization of Highly Charged Metal Ions Using the 12-6-4 LJ-Type Nonbonded Model in Explicit Water. J. Phys. Chem. B 2015, 119, 883–895. 10.1021/jp505875v. PubMed DOI PMC

Kührová P.; Mlýnský V.; Zgarbová M.; Krepl M.; Bussi G.; Best R. B.; Otyepka M.; Šponer J.; Banáš P. Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions. J. Chem. Theory Comput. 2019, 15, 3288–3305. 10.1021/acs.jctc.8b00955. PubMed DOI PMC

Zgarbová M.; Otyepka M.; Šponer J.; Lankaš F.; Jurečka P. Base Pair Fraying in Molecular Dynamics Simulations of DNA and RNA. J. Chem. Theory Comput. 2014, 10, 3177–3189. 10.1021/ct500120v. PubMed DOI

Krepl M.; Pokorna P.; Mlýnský V.; Stadlbauer P.; Šponer J. Spontaneous binding of single-stranded RNAs to RRM proteins visualized by unbiased atomistic simulations with a rescaled RNA force field. Nucleic Acids Res. 2022, 50, 12480–12496. 10.1093/nar/gkac1106. PubMed DOI PMC

Abraham M. J.; van der Spoel D.; Lindahl E.; Hess B.. GROMACS User Manual Version 2018, 2018. www.gromacs.org.

Tribello G. A.; Bonomi M.; Branduardi D.; Camilloni C.; Bussi G. PLUMED 2: New Feathers for an Old Bird. Comput. Phys. Commun. 2014, 185, 604–613. 10.1016/j.cpc.2013.09.018. DOI

Roe D. R.; Cheatham T. E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084–3095. 10.1021/ct400341p. PubMed DOI

The PLUMED Consortium Promoting transparency and reproducibility in enhanced molecular simulations. Nature methods 2019, 16, 670–673. 10.1038/s41592-019-0506-8. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace