Can We Ever Develop an Ideal RNA Force Field? Lessons Learned from Simulations of the UUCG RNA Tetraloop and Other Systems
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39813107
PubMed Central
PMC12020377
DOI
10.1021/acs.jctc.4c01357
Knihovny.cz E-zdroje
- MeSH
- konformace nukleové kyseliny MeSH
- RNA * chemie MeSH
- simulace molekulární dynamiky * MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA * MeSH
Molecular dynamics (MD) simulations are an important and well-established tool for investigating RNA structural dynamics, but their accuracy relies heavily on the quality of the employed force field (ff). In this work, we present a comprehensive evaluation of widely used pair-additive and polarizable RNA ffs using the challenging UUCG tetraloop (TL) benchmark system. Extensive standard MD simulations, initiated from the NMR structure of the 14-mer UUCG TL, revealed that most ffs did not maintain the native state, instead favoring alternative loop conformations. Notably, three very recent variants of pair-additive ffs, OL3CP-gHBfix21, DES-Amber, and OL3R2.7, successfully preserved the native structure over a 10 × 20 μs time scale. To further assess these ffs, we performed enhanced sampling folding simulations of the shorter 8-mer UUCG TL, starting from the single-stranded conformation. Estimated folding free energies (ΔG°fold) varied significantly among these three ffs, with values of 0.0 ± 0.6, 2.4 ± 0.8, and 7.4 ± 0.2 kcal/mol for OL3CP-gHBfix21, DES-Amber, and OL3R2.7, respectively. The ΔG°fold value predicted by the OL3CP-gHBfix21 ff was closest to experimental estimates, ranging from -1.6 to -0.7 kcal/mol. In contrast, the higher ΔG°fold values obtained using DES-Amber and OL3R2.7 were unexpected, suggesting that key interactions are inaccurately described in the folded, unfolded, or misfolded ensembles. These discrepancies led us to further test DES-Amber and OL3R2.7 ffs on additional RNA and DNA systems, where further performance issues were observed. Our results emphasize the complexity of accurately modeling RNA dynamics and suggest that creating an RNA ff capable of reliably performing across a wide range of RNA systems remains extremely challenging. In conclusion, our study provides valuable insights into the capabilities of current RNA ffs and highlights key areas for future ff development.
Zobrazit více v PubMed
Varani G.; Nagai K. RNA recognition by RNP proteins during RNA processing. Annu. Rev. Biophys. Biomol. Struct. 1998, 27, 407–445. 10.1146/annurev.biophys.27.1.407. PubMed DOI
Hogg J. R.; Collins K. Structured non-coding RNAs and the RNP Renaissance. Curr. Opin Chem. Biol. 2008, 12 (6), 684–689. 10.1016/j.cbpa.2008.09.027. PubMed DOI PMC
Clery A.; Blatter M.; Allain F. H. RNA recognition motifs: boring?. Not quite. Curr. Opin Struct Biol. 2008, 18 (3), 290–298. 10.1016/j.sbi.2008.04.002. PubMed DOI
Anko M. L.; Neugebauer K. M. RNA-protein interactions in vivo: global gets specific. Trends Biochem. Sci. 2012, 37 (7), 255–262. 10.1016/j.tibs.2012.02.005. PubMed DOI
Corley M.; Burns M. C.; Yeo G. W. How RNA-Binding Proteins Interact with RNA: Molecules and Mechanisms. Mol. Cell 2020, 78 (1), 9–29. 10.1016/j.molcel.2020.03.011. PubMed DOI PMC
Vangaveti S.; Ranganathan S. V.; Chen A. A. Advances in RNA molecular dynamics: a simulator’s guide to RNA force fields.. WIREs RNA 2017, 8 (2), e139610.1002/wrna.1396. PubMed DOI
Smith L. G.; Zhao J.; Mathews D. H.; Turner D. H. Physics-based all-atom modeling of RNA energetics and structure.. WIREs RNA 2017, 8 (5), e142210.1002/wrna.1422. PubMed DOI PMC
Sponer J.; Krepl M.; Banas P.; Kuhrova P.; Zgarbova M.; Jurecka P.; Havrila M.; Otyepka M. How to understand atomistic molecular dynamics simulations of RNA and protein-RNA complexes?. WIREs RNA 2017, 8 (3), e140510.1002/wrna.1405. PubMed DOI
Sponer J.; Bussi G.; Krepl M.; Banas P.; Bottaro S.; Cunha R. A.; Gil-Ley A.; Pinamonti G.; Poblete S.; Jurecka P.; et al. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem. Rev. 2018, 118 (8), 4177–4338. 10.1021/acs.chemrev.7b00427. PubMed DOI PMC
Palermo G.; Casalino L.; Magistrato A.; Andrew McCammon J. Understanding the mechanistic basis of non-coding RNA through molecular dynamics simulations. J. Struct Biol. 2019, 206 (3), 267–279. 10.1016/j.jsb.2019.03.004. PubMed DOI PMC
Paloncyova M.; Pykal M.; Kuhrova P.; Banas P.; Sponer J.; Otyepka M. Computer Aided Development of Nucleic Acid Applications in Nanotechnologies. Small 2022, 18 (49), e220440810.1002/smll.202204408. PubMed DOI
Muscat S.; Martino G.; Manigrasso J.; Marcia M.; De Vivo M. On the Power and Challenges of Atomistic Molecular Dynamics to Investigate RNA Molecules. J. Chem. Theory Comput. 2024, 20, 6992.10.1021/acs.jctc.4c00773. PubMed DOI
Mlynsky V.; Bussi G. Exploring RNA structure and dynamics through enhanced sampling simulations. Curr. Opin Struct Biol. 2018, 49, 63–71. 10.1016/j.sbi.2018.01.004. PubMed DOI
Sponer J.; Banas P.; Jurecka P.; Zgarbova M.; Kuhrova P.; Havrila M.; Krepl M.; Stadlbauer P.; Otyepka M. Molecular Dynamics Simulations of Nucleic Acids. From Tetranucleotides to the Ribosome. J. Phys. Chem. Lett. 2014, 5 (10), 1771–1782. 10.1021/jz500557y. PubMed DOI
Bergonzo C.; Henriksen N. M.; Roe D. R.; Cheatham T. E. 3rd. Highly sampled tetranucleotide and tetraloop motifs enable evaluation of common RNA force fields. RNA 2015, 21 (9), 1578–1590. 10.1261/rna.051102.115. PubMed DOI PMC
Kuhrova P.; Best R. B.; Bottaro S.; Bussi G.; Sponer J.; Otyepka M.; Banas P. Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies. J. Chem. Theory Comput 2016, 12 (9), 4534–4548. 10.1021/acs.jctc.6b00300. PubMed DOI PMC
Nerenberg P. S.; Head-Gordon T. New developments in force fields for biomolecular simulations. Curr. Opin Struct Biol. 2018, 49, 129–138. 10.1016/j.sbi.2018.02.002. PubMed DOI
Kuhrova P.; Mlynsky V.; Zgarbova M.; Krepl M.; Bussi G.; Best R. B.; Otyepka M.; Sponer J.; Banas P. Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions. J. Chem. Theory Comput 2019, 15 (5), 3288–3305. 10.1021/acs.jctc.8b00955. PubMed DOI PMC
Mlynsky V.; Kuhrova P.; Stadlbauer P.; Krepl M.; Otyepka M.; Banas P.; Sponer J. Simple Adjustment of Intranucleotide Base-Phosphate Interaction in the OL3 AMBER Force Field Improves RNA Simulations. J. Chem. Theory Comput 2023, 19 (22), 8423–8433. 10.1021/acs.jctc.3c00990. PubMed DOI PMC
Liebl K.; Zacharias M. The development of nucleic acids force fields: From an unchallenged past to a competitive future. Biophys. J. 2023, 122 (14), 2841–2851. 10.1016/j.bpj.2022.12.022. PubMed DOI PMC
Love O.; Winkler L.; Cheatham T. E. 3rd. van der Waals Parameter Scanning with Amber Nucleic Acid Force Fields: Revisiting Means to Better Capture the RNA/DNA Structure through MD. J. Chem. Theory Comput 2024, 20 (2), 625–643. 10.1021/acs.jctc.3c01164. PubMed DOI PMC
Choi T.; Li Z.; Song G.; Chen H. F. Comprehensive Comparison and Critical Assessment of RNA-Specific Force Fields. J. Chem. Theory Comput 2024, 20 (6), 2676–2688. 10.1021/acs.jctc.4c00066. PubMed DOI
Pokorna P.; Krepl M.; Campagne S.; Sponer J. Conformational Heterogeneity of RNA Stem-Loop Hairpins Bound to FUS-RNA Recognition Motif with Disordered RGG Tail Revealed by Unbiased Molecular Dynamics Simulations. J. Phys. Chem. B 2022, 126 (45), 9207–9221. 10.1021/acs.jpcb.2c06168. PubMed DOI
Berman H. M.; Westbrook J.; Feng Z.; Gilliland G.; Bhat T. N.; Weissig H.; Shindyalov I. N.; Bourne P. E. The Protein Data Bank. Nucleic Acids Res. 2000, 28 (1), 235–242. 10.1093/nar/28.1.235. PubMed DOI PMC
Ripin N.; Boudet J.; Duszczyk M. M.; Hinniger A.; Faller M.; Krepl M.; Gadi A.; Schneider R. J.; Sponer J.; Meisner-Kober N. C.; et al. Molecular basis for AU-rich element recognition and dimerization by the HuR C-terminal RRM. Proc. Natl. Acad. Sci. U. S. A. 2019, 116 (8), 2935–2944. 10.1073/pnas.1808696116. PubMed DOI PMC
Krepl M.; Pokorna P.; Mlynsky V.; Stadlbauer P.; Sponer J. Spontaneous binding of single-stranded RNAs to RRM proteins visualized by unbiased atomistic simulations with a rescaled RNA force field. Nucleic Acids Res. 2022, 50 (21), 12480–12496. 10.1093/nar/gkac1106. PubMed DOI PMC
Lemmens T.; Sponer J.; Krepl M. How Binding Site Flexibility Promotes RNA Scanning in TbRGG2 RRM: A Molecular Dynamics Simulation Study. bioRxiv 2024, 10.1101/2024.09.25.614920. PubMed DOI PMC
Cornell W. D.; Cieplak P.; Bayly C. I.; Gould I. R.; Merz K. M.; Ferguson D. M.; Spellmeyer D. C.; Fox T.; Caldwell J. W.; Kollman P. A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (vol 117, pg 5179, 1995). J. Am. Chem. Soc. 1996, 118 (9), 2309–2309. 10.1021/ja955032e. DOI
Wang J. M.; Cieplak P.; Kollman P. A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?. J. Comput. Chem. 2000, 21 (12), 1049–1074. 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F. DOI
Perez A.; Marchan I.; Svozil D.; Sponer J.; Cheatham T. E.; Laughton C. A. Orozco, M. Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of Alpha/Gamma Conformers. Biophys. J. 2007, 92 (11), 3817–3829. 10.1529/biophysj.106.097782. PubMed DOI PMC
Zgarbova M.; Otyepka M.; Sponer J.; Mladek A.; Banas P.; Cheatham T. E.; Jurecka P. Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles.. J. Chem. Theory Comput 2011, 7 (9), 2886–2902. 10.1021/ct200162x. PubMed DOI PMC
Molinaro M.; Tinoco I. Jr. Use of ultra stable UNCG tetraloop hairpins to fold RNA structures: thermodynamic and spectroscopic applications. Nucleic Acids Res. 1995, 23 (15), 3056–3063. 10.1093/nar/23.15.3056. PubMed DOI PMC
Abdelkafi M.; Ghomi M.; Turpin P. Y.; Baumruk V.; Herve du Penhoat C.; Lampire O.; Bouchemal-Chibani N.; Goyer P.; Namane A.; Gouyette C.; et al. Common structural features of UUCG and UACG tetraloops in very short hairpins determined by UV absorption, Raman, IR and NMR spectroscopies. J. Biomol. Struct. Dyn. 1997, 14 (5), 579–593. 10.1080/07391102.1997.10508158. PubMed DOI
Mathews D. H.; Disney M. D.; Childs J. L.; Schroeder S. J.; Zuker M.; Turner D. H. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (19), 7287–7292. 10.1073/pnas.0401799101. PubMed DOI PMC
Proctor D. J.; Ma H.; Kierzek E.; Kierzek R.; Gruebele M.; Bevilacqua P. C. Folding thermodynamics and kinetics of YNMG RNA hairpins: specific incorporation of 8-bromoguanosine leads to stabilization by enhancement of the folding rate. Biochemistry 2004, 43 (44), 14004–14014. 10.1021/bi048213e. PubMed DOI
Nozinovic S.; Furtig B.; Jonker H. R.; Richter C.; Schwalbe H. High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA. Nucleic Acids Res. 2010, 38 (2), 683–694. 10.1093/nar/gkp956. PubMed DOI PMC
Yildirim I.; Stern H. A.; Tubbs J. D.; Kennedy S. D.; Turner D. H. Benchmarking AMBER force fields for RNA: comparisons to NMR spectra for single-stranded r(GACC) are improved by revised chi torsions. J. Phys. Chem. B 2011, 115 (29), 9261–9270. 10.1021/jp2016006. PubMed DOI PMC
Tubbs J. D.; Condon D. E.; Kennedy S. D.; Hauser M.; Bevilacqua P. C.; Turner D. H. The nuclear magnetic resonance of CCCC RNA reveals a right-handed helix, and revised parameters for AMBER force field torsions improve structural predictions from molecular dynamics. Biochemistry 2013, 52 (6), 996–1010. 10.1021/bi3010347. PubMed DOI PMC
Condon D. E.; Kennedy S. D.; Mort B. C.; Kierzek R.; Yildirim I.; Turner D. H. Stacking in RNA: NMR of Four Tetramers Benchmark Molecular Dynamics. J. Chem. Theory Comput 2015, 11 (6), 2729–2742. 10.1021/ct501025q. PubMed DOI PMC
Bergonzo C.; Cheatham T. E. 3rd. Improved Force Field Parameters Lead to a Better Description of RNA Structure. J. Chem. Theory Comput 2015, 11 (9), 3969–3972. 10.1021/acs.jctc.5b00444. PubMed DOI
Bottaro S.; Banas P.; Sponer J.; Bussi G. Free Energy Landscape of GAGA and UUCG RNA Tetraloops. J. Phys. Chem. Lett. 2016, 7 (20), 4032–4038. 10.1021/acs.jpclett.6b01905. PubMed DOI
Cesari A.; Gil-Ley A.; Bussi G. Combining Simulations and Solution Experiments as a Paradigm for RNA Force Field Refinement. J. Chem. Theory Comput 2016, 12 (12), 6192–6200. 10.1021/acs.jctc.6b00944. PubMed DOI
Aytenfisu A. H.; Spasic A.; Grossfield A.; Stern H. A.; Mathews D. H. Revised RNA Dihedral Parameters for the Amber Force Field Improve RNA Molecular Dynamics. J. Chem. Theory Comput 2017, 13 (2), 900–915. 10.1021/acs.jctc.6b00870. PubMed DOI PMC
Tan D.; Piana S.; Dirks R. M.; Shaw D. E. RNA force field with accuracy comparable to state-of-the-art protein force fields. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (7), E1346–E1355. 10.1073/pnas.1713027115. PubMed DOI PMC
Bottaro S.; Bussi G.; Kennedy S. D.; Turner D. H.; Lindorff-Larsen K. Conformational ensembles of RNA oligonucleotides from integrating NMR and molecular simulations. Sci. Adv. 2018, 4 (5), eaar852110.1126/sciadv.aar8521. PubMed DOI PMC
Cesari A.; Bottaro S.; Lindorff-Larsen K.; Banas P.; Sponer J.; Bussi G. Fitting Corrections to an RNA Force Field Using Experimental Data. J. Chem. Theory Comput 2019, 15 (6), 3425–3431. 10.1021/acs.jctc.9b00206. PubMed DOI
Mrazikova K.; Mlynsky V.; Kuhrova P.; Pokorna P.; Kruse H.; Krepl M.; Otyepka M.; Banas P.; Sponer J. UUCG RNA Tetraloop as a Formidable Force-Field Challenge for MD Simulations. J. Chem. Theory Comput 2020, 16 (12), 7601–7617. 10.1021/acs.jctc.0c00801. PubMed DOI
Mlynsky V.; Kuhrova P.; Kuhr T.; Otyepka M.; Bussi G.; Banas P.; Sponer J. Fine-Tuning of the AMBER RNA Force Field with a New Term Adjusting Interactions of Terminal Nucleotides. J. Chem. Theory Comput 2020, 16 (6), 3936–3946. 10.1021/acs.jctc.0c00228. PubMed DOI
Zhao J.; Kennedy S. D.; Berger K. D.; Turner D. H. Nuclear Magnetic Resonance of Single-Stranded RNAs and DNAs of CAAU and UCAAUC as Benchmarks for Molecular Dynamics Simulations. J. Chem. Theory Comput 2020, 16 (3), 1968–1984. 10.1021/acs.jctc.9b00912. PubMed DOI
Bottaro S.; Nichols P. J.; Vogeli B.; Parrinello M.; Lindorff-Larsen K. Integrating NMR and simulations reveals motions in the UUCG tetraloop. Nucleic Acids Res. 2020, 48 (11), 5839–5848. 10.1093/nar/gkaa399. PubMed DOI PMC
Frohlking T.; Bernetti M.; Calonaci N.; Bussi G. Toward empirical force fields that match experimental observables. J. Chem. Phys. 2020, 152 (23), 23090210.1063/5.0011346. PubMed DOI
Reisser S.; Zucchelli S.; Gustincich S.; Bussi G. Conformational ensembles of an RNA hairpin using molecular dynamics and sparse NMR data. Nucleic Acids Res. 2020, 48 (3), 1164–1174. 10.1093/nar/gkz1184. PubMed DOI PMC
Zerze G. H.; Piaggi P. M.; Debenedetti P. G. A Computational Study of RNA Tetraloop Thermodynamics, Including Misfolded States. J. Phys. Chem. B 2021, 125 (50), 13685–13695. 10.1021/acs.jpcb.1c08038. PubMed DOI
Zhao J.; Kennedy S. D.; Turner D. H. Nuclear Magnetic Resonance Spectra and AMBER OL3 and ROC-RNA Simulations of UCUCGU Reveal Force Field Strengths and Weaknesses for Single-Stranded RNA. J. Chem. Theory Comput 2022, 18 (2), 1241–1254. 10.1021/acs.jctc.1c00643. PubMed DOI
Bergonzo C.; Grishaev A.; Bottaro S. Conformational heterogeneity of UCAAUC RNA oligonucleotide from molecular dynamics simulations, SAXS, and NMR experiments. RNA 2022, 28 (7), 937–946. 10.1261/rna.078888.121. PubMed DOI PMC
Frohlking T.; Mlynsky V.; Janecek M.; Kuhrova P.; Krepl M.; Banas P.; Sponer J.; Bussi G. Automatic Learning of Hydrogen-Bond Fixes in the AMBER RNA Force Field. J. Chem. Theory Comput 2022, 18 (7), 4490–4502. 10.1021/acs.jctc.2c00200. PubMed DOI PMC
Ennifar E.; Nikulin A.; Tishchenko S.; Serganov A.; Nevskaya N.; Garber M.; Ehresmann B.; Ehresmann C.; Nikonov S.; Dumas P. The crystal structure of UUCG tetraloop. J. Mol. Biol. 2000, 304 (1), 35–42. 10.1006/jmbi.2000.4204. PubMed DOI
Carter A. P.; Clemons W. M.; Brodersen D. E.; Morgan-Warren R. J.; Wimberly B. T.; Ramakrishnan V. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 2000, 407 (6802), 340–348. 10.1038/35030019. PubMed DOI
Tishchenko S.; Nikulin A.; Fomenkova N.; Nevskaya N.; Nikonov O.; Dumas P.; Moine H.; Ehresmann B.; Ehresmann C.; Piendl W.; et al. Detailed analysis of RNA-protein interactions within the ribosomal protein S8-rRNA complex from the archaeon Methanococcus jannaschii. J. Mol. Biol. 2001, 311 (2), 311–324. 10.1006/jmbi.2001.4877. PubMed DOI
Zhang C.; Lu C.; Jing Z.; Wu C.; Piquemal J. P.; Ponder J. W.; Ren P. AMOEBA Polarizable Atomic Multipole Force Field for Nucleic Acids. J. Chem. Theory Comput 2018, 14 (4), 2084–2108. 10.1021/acs.jctc.7b01169. PubMed DOI PMC
Raguette L. E.; Gunasekera S. S.; Diaz Ventura R. I.; Aminov E.; Linzer J. T.; Parwana D.; Wu Q.; Simmerling C.; Nagan M. C. Adjusting the Energy Profile for CH-O Interactions Leads to Improved Stability of RNA Stem-Loop Structures in MD Simulations. J. Phys. Chem. B 2024, 128 (33), 7921–7933. 10.1021/acs.jpcb.4c01910. PubMed DOI
Yang C.; Lim M.; Kim E.; Pak Y. Predicting RNA Structures via a Simple van der Waals Correction to an All-Atom Force Field. J. Chem. Theory Comput 2017, 13 (2), 395–399. 10.1021/acs.jctc.6b00808. PubMed DOI
Mlynsky V.; Janecek M.; Kuhrova P.; Frohlking T.; Otyepka M.; Bussi G.; Banas P.; Sponer J. Toward Convergence in Folding Simulations of RNA Tetraloops: Comparison of Enhanced Sampling Techniques and Effects of Force Field Modifications. J. Chem. Theory Comput 2022, 18 (4), 2642–2656. 10.1021/acs.jctc.1c01222. PubMed DOI
Nissen P.; Ippolito J. A.; Ban N.; Moore P. B.; Steitz T. A. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl. Acad. Sci. U. S. A. 2001, 98 (9), 4899–4903. 10.1073/pnas.081082398. PubMed DOI PMC
Tamura M.; Holbrook S. R. Sequence and structural conservation in RNA ribose zippers. J. Mol. Biol. 2002, 320 (3), 455–474. 10.1016/S0022-2836(02)00515-6. PubMed DOI
Mokdad A.; Krasovska M. V.; Sponer J.; Leontis N. B. Structural and evolutionary classification of G/U wobble basepairs in the ribosome. Nucleic Acids Res. 2006, 34 (5), 1326–1341. 10.1093/nar/gkl025. PubMed DOI PMC
Amber 2024; University of California: San Francisco, 2024.
Steinbrecher T.; Latzer J.; Case D. A. Revised AMBER Parameters for Bioorganic Phosphates. J. Chem. Theory Comput 2012, 8 (11), 4405–4412. 10.1021/ct300613v. PubMed DOI PMC
Mlynsky V.; Kuhrova P.; Zgarbova M.; Jurecka P.; Walter N. G.; Otyepka M.; Sponer J.; Banas P. Reactive conformation of the active site in the hairpin ribozyme achieved by molecular dynamics simulations with epsilon/zeta force field reparametrizations. J. Phys. Chem. B 2015, 119 (11), 4220–4229. 10.1021/jp512069n. PubMed DOI
Yoo J.; Aksimentiev A. New tricks for old dogs: improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. Phys. Chem. Chem. Phys. 2018, 20 (13), 8432–8449. 10.1039/C7CP08185E. PubMed DOI PMC
Zirbel C. L.; Sponer J. E.; Sponer J.; Stombaugh J.; Leontis N. B. Classification and energetics of the base-phosphate interactions in RNA. Nucleic Acids Res. 2009, 37 (15), 4898–4918. 10.1093/nar/gkp468. PubMed DOI PMC
Tucker M. R.; Piana S.; Tan D.; LeVine M. V.; Shaw D. E. Development of Force Field Parameters for the Simulation of Single- and Double-Stranded DNA Molecules and DNA-Protein Complexes. J. Phys. Chem. B 2022, 126 (24), 4442–4457. 10.1021/acs.jpcb.1c10971. PubMed DOI PMC
Chen A. A.; Garcia A. E. High-resolution reversible folding of hyperstable RNA tetraloops using molecular dynamics simulations. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (42), 16820–16825. 10.1073/pnas.1309392110. PubMed DOI PMC
Chen J.; Liu H.; Cui X.; Li Z.; Chen H. F. RNA-Specific Force Field Optimization with CMAP and Reweighting. J. Chem. Inf Model 2022, 62 (2), 372–385. 10.1021/acs.jcim.1c01148. PubMed DOI
Li Z.; Mu J.; Chen J.; Chen H. F. Base-specific RNA force field improving the dynamics conformation of nucleotide. Int. J. Biol. Macromol. 2022, 222 (Pt A), 680–690. 10.1016/j.ijbiomac.2022.09.183. PubMed DOI
Brooks B. R.; Brooks C. L. 3rd; Mackerell A. D. Jr.; Nilsson L.; Petrella R. J.; Roux B.; Won Y.; Archontis G.; Bartels C.; Boresch S.; et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 2009, 30 (10), 1545–1614. 10.1002/jcc.21287. PubMed DOI PMC
Denning E. J.; Priyakumar U. D.; Nilsson L.; Mackerell A. D. Impact of 2′-Hydroxyl Sampling on the Conformational Properties of RNA: Update of the CHARMM All-Atom Additive Force Field for RNA.. J. Comput. Chem. 2011, 32 (9), 1929–1943. 10.1002/jcc.21777. PubMed DOI PMC
Izadi S.; Anandakrishnan R.; Onufriev A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5 (21), 3863–3871. 10.1021/jz501780a. PubMed DOI PMC
Piana S.; Donchev A. G.; Robustelli P.; Shaw D. E. Water Dispersion Interactions Strongly Influence Simulated Structural Properties of Disordered Protein States. J. Phys. Chem. B 2015, 119 (16), 5113–5123. 10.1021/jp508971m. PubMed DOI
Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79 (2), 926–935. 10.1063/1.445869. DOI
Joung I. S.; Cheatham T. E. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B 2008, 112 (30), 9020–9041. 10.1021/jp8001614. PubMed DOI PMC
Kuhrova P.; Mlynsky V.; Zgarbova M.; Krepl M.; Bussi G.; Best R. B.; Otyepka M.; Sponer J.; Banas P. Correction to ″Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions″. J. Chem. Theory Comput 2020, 16 (1), 818–819. 10.1021/acs.jctc.9b01189. PubMed DOI PMC
MacKerell A. D.; Bashford D.; Bellott M.; Dunbrack R. L.; Evanseck J. D.; Field M. J.; Fischer S.; Gao J.; Guo H.; Ha S.; et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998, 102 (18), 3586–3616. 10.1021/jp973084f. PubMed DOI
Chen A. A.; Pappu R. V. Parameters of monovalent ions in the AMBER-99 forcefield: assessment of inaccuracies and proposed improvements. J. Phys. Chem. B 2007, 111 (41), 11884–11887. 10.1021/jp0765392. PubMed DOI
Sengupta A.; Li Z.; Song L. F.; Li P.; Merz K. M. Jr. Parameterization of Monovalent Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models. J. Chem. Inf Model 2021, 61 (2), 869–880. 10.1021/acs.jcim.0c01390. PubMed DOI PMC
Case D. A.; Ben-Shalom I. Y.; Brozell S. R.; Cerutti D. S.; Cheatham I. T. E.; Cruzeiro V. W. D.; Darden T. A.; Duke R. E.; Ghoreishi D.; Gilson M. K.. AMBER 2018; University of California: San Francisco, 2018.
Le Grand S.; Goetz A. W.; Walker R. C. SPFP: Speed Without Compromise - A Mixed Precision Model for GPU Accelerated Molecular Dynamics Simulations. Comput. Phys. Commun. 2013, 184 (2), 374–380. 10.1016/j.cpc.2012.09.022. DOI
Hopkins C. W.; Le Grand S.; Walker R. C.; Roitberg A. E. Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. J. Chem. Theory Comput 2015, 11 (4), 1864–1874. 10.1021/ct5010406. PubMed DOI
Darden T.; York D.; Pedersen L. Particle Mesh Ewald - An N.log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98 (12), 10089–10092. 10.1063/1.464397. DOI
Parisi G. Correlation functions and computer simulations. Nuclear Physics B 1981, 180 (3), 378–384. 10.1016/0550-3213(81)90056-0. DOI
Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. 10.1016/j.softx.2015.06.001. DOI
Hess B.; Bekker H.; Berendsen H. J. C.; Fraaije J. G. E. M. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18 (12), 1463–1472. 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Bussi G.; Donadio D.; Parrinello M. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007, 126 (1), 01410110.1063/1.2408420. PubMed DOI
Savelyev A.; MacKerell A. D. Jr. All-atom polarizable force field for DNA based on the classical Drude oscillator model. J. Comput. Chem. 2014, 35 (16), 1219–1239. 10.1002/jcc.23611. PubMed DOI PMC
Lemkul J. A.; MacKerell A. D. Polarizable Force Field for DNA Based on the Classical Drude Oscillator: I. Refinement Using Quantum Mechanical Base Stacking and Conformational Energetics. J. Chem. Theory Comput 2017, 13 (5), 2053–2071. 10.1021/acs.jctc.7b00067. PubMed DOI PMC
Lemkul J. A.; MacKerell A. D. Polarizable Force Field for DNA Based on the Classical Drude Oscillator: II. Microsecond Molecular Dynamics Simulations of Duplex DNA. J. Chem. Theory Comput 2017, 13 (5), 2072–2085. 10.1021/acs.jctc.7b00068. PubMed DOI PMC
Lemkul J. A.; MacKerell A. D. Jr. Polarizable force field for RNA based on the classical drude oscillator. J. Comput. Chem. 2018, 39 (32), 2624–2646. 10.1002/jcc.25709. PubMed DOI PMC
Lamoureux G.; Harder E.; Vorobyov I. V.; Roux B.; MacKerell A. D. Jr. A polarizable model of water for molecular dynamics simulations of biomolecules. Chem. Phys. Lett. 2006, 418 (1–3), 245–249. 10.1016/j.cplett.2005.10.135. DOI
Zhang C.; Bell D.; Harger M.; Ren P. Polarizable Multipole-Based Force Field for Aromatic Molecules and Nucleobases. J. Chem. Theory Comput 2017, 13 (2), 666–678. 10.1021/acs.jctc.6b00918. PubMed DOI PMC
Phillips J. C.; Hardy D. J.; Maia J. D. C.; Stone J. E.; Ribeiro J. V.; Bernardi R. C.; Buch R.; Fiorin G.; Henin J.; Jiang W.; et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 2020, 153 (4), 04413010.1063/5.0014475. PubMed DOI PMC
Eastman P.; Swails J.; Chodera J. D.; McGibbon R. T.; Zhao Y.; Beauchamp K. A.; Wang L. P.; Simmonett A. C.; Harrigan M. P.; Stern C. D.; et al. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 2017, 13 (7), e100565910.1371/journal.pcbi.1005659. PubMed DOI PMC
Jiang W.; Hardy D. J.; Phillips J. C.; Mackerell A. D. Jr.; Schulten K.; Roux B. High-performance scalable molecular dynamics simulations of a polarizable force field based on classical Drude oscillators in NAMD. J. Phys. Chem. Lett. 2011, 2 (2), 87–92. 10.1021/jz101461d. PubMed DOI PMC
Huang J.; Lemkul J. A.; Eastman P. K.; MacKerell A. D. Jr. Molecular dynamics simulations using the drude polarizable force field on GPUs with OpenMM: Implementation, validation, and benchmarks. J. Comput. Chem. 2018, 39 (21), 1682–1689. 10.1002/jcc.25339. PubMed DOI PMC
Chow K. H.; Ferguson D. M. Isothermal-isobaric molecular dynamics simulations with Monte Carlo volume sampling. Comput. Phys. Commun. 1995, 91 (1–3), 283–289. 10.1016/0010-4655(95)00059-O. DOI
Ryckaert J. P.; Ciccotti G.; Berendsen H. J. C. Numerical Integration of Cartesian Equations of Motion of a System with Constraints - Molecular Dynamics of N-alkans. J. Comput. Phys. 1977, 23 (3), 327–341. 10.1016/0021-9991(77)90098-5. DOI
Miyamoto S.; Kollman P. A. Settle: An Analytical Version of the SHAKE and RATTLE Algorithm for Rigid Water Models. J. Comput. Chem. 1992, 13 (8), 952–962. 10.1002/jcc.540130805. DOI
Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103 (19), 8577–8593. 10.1063/1.470117. DOI
Åqvist J.; Wennerström P.; Nervall M.; Bjelic S.; Brandsdal B. O. Molecular dynamics simulations of water and biomolecules with a Monte Carlo constant pressure algorithm. Chem. Phys. Lett. 2004, 384 (4–6), 288–294. 10.1016/j.cplett.2003.12.039. DOI
Tuckerman M. B. B. J. M.; Berne B. J.; Martyna G. J. Reversible multiple time scale molecular dynamics. J. Chem. Phys. 1992, 97 (3), 1990–2001. 10.1063/1.463137. DOI
Adjoua O.; Lagardere L.; Jolly L. H.; Durocher A.; Very T.; Dupays I.; Wang Z.; Inizan T. J.; Celerse F.; Ren P.; et al. Tinker-HP: Accelerating Molecular Dynamics Simulations of Large Complex Systems with Advanced Point Dipole Polarizable Force Fields Using GPUs and Multi-GPU Systems. J. Chem. Theory Comput 2021, 17 (4), 2034–2053. 10.1021/acs.jctc.0c01164. PubMed DOI PMC
Laio A.; Parrinello M. Escaping free-energy minima. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (20), 12562–12566. 10.1073/pnas.202427399. PubMed DOI PMC
Barducci A.; Bussi G.; Parrinello M. Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 2008, 100 (2), 02060310.1103/PhysRevLett.100.020603. PubMed DOI
Bussi G.; Laio A. Using metadynamics to explore complex free-energy landscapes. Nat. Rev. Phys. 2020, 2 (4), 200–212. 10.1038/s42254-020-0153-0. DOI
Wang L.; Friesner R. A.; Berne B. J. Replica exchange with solute scaling: a more efficient version of replica exchange with solute tempering (REST2). J. Phys. Chem. B 2011, 115 (30), 9431–9438. 10.1021/jp204407d. PubMed DOI PMC
Bottaro S.; Di Palma F.; Bussi G. The role of nucleobase interactions in RNA structure and dynamics. Nucleic Acids Res. 2014, 42 (21), 13306–13314. 10.1093/nar/gku972. PubMed DOI PMC
Tribello G. A.; Bonomi M.; Branduardi D.; Camilloni C.; Bussi G. PLUMED 2: New feathers for an old bird. Comput. Phys. Commun. 2014, 185 (2), 604–613. 10.1016/j.cpc.2013.09.018. DOI
Bussi G. Hamiltonian Replica Exchange in GROMACS: A Flexible Implementation. Mol. Phys. 2014, 112 (3–4), 379–384. 10.1080/00268976.2013.824126. DOI
Humphrey W.; Dalke A.; Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph Model 1996, 14 (1), 33–38. 10.1016/0263-7855(96)00018-5. PubMed DOI
The PyMOL Molecular Graphics System, Version 1.8; 2015.
Roe D. R.; Cheatham T. E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput 2013, 9 (7), 3084–3095. 10.1021/ct400341p. PubMed DOI
Leontis N. B.; Westhof E. Geometric Nomenclature and Classification of RNA Base Pairs. RNA 2001, 7 (4), 499–512. 10.1017/S1355838201002515. PubMed DOI PMC
Sarver M.; Zirbel C. L.; Stombaugh J.; Mokdad A.; Leontis N. B. FR3D: finding local and composite recurrent structural motifs in RNA 3D structures. J. Math Biol. 2007, 56 (1–2), 215–252. 10.1007/s00285-007-0110-x. PubMed DOI PMC
Forget S.; Juille M.; Duboue-Dijon E.; Stirnemann G. Simulation-Guided Conformational Space Exploration to Assess Reactive Conformations of a Ribozyme. J. Chem. Theory Comput 2024, 20 (14), 6263–6277. 10.1021/acs.jctc.4c00294. PubMed DOI
Grotz K. K.; Nueesch M. F.; Holmstrom E. D.; Heinz M.; Stelzl L. S.; Schuler B.; Hummer G. Dispersion Correction Alleviates Dye Stacking of Single-Stranded DNA and RNA in Simulations of Single-Molecule Fluorescence Experiments. J. Phys. Chem. B 2018, 122 (49), 11626–11639. 10.1021/acs.jpcb.8b07537. PubMed DOI
Collie G. W.; Haider S. M.; Neidle S.; Parkinson G. N. A crystallographic and modelling study of a human telomeric RNA (TERRA) quadruplex. Nucleic Acids Res. 2010, 38 (16), 5569–5580. 10.1093/nar/gkq259. PubMed DOI PMC
Parkinson G. N.; Lee M. P.; Neidle S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 2002, 417 (6891), 876–880. 10.1038/nature755. PubMed DOI
Zgarbová M.; Šponer J. i.; Jurečka P. Z-DNA as a Touchstone for Additive Empirical Force Fields and a Refinement of the Alpha/Gamma DNA torsions for AMBER. J. Chem. Theory Comput. 2021, 17, 6292.10.1021/acs.jctc.1c00697. PubMed DOI
Baltrukevich H.; Bartos P. RNA-protein complexes and force field polarizability. Front Chem. 2023, 11, 121750610.3389/fchem.2023.1217506. PubMed DOI PMC
Yildirim I.; Stern H. A.; Kennedy S. D.; Tubbs J. D.; Turner D. H. Reparameterization of RNA chi Torsion Parameters for the AMBER Force Field and Comparison to NMR Spectra for Cytidine and Uridine. J. Chem. Theory Comput 2010, 6 (5), 1520–1531. 10.1021/ct900604a. PubMed DOI PMC
Wales D. J.; Yildirim I. Improving Computational Predictions of Single-Stranded RNA Tetramers with Revised alpha/gamma Torsional Parameters for the Amber Force Field. J. Phys. Chem. B 2017, 121 (14), 2989–2999. 10.1021/acs.jpcb.7b00819. PubMed DOI
Robertson M. J.; Qian Y.; Robinson M. C.; Tirado-Rives J.; Jorgensen W. L. Development and Testing of the OPLS-AA/M Force Field for RNA. J. Chem. Theory Comput 2019, 15 (4), 2734–2742. 10.1021/acs.jctc.9b00054. PubMed DOI PMC
Linzer J. T.; Aminov E.; Abdullah A. S.; Kirkup C. E.; Diaz Ventura R. I.; Bijoor V. R.; Jung J.; Huang S.; Tse C. G.; Alvarez Toucet E.; et al. Accurately Modeling RNA Stem-Loops in an Implicit Solvent Environment. J. Chem. Inf Model 2024, 64 (15), 6092–6104. 10.1021/acs.jcim.4c00756. PubMed DOI PMC
Morgado C. A.; Jurecka P.; Svozil D.; Hobza P.; Sponer J. Balance of Attraction and Repulsion in Nucleic-Acid Base Stacking: CCSD(T)/Complete-Basis-Set-Limit Calculations on Uracil Dimer and a Comparison with the Force-Field Description. J. Chem. Theory Comput 2009, 5 (6), 1524–1544. 10.1021/ct9000125. PubMed DOI
Zgarbova M.; Otyepka M.; Sponer J.; Hobza P.; Jurecka P. Large-scale compensation of errors in pairwise-additive empirical force fields: comparison of AMBER intermolecular terms with rigorous DFT-SAPT calculations. Phys. Chem. Chem. Phys. 2010, 12 (35), 10476–10493. 10.1039/c002656e. PubMed DOI
Mlynsky V.; Banas P.; Hollas D.; Reblova K.; Walter N. G.; Sponer J.; Otyepka M. Extensive Molecular Dynamics Simulations Showing That Canonical G8 and Protonated A38H+ Forms Are Most Consistent with Crystal Structures of Hairpin Ribozyme. J. Phys. Chem. B 2010, 114 (19), 6642–6652. 10.1021/jp1001258. PubMed DOI PMC
Banas P.; Hollas D.; Zgarbova M.; Jurecka P.; Orozco M.; Cheatham T. E.; Sponer J.; Otyepka M. Performance of Molecular Mechanics Force Fields for RNA Simulations: Stability of UUCG and GNRA Hairpins. J. Chem. Theory Comput 2010, 6 (12), 3836–3849. 10.1021/ct100481h. PubMed DOI PMC
Reblova K.; Lankas F.; Razga F.; Krasovska M. V.; Koca J.; Sponer J. Structure, dynamics, and elasticity of free 16s rRNA helix 44 studied by molecular dynamics simulations. Biopolymers 2006, 82 (5), 504–520. 10.1002/bip.20503. PubMed DOI
Zhang Z.; Sponer J.; Bussi G.; Mlynsky V.; Sulc P.; Simmons C. R.; Stephanopoulos N.; Krepl M. Atomistic Picture of Opening-Closing Dynamics of DNA Holliday Junction Obtained by Molecular Simulations. J. Chem. Inf Model 2023, 63 (9), 2794–2809. 10.1021/acs.jcim.3c00358. PubMed DOI PMC
Lemkul J. A. Same Fold, Different Properties: Polarizable Molecular Dynamics Simulations of Telomeric and TERRA G-Quadruplexes. Nucleic Acids Res. 2020, 48 (2), 561–575. 10.1093/nar/gkz1154. PubMed DOI PMC
Salsbury A. M.; Dean T. J.; Lemkul J. A. Polarizable Molecular Dynamics Simulations of Two c-kit Oncogene Promoter G-Quadruplexes: Effect of Primary and Secondary Structure on Loop and Ion Sampling. J. Chem. Theory Comput 2020, 16 (5), 3430–3444. 10.1021/acs.jctc.0c00191. PubMed DOI PMC
Jing Z.; Ren P. Molecular Dynamics Simulations of Protein RNA Complexes by Using an Advanced Electrostatic Model. J. Phys. Chem. B 2022, 126 (38), 7343–7353. 10.1021/acs.jpcb.2c05278. PubMed DOI PMC
Winkler L.; Galindo-Murillo R.; Cheatham T. E. 3rd. Structures and Dynamics of DNA Mini-Dumbbells Are Force Field Dependent. J. Chem. Theory Comput 2023, 19 (8), 2198–2212. 10.1021/acs.jctc.3c00130. PubMed DOI PMC
Winkler L.; Cheatham T. E. 3rd. Benchmarking the Drude Polarizable Force Field Using the r(GACC) Tetranucleotide. J. Chem. Inf Model 2023, 63 (8), 2505–2511. 10.1021/acs.jcim.3c00250. PubMed DOI PMC
Winkler L.; Galindo-Murillo R.; Cheatham T. E. 3rd. Assessment of A- to B- DNA Transitions Utilizing the Drude Polarizable Force Field. J. Chem. Theory Comput 2023, 19 (23), 8955–8966. 10.1021/acs.jctc.3c01002. PubMed DOI PMC
Knappeova B.; Mlynsky V.; Pykal M.; Sponer J.; Banas P.; Otyepka M.; Krepl M. Comprehensive Assessment of Force-Field Performance in Molecular Dynamics Simulations of DNA/RNA Hybrid Duplexes. J. Chem. Theory Comput 2024, 20 (15), 6917–6929. 10.1021/acs.jctc.4c00601. PubMed DOI PMC
Wang Y.; Takaba K.; Chen M. S.; Wieder M.; Xu Y.; Zhu T.; Zhang J. Z. H.; Nagle A.; Yu K.; Wang X.; et al. On the design space between molecular mechanics and machine learning force fields. arXiv 2024, 10.48550/arXiv.2409.01931. DOI
Bowman J. C.; Lenz T. K.; Hud N. V.; Williams L. D. Cations in charge: magnesium ions in RNA folding and catalysis. Curr. Opin. Struct. Biol. 2012, 22 (3), 262–272. 10.1016/j.sbi.2012.04.006. PubMed DOI
Casalino L.; Palermo G.; Abdurakhmonova N.; Rothlisberger U.; Magistrato A. Development of Site-Specific Mg(2+)-RNA Force Field Parameters: A Dream or Reality? Guidelines from Combined Molecular Dynamics and Quantum Mechanics Simulations. J. Chem. Theory Comput 2017, 13 (1), 340–352. 10.1021/acs.jctc.6b00905. PubMed DOI
Cunha R. A.; Bussi G. Unraveling Mg(2+)-RNA binding with atomistic molecular dynamics. RNA 2017, 23 (5), 628–638. 10.1261/rna.060079.116. PubMed DOI PMC
Auffinger P.; Ennifar E.; D’Ascenzo L. Deflating the RNA Mg(2+) bubble. Stereochemistry to the rescue!. RNA 2021, 27 (3), 243–252. 10.1261/rna.076067.120. PubMed DOI PMC
Sponer J.; Sabat M.; Gorb L.; Leszczynski J.; Lippert B.; Hobza P. The effect of metal binding to the N7 site of purine nucleotides on their structure, energy, and involvement in base pairing. J. Phyc Chem. B 2000, 104 (31), 7535–7544. 10.1021/jp001711m. DOI
Petrov A. S.; Bowman J. C.; Harvey S. C.; Williams L. D. Bidentate RNA-magnesium clamps: on the origin of the special role of magnesium in RNA folding. RNA 2011, 17 (2), 291–297. 10.1261/rna.2390311. PubMed DOI PMC
Aaqvist J. Ion-water interaction potentials derived from free energy perturbation simulations. J. Phys. Chem. 1990, 94 (21), 8021–8024. 10.1021/j100384a009. DOI
Allner O.; Nilsson L.; Villa A. Magnesium Ion-Water Coordination and Exchange in Biomolecular Simulations. J. Chem. Theory Comput 2012, 8 (4), 1493–1502. 10.1021/ct3000734. PubMed DOI
Li P.; Roberts B. P.; Chakravorty D. K.; Merz K. M. Jr. Rational Design of Particle Mesh Ewald Compatible Lennard-Jones Parameters for + 2 Metal Cations in Explicit Solvent. J. Chem. Theory Comput 2013, 9 (6), 2733–2748. 10.1021/ct400146w. PubMed DOI PMC
Li P.; Merz K. M. Jr. Taking into Account the Ion-induced Dipole Interaction in the Nonbonded Model of Ions. J. Chem. Theory Comput 2014, 10 (1), 289–297. 10.1021/ct400751u. PubMed DOI PMC
Panteva M. T.; Giambasu G. M.; York D. M. Comparison of structural, thermodynamic, kinetic and mass transport properties of Mg(2+) ion models commonly used in biomolecular simulations. J. Comput. Chem. 2015, 36 (13), 970–982. 10.1002/jcc.23881. PubMed DOI PMC
Panteva M. T.; Giambasu G. M.; York D. M. Force Field for Mg(2+), Mn(2+), Zn(2+), and Cd(2+) Ions That Have Balanced Interactions with Nucleic Acids. J. Phys. Chem. B 2015, 119 (50), 15460–15470. 10.1021/acs.jpcb.5b10423. PubMed DOI PMC
Li P.; Merz K. M. Jr. Metal Ion Modeling Using Classical Mechanics. Chem. Rev. 2017, 117 (3), 1564–1686. 10.1021/acs.chemrev.6b00440. PubMed DOI PMC
Grotz K. K.; Schwierz N. Optimized Magnesium Force Field Parameters for Biomolecular Simulations with Accurate Solvation, Ion-Binding, and Water-Exchange Properties in SPC/E, TIP3P-fb, TIP4P/2005, TIP4P-Ew, and TIP4P-D. J. Chem. Theory Comput 2022, 18 (1), 526–537. 10.1021/acs.jctc.1c00791. PubMed DOI PMC
Pokorna P.; Krepl M.; Kruse H.; Sponer J. MD and QM/MM Study of the Quaternary HutP Homohexamer Complex with mRNA, l-Histidine Ligand, and Mg2+. J. Chem. Theory Comput 2017, 13 (11), 5658–5670. 10.1021/acs.jctc.7b00598. PubMed DOI