Atomistic Picture of Opening-Closing Dynamics of DNA Holliday Junction Obtained by Molecular Simulations
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37126365
PubMed Central
PMC10170514
DOI
10.1021/acs.jcim.3c00358
Knihovny.cz E-zdroje
- MeSH
- DNA * MeSH
- křížová struktura DNA * MeSH
- molekulární konformace MeSH
- oprava DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA * MeSH
- křížová struktura DNA * MeSH
Holliday junction (HJ) is a noncanonical four-way DNA structure with a prominent role in DNA repair, recombination, and DNA nanotechnology. By rearranging its four arms, HJ can adopt either closed or open state. With enzymes typically recognizing only a single state, acquiring detailed knowledge of the rearrangement process is an important step toward fully understanding the biological function of HJs. Here, we carried out standard all-atom molecular dynamics (MD) simulations of the spontaneous opening-closing transitions, which revealed complex conformational transitions of HJs with an involvement of previously unconsidered "half-closed" intermediates. Detailed free-energy landscapes of the transitions were obtained by sophisticated enhanced sampling simulations. Because the force field overstabilizes the closed conformation of HJs, we developed a system-specific modification which for the first time allows the observation of spontaneous opening-closing HJ transitions in unbiased MD simulations and opens the possibilities for more accurate HJ computational studies of biological processes and nanomaterials.
Zobrazit více v PubMed
Holliday R. A mechanism for gene conversion in fungi. Genet. Res. 1964, 5, 282–304. 10.1017/S0016672300001233. PubMed DOI
Duckett D. R.; Murchie A. I. H.; Diekmann S.; von Kitzing E.; Kemper B.; Lilley D. M. J. The Structure of the Holliday Junction, and Its Resolution. Cell 1988, 55, 79–89. 10.1016/0092-8674(88)90011-6. PubMed DOI
Wright W. D.; Shah S. S.; Heyer W.-D. Homologous Recombination and the Repair of DNA Double-Strand Breaks. J. Biol. Chem. 2018, 293, 10524–10535. 10.1074/jbc.TM118.000372. PubMed DOI PMC
Karymov M. A.; Chinnaraj M.; Bogdanov A.; Srinivasan A. R.; Zheng G.; Olson W. K.; Lyubchenko Y. L. Structure, Dynamics, and Branch Migration of a DNA Holliday Junction: A Single-Molecule Fluorescence and Modeling Study. Biophys. J. 2008, 95, 4372–4383. 10.1529/BIOPHYSJ.108.135103. PubMed DOI PMC
Karymov M.; Daniel D.; Sankey O. F.; Lyubchenko Y. L. Holliday Junction Dynamics and Branch Migration: Single-Molecule Analysis. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 8186–8191. 10.1073/pnas.0407210102. PubMed DOI PMC
Lushnikov A. Y.; Bogdanov A.; Lyubchenko Y. L. DNA Recombination: Holliday junctions dynamics and branch migration. J. Biol. Chem. 2003, 278, 43130–43134. 10.1074/jbc.M308228200. PubMed DOI
Yan J.; Hong S.; Guan Z.; He W.; Zhang D.; Yin P. Structural Insights into Sequence-Dependent Holliday Junction Resolution by the Chloroplast Resolvase MOC1. Nat. Commun. 2020, 11, 1417.10.1038/s41467-020-15242-8. PubMed DOI PMC
Lin S. H.; Zhao D.; Deng V.; Birdsall V. K.; Ho S.; Buzovetsky O.; Etson C. M.; Mukerji I. Integration Host Factor Binds DNA Holliday Junctions. Int. J. Mol. Sci. 2022, 24, 580.10.3390/ijms24010580. PubMed DOI PMC
Slone S. M.; Li C. Y.; Yoo J.; Aksimentiev A. Molecular Mechanics of DNA Bricks: In Situ Structure, Mechanical Properties and Ionic Conductivity. New J. Phys. 2016, 18, 055012.10.1088/1367-2630/18/5/055012. DOI
Seeman N. C.; Kallenbach N. R. Design of Immobile Nucleic Acid Junctions. Biophys. J. 1983, 44, 201–209. 10.1016/S0006-3495(83)84292-1. PubMed DOI PMC
Mao C.; Sun W.; Seeman N. C. Designed Two-Dimensional DNA Holliday Junction Arrays Visualized by Atomic Force Microscopy. Annu. Rev. Biophys. Biomol. Struct. 1999, 121, 5437–5443. 10.1021/ja9900398. DOI
Kallenbach N. R.; Ma R.-I.; Seeman N. C. An Immobile Nucleic Acid Junction Constructed from Oligonucleotides. Nature 1983, 305, 829–831. 10.1038/305829a0. DOI
Ho P. S. Structure of the Holliday Junction: Applications beyond Recombination. Biochem. Soc. Trans. 2017, 45, 1149–1158. 10.1042/BST20170048. PubMed DOI
Simmons C. R.; MacCulloch T.; Krepl M.; Matthies M.; Buchberger A.; Crawford I.; Šponer J.; Šulc P.; Stephanopoulos N.; Yan H. The Influence of Holliday Junction Sequence and Dynamics on DNA Crystal Self-Assembly. Nat. Commun. 2022, 13, 3112–3119. 10.1038/s41467-022-30779-6. PubMed DOI PMC
Simmons C. R.; MacCulloch T.; Zhang F.; Liu Y.; Stephanopoulos N.; Yan H. A Self-Assembled Rhombohedral DNA Crystal Scaffold with Tunable Cavity Sizes and High-Resolution Structural Detail. Angew. Chem. 2020, 132, 18778–18785. 10.1002/ANGE.202005505. PubMed DOI
Joo C.; McKinney S. A.; Lilley D. M. J.; Ha T. Exploring Rare Conformational Species and Ionic Effects in DNA Holliday Junctions Using Single-Molecule Spectroscopy. J. Mol. Biol. 2004, 341, 739–751. 10.1016/j.jmb.2004.06.024. PubMed DOI
McKinney S. A.; Déclais A. C.; Lilley D. M. J.; Ha T. Structural Dynamics of Individual Holliday Junctions. Nat. Struct. Biol. 2003, 10, 93–97. 10.1038/nsb883. PubMed DOI
Litke J. L.; Li Y.; Nocka L. M.; Mukerji I. Probing the Ion Binding Site in a DNA Holliday Junction Using Förster Resonance Energy Transfer (FRET). Int. J. Mol. Sci. 2016, 17, 366.10.3390/ijms17030366. PubMed DOI PMC
Thachuk C.; Winfree E.; Soloveichik D.. Leakless DNA Strand Displacement Systems. International Workshop on DNA-Based Computers; Springer: Cham, 2015; pp 133–153.
Khuu P. A.; Voth A. R.; Hays F. A.; Ho P. S. The Stacked-X DNA Holliday Junction and Protein Recognition. J. Mol. Recognit. 2006, 19, 234–242. 10.1002/jmr.765. PubMed DOI PMC
Zettl T.; Shi X.; Bonilla S.; Sedlak S. M.; Lipfert J.; Herschlag D. The Structural Ensemble of a Holliday Junction Determined by X-Ray Scattering Interference. Nucleic Acids Res. 2020, 48, 8090–8098. 10.1093/nar/gkaa509. PubMed DOI PMC
Duckett D. R.; Murchie A. I. H.; Lilley D. M. J. The Role of Metal Ions in the Conformation of the Four-Way DNA Junction. EMBO J. 1990, 9, 583–590. 10.1002/j.1460-2075.1990.tb08146.x. PubMed DOI PMC
Grupa U.; Liebl K.; Zacharias M. Orientation Dependence of DNA Blunt-End Stacking Studied by Free-Energy Simulations. J. Phys. Chem. B 2021, 125, 13850–13857. 10.1021/acs.jpcb.1c07829. PubMed DOI
Ghimire M. L.; Gibbs D. R.; Mahmoud R.; Dhakal S.; Reiner J. E. Nanopore Analysis as a Tool for Studying Rapid Holliday Junction Dynamics and Analyte Binding. Anal. Chem. 2022, 94, 10027–10034. 10.1021/acs.analchem.2c00342. PubMed DOI
Overmars F. J. J.; Altona C. NMR study of the exchange rate between two stacked conformers of a model holliday junction. J. Mol. Biol. 1997, 273, 519–524. 10.1006/JMBI.1997.1340. PubMed DOI
Miick S. M.; Fee R. S.; Millar D. P.; Chazin W. J.; Zimm B. H. Crossover Isomer Bias Is the Primary Sequence-Dependent Property of Immobilized Holliday Junctions. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 9080–9084. 10.1073/pnas.94.17.9080. PubMed DOI PMC
Grainger R. J.; Murchie A. I. H.; Lilley D. M. J. Exchange between Stacking Conformers in a Four-Way DNA Junction. Biochemistry 1998, 37, 23–32. 10.1021/bi9721492. PubMed DOI
Lu M.; Guo Q.; Seeman N. C.; Kallenbach N. R. Parallel and Antiparallel Holliday Junctions Differ in Structure and Stability. J. Mol. Biol. 1991, 221, 1419–1432. 10.1016/0022-2836(91)90942-Y. PubMed DOI
Yoo J.; Winogradoff D.; Aksimentiev A. Molecular Dynamics Simulations of DNA–DNA and DNA–Protein Interactions. Curr. Opin. Struct. Biol. 2020, 64, 88–96. 10.1016/j.sbi.2020.06.007. PubMed DOI
Pérez A.; Luque F. J.; Orozco M. Frontiers in Molecular Dynamics Simulations of DNA. Acc. Chem. Res. 2012, 45, 196–205. 10.1021/ar2001217. PubMed DOI
Šponer J.; Bussi G.; Krepl M.; Banáš P.; Bottaro S.; Cunha R. A.; Gil-Ley A.; Pinamonti G.; Poblete S.; Jurečka P.; Walter N. G.; Otyepka M. RNA Structural Dynamics as Captured by Molecular Simulations: A Comprehensive Overview. Chem. Rev. 2018, 118, 4177–4338. 10.1021/acs.chemrev.7b00427. PubMed DOI PMC
Yu J.; Ha T.; Schulten K. Conformational Model of the Holliday Junction Transition Deduced from Molecular Dynamics Simulations. Nucleic Acids Res. 2004, 32, 6683–6695. 10.1093/nar/gkh1006. PubMed DOI PMC
Wheatley E. G.; Pieniazek S. N.; Mukerji I.; Beveridge D. L. Molecular Dynamics of a DNA Holliday Junction: The Inverted Repeat Sequence d(CCGGTACCGG)4. Biophys. J. 2012, 102, 552–560. 10.1016/j.bpj.2011.11.4023. PubMed DOI PMC
Yoo J.; Aksimentiev A. In Situ Structure and Dynamics of DNA Origami Determined through Molecular Dynamics Simulations. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 20099–20104. 10.1073/pnas.1316521110. PubMed DOI PMC
Górecka K. M.; Krepl M.; Szlachcic A.; Poznański J.; Šponer J.; Nowotny M. RuvC Uses Dynamic Probing of the Holliday Junction to Achieve Sequence Specificity and Efficient Resolution. Nat. Commun. 2019, 10, 4102–4110. 10.1038/s41467-019-11900-8. PubMed DOI PMC
Lin H.; Zhang D.; Zuo K.; Yuan C.; Li J.; Huang M.; Lin Z. Structural Basis of Sequence-Specific Holliday Junction Cleavage by MOC1. Nat. Chem. Biol. 2019, 15, 1241–1248. 10.1038/s41589-019-0377-4. PubMed DOI
Yoo J.; Aksimentiev A. New Tricks for Old Dogs: Improving the Accuracy of Biomolecular Force Fields by Pair-Specific Corrections to Non-Bonded Interactions. Phys. Chem. Chem. Phys. 2018, 20, 8432–8449. 10.1039/c7cp08185e. PubMed DOI PMC
Zhou R.; Yang O.; Déclais A. C.; Jin H.; Gwon G. H.; Freeman A. D. J.; Cho Y.; Lilley D. M. J.; Ha T. Junction Resolving Enzymes Use Multivalency to Keep the Holliday Junction Dynamic. Nat. Chem. Biol. 2019, 15, 269–275. 10.1038/s41589-018-0209-y. PubMed DOI PMC
Chen A. A.; García A. E. High-Resolution Reversible Folding of Hyperstable RNA Tetraloops Using Molecular Dynamics Simulations. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 16820–16825. 10.1073/pnas.1309392110. PubMed DOI PMC
Kruse H.; Banáš P.; Šponer J. Investigations of Stacked DNA Base-Pair Steps: Highly Accurate Stacking Interaction Energies, Energy Decomposition, and Many-Body Stacking Effects. J. Chem. Theory Comput. 2019, 15, 95–115. 10.1021/acs.jctc.8b00643. PubMed DOI
Hohng S.; Zhou R.; Nahas M. K.; Yu J.; Schulten K.; Lilley D. M. J.; Ha T. Fluorescence-Force Spectroscopy Maps Two-Dimensional Reaction Landscape of the Holliday Junction. Science 2007, 318, 279–283. 10.1126/science.1146113. PubMed DOI PMC
Simmons C. R.; Zhang F.; Birktoft J. J.; Qi X.; Han D.; Liu Y.; Sha R.; Abdallah H. O.; Hernandez C.; Ohayon Y. P.; Seeman N. C.; Yan H. Construction and Structure Determination of a Three-Dimensional DNA Crystal. J. Am. Chem. Soc. 2016, 138, 10047–10054. 10.1021/jacs.6b06508. PubMed DOI
Barducci A.; Bussi G.; Parrinello M. Well-Tempered Metadynamics: A Smoothly Converging and Tunable Free-Energy Method. Phys. Rev. Lett. 2008, 100, 020603–020604. 10.1103/PhysRevLett.100.020603. PubMed DOI
Bussi G. Hamiltonian Replica Exchange in GROMACS: A Flexible Implementation. Mol. Phys. 2014, 112, 379–384. 10.1080/00268976.2013.824126. DOI
Zgarbová M.; Šponer J.; Otyepka M.; Cheatham T. E.; Galindo-Murillo R.; Jurečka P. Refinement of the Sugar-Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA. J. Chem. Theory Comput. 2015, 11, 5723–5736. 10.1021/acs.jctc.5b00716. PubMed DOI
Zgarbova M.; Luque F. J.; Šponer J.; Cheatham T. E.; Otyepka M.; Jurečka P. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters. J. Chem. Theory Comput. 2013, 9, 2339–2354. 10.1021/ct400154j. PubMed DOI PMC
Krepl M.; Zgarbová M.; Stadlbauer P.; Otyepka M.; Banáš P.; Koča J.; Cheatham T. E.; Jurečka P.; Šponer J. Reference Simulations of Noncanonical Nucleic Acids with Different χ Variants of the AMBER Force Field: Quadruplex DNA, Quadruplex RNA, and Z-DNA. J. Chem. Theory Comput. 2012, 8, 2506–2520. 10.1021/ct300275s. PubMed DOI PMC
Cornell W. D.; Cieplak P.; Bayly C. I.; Gould I. R.; Merz K. M.; Ferguson D. M.; Spellmeyer D. C.; Fox T.; Caldwell J. W.; Kollman P. A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197. 10.1021/ja00124a002. DOI
Steinbrecher T.; Latzer J.; Case D. A. Revised AMBER Parameters for Bioorganic Phosphates. J. Chem. Theory Comput. 2012, 8, 4405–4412. 10.1021/ct300613v. PubMed DOI PMC
Joung I. S.; Cheatham T. E. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B 2008, 112, 9020–9041. 10.1021/jp8001614. PubMed DOI PMC
Li P.; Song L. F.; Merz K. M. Systematic Parameterization of Monovalent Ions Employing the Nonbonded Model. J. Chem. Theory Comput. 2015, 11, 1645–1657. 10.1021/ct500918t. PubMed DOI
Chen A. A.; Draper D. E.; Pappu R. V. Molecular Simulation Studies of Monovalent Counterion-Mediated Interactions in a Model RNA Kissing Loop. J. Mol. Biol. 2009, 390, 805–819. 10.1016/j.jmb.2009.05.071. PubMed DOI PMC
Hub J. S.; De Groot B. L.; Grubmü H.; Groenhof G. Quantifying Artifacts in Ewald Simulations of Inhomogeneous Systems with a Net Charge. J. Chem. Theor. Comput. 2014, 10, 381–390. 10.1021/ct400626b. PubMed DOI
Cooper J. P.; Hagerman P. J. Geometry of a Branched DNA Structure in Solution. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 7336–7340. 10.1073/pnas.86.19.7336. PubMed DOI PMC
Pasi M.; Maddocks J. H.; Lavery R. Analyzing Ion Distributions around DNA: Sequence-Dependence of Potassium Ion Distributions from Microsecond Molecular Dynamics. Nucleic Acids Res. 2015, 43, 2412–2423. 10.1093/nar/gkv080. PubMed DOI PMC
Salsbury A. M.; Lemkul J. A. Recent Developments in Empirical Atomistic Force Fields for Nucleic Acids and Applications to Studies of Folding and Dynamics. Curr. Opin. Struct. Biol. 2021, 67, 9–17. 10.1016/J.SBI.2020.08.003. PubMed DOI PMC
Gkionis K.; Kruse H.; Platts J. A.; Mládek A.; Koča J.; Šponer J. Ion Binding to Quadruplex DNA Stems. Comparison of MM and QM Descriptions Reveals Sizable Polarization Effects Not Included in Contemporary Simulations. J. Chem. Theory Comput. 2014, 10, 1326–1340. 10.1021/CT4009969. PubMed DOI
Banáš P.; Mládek A.; Otyepka M.; Zgarbová M.; Jurečka P.; Svozil D.; Lankaš F.; Šponer J. Can We Accurately Describe the Structure of Adenine Tracts in B-DNA? Reference Quantum-Chemical Computations Reveal Overstabilization of Stacking by Molecular Mechanics. J. Chem. Theory Comput. 2012, 8, 2448–2460. 10.1021/ct3001238. PubMed DOI
Häse F.; Zacharias M. Free Energy Analysis and Mechanism of Base Pair Stacking in Nicked DNA. Nucleic Acids Res. 2016, 44, gkw607–7108. 10.1093/nar/gkw607. PubMed DOI PMC
Bergonzo C.; Henriksen N. M.; Roe D. R.; Cheatham T. E. Highly Sampled Tetranucleotide and Tetraloop Motifs Enable Evaluation of Common RNA Force Fields. RNA 2015, 21, 1578–1590. 10.1261/rna.051102.115. PubMed DOI PMC
Mlýnský V.; Janeček M.; Kührová P.; Fröhlking T.; Otyepka M.; Bussi G.; Banás P.; Šponer J. Toward Convergence in Folding Simulations of RNA Tetraloops: Comparison of Enhanced Sampling Techniques and Effects of Force Field Modifications. J. Chem. Theory Comput. 2022, 18, 2642–2656. 10.1021/acs.jctc.1c01222. PubMed DOI
Lustgarten O.; Carmieli R.; Motiei L.; Margulies D. A Molecular Secret Sharing Scheme. Angew. Chem. 2019, 131, 190–194. 10.1002/ANGE.201809855. PubMed DOI
Izadi S.; Anandakrishnan R.; Onufriev A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871. 10.1021/jz501780a. PubMed DOI PMC
Sun T.; Minhas V.; Korolev N.; Mirzoev A.; Lyubartsev A. P.; Nordenskiöld L. Bottom-Up Coarse-Grained Modeling of DNA. Front. Mol. Biosci. 2021, 8, 1–17. 10.3389/fmolb.2021.645527. PubMed DOI PMC
Wyatt H. D. M.; West S. C. Holliday Junction Resolvases. Cold Spring Harbor Perspect. Biol. 2014, 6, a023192.10.1101/cshperspect.a023192. PubMed DOI PMC
Šponer J.; Šponer J. E.; Mládek A.; Jurečka P.; Banáš P.; Otyepka M. Nature and Magnitude of Aromatic Base Stacking in DNA and RNA: Quantum Chemistry, Molecular Mechanics, and Experiment. Biopolymers 2013, 99, 978–988. 10.1002/bip.22322. PubMed DOI
Case D. A.; Ben-Shalom I. Y.; Brozell S. R.; Cerutti D. S.; Cheatham T. E. III; Cruzeiro V. W. D.; Darden T. A.; Duke R. E.; Ghoreishi D.; Gilson M. K.; Gohlke H.; Goetz A. W.; Greene D.; Harris R.; Homeyer N.; Huang Y.; Izadi S.; Kovalenko A.; Kurtzman T.; Lee T. S.; LeGrand S.; Li P.; Lin C.; Liu J.; Luchko T.; Luo R.; Mermelstein D.; Merz K. M.; Miao Y.; Monard G.; Nguyen C.; Nguyen H.; Omelyan I.; Onufriev A.; Pan F.; Qi R.; Roe D. R.; Roitberg A.; Sagui C.; Schott-Verdugo S.; Shen J.; Simmerling C. L.; Smith J.; Salomon-Ferrer R.; Swails J.; Walker R. C.; Wang J.; Wei H.; Wolf R. M.; Wu X.; Xiao L.; York D. M.; Kollman P. A.. Amber 2018; University of California: San Francisco, 2018.
Li P.; Song L. F.; Merz K. M. Parameterization of Highly Charged Metal Ions Using the 12-6-4 LJ-Type Nonbonded Model in Explicit Water. J. Phys. Chem. B 2015, 119, 883–895. 10.1021/jp505875v. PubMed DOI PMC
Kührová P.; Mlýnský V.; Zgarbová M.; Krepl M.; Bussi G.; Best R. B.; Otyepka M.; Šponer J.; Banáš P. Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions. J. Chem. Theory Comput. 2019, 15, 3288–3305. 10.1021/acs.jctc.8b00955. PubMed DOI PMC
Zgarbová M.; Otyepka M.; Šponer J.; Lankaš F.; Jurečka P. Base Pair Fraying in Molecular Dynamics Simulations of DNA and RNA. J. Chem. Theory Comput. 2014, 10, 3177–3189. 10.1021/ct500120v. PubMed DOI
Krepl M.; Pokorna P.; Mlýnský V.; Stadlbauer P.; Šponer J. Spontaneous binding of single-stranded RNAs to RRM proteins visualized by unbiased atomistic simulations with a rescaled RNA force field. Nucleic Acids Res. 2022, 50, 12480–12496. 10.1093/nar/gkac1106. PubMed DOI PMC
Abraham M. J.; van der Spoel D.; Lindahl E.; Hess B.. GROMACS User Manual Version 2018, 2018. www.gromacs.org.
Tribello G. A.; Bonomi M.; Branduardi D.; Camilloni C.; Bussi G. PLUMED 2: New Feathers for an Old Bird. Comput. Phys. Commun. 2014, 185, 604–613. 10.1016/j.cpc.2013.09.018. DOI
Roe D. R.; Cheatham T. E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084–3095. 10.1021/ct400341p. PubMed DOI
The PLUMED Consortium Promoting transparency and reproducibility in enhanced molecular simulations. Nature methods 2019, 16, 670–673. 10.1038/s41592-019-0506-8. PubMed DOI