How Binding Site Flexibility Promotes RNA Scanning by TbRGG2 RRM: A Molecular Dynamics Simulation Study
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39804219
PubMed Central
PMC11776045
DOI
10.1021/acs.jcim.4c01954
Knihovny.cz E-zdroje
- MeSH
- konformace nukleové kyseliny MeSH
- motiv rozpoznávající RNA MeSH
- proteiny vázající RNA metabolismus chemie MeSH
- RNA * chemie metabolismus MeSH
- simulace molekulární dynamiky * MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny vázající RNA MeSH
- RNA * MeSH
RNA recognition motifs (RRMs) are a key class of proteins that primarily bind single-stranded RNAs. In this study, we applied standard atomistic molecular dynamics simulations to obtain insights into the intricate binding dynamics between uridine-rich RNAs and TbRGG2 RRM using the recently developed OL3-Stafix AMBER force field, which improves the description of single-stranded RNA molecules. Complementing structural experiments that unveil a primary binding mode with a single uridine bound, our simulations uncover two supplementary binding modes in which adjacent nucleotides encroach upon the binding pocket. This leads to a unique molecular mechanism through which the TbRGG2 RRM is capable of rapidly transitioning the U-rich sequence. In contrast, the presence of non-native cytidines induces stalling and destabilization of the complex. By leveraging extensive equilibrium dynamics and a large variety of binding states, TbRGG2 RRM effectively expedites diffusion along the RNA substrate while ensuring robust selectivity for U-rich sequences despite featuring a solitary binding pocket. We further substantiate our description of the complex dynamics by simulating the fully spontaneous association process of U-rich sequences to the TbRGG2 RRM. Our study highlights the critical role of dynamics and auxiliary binding states in interface dynamics employed by RNA-binding proteins, which is not readily apparent in traditional structural studies but could represent a general type of binding strategy employed by many RNA-binding proteins.
Zobrazit více v PubMed
Venter J. C.; Adams M. D.; Myers E. W.; Li P. W.; Mural R. J.; Sutton G. G.; Smith H. O.; Yandell M.; Evans C. A.; Holt R. A.; et al. The Sequence of the Human Genome. Science 2001, 291 (5507), 1304–1351. 10.1126/science.1058040. PubMed DOI
Daubner G. M.; Cléry A.; Allain F. H. T. RRM–RNA Recognition: NMR or Crystallography···and New Findings. Curr. Opin. Struct. Biol. 2013, 23 (1), 100–108. 10.1016/j.sbi.2012.11.006. PubMed DOI
Cléry A.; Blatter M.; Allain F. H. T. RNA Recognition Motifs: Boring? Not Quite. Curr. Opin. Struct. Biol. 2008, 18 (3), 290–298. 10.1016/j.sbi.2008.04.002. PubMed DOI
Muto Y.; Yokoyama S. Structural Insight into RNA Recognition Motifs: Versatile Molecular Lego Building Blocks for Biological Systems. Wiley Interdiscip. Rev.: RNA 2012, 3 (2), 229–246. 10.1002/wrna.1107. PubMed DOI
Burd C. G.; Dreyfuss G. Conserved Structures and Diversity of Functions of RNA-Binding Proteins. Science 1994, 265 (5172), 615–621. 10.1126/science.8036511. PubMed DOI
Afroz T.; Cienikova Z.; Cléry A.; Allain F. H. T.. One, Two, Three, Four! How Multiple RRMs Read the Genome Sequence. In Methods in Enzymology; Woodson S. A.; Allain F. H. T., Eds.; Academic Press, 2015; Vol. 558, pp 235–278. PubMed
Mazza C.; Segref A.; Mattaj I. W.; Cusack S. Large-Scale Induced Fit Recognition of an m(7)GpppG Cap Analogue by the Human Nuclear Cap-Binding Complex. EMBO J. 2002, 21 (20), 5548–5557. 10.1093/emboj/cdf538. PubMed DOI PMC
Johansson C.; Finger L. D.; Trantirek L.; Mueller T. D.; Kim S.; Laird-Offringa I. A.; Feigon J. Solution structure of the complex formed by the two N-terminal RNA-binding domains of nucleolin and a pre-rRNA target. J. Mol. Biol. 2004, 337 (4), 799–816. 10.1016/j.jmb.2004.01.056. PubMed DOI
Tsuda K.; Kuwasako K.; Takahashi M.; Someya T.; Inoue M.; Terada T.; Kobayashi N.; Shirouzu M.; Kigawa T.; Tanaka A.; et al. Structural Basis for the Sequence-specific RNA-recognition Mechanism of Human CUG-BP1 RRM3. Nucleic Acids Res. 2009, 37 (15), 5151–5166. 10.1093/nar/gkp546. PubMed DOI PMC
Tintaru A. M.; Hautbergue G. M.; Hounslow A. M.; Hung M.-L.; Lian L.-Y.; Craven C. J.; Wilson S. A. Structural and Functional Analysis of RNA and TAP Binding to SF2/ASF. EMBO Rep. 2007, 8 (8), 756–762. 10.1038/sj.embor.7401031. PubMed DOI PMC
Cléry A.; Krepl M.; Nguyen C. K. X.; Moursy A.; Jorjani H.; Katsantoni M.; Okoniewski M.; Mittal N.; Zavolan M.; Sponer J.; Allain F. H. T. Structure of SRSF1 RRM1 Bound to RNA Reveals an Unexpected Bimodal Mode of Interaction and Explains its Involvement in SMN1 exon7 Splicing. Nat. Commun. 2021, 12 (1), 42810.1038/s41467-020-20481-w. PubMed DOI PMC
Allain F. H. T.; Bouvet P.; Dieckmann T.; Feigon J. Molecular Basis of Sequence-Specific Recognition of Pre-Ribosomal RNA by Nucleolin. EMBO J. 2000, 19 (24), 6870–6881. 10.1093/emboj/19.24.6870. PubMed DOI PMC
Cléry A.; Sinha R.; Anczuków O.; Corrionero A.; Moursy A.; Daubner G. M.; Valcárcel J.; Krainer A. R.; Allain F. H.-T. Isolated Pseudo–RNA-recognition Motifs of SR Proteins Can Regulate Splicing Using a Noncanonical Mode of RNA Recognition. Proc. Natl. Acad. Sci. U.S.A. 2013, 110 (30), E2802–E2811. 10.1073/pnas.1303445110. PubMed DOI PMC
Dominguez C.; Fisette J. F.; Chabot B.; Allain F. H. T. Structural Basis of G-tract Recognition and Encaging by hnRNP F Quasi-RRMs. Nat. Struct. Mol. Biol. 2010, 17 (7), 853–U104. 10.1038/nsmb.1814. PubMed DOI
Nagata T.; Suzuki S.; Endo R.; Shirouzu M.; Terada T.; Inoue M.; Kigawa T.; Kobayashi N.; Güntert P.; Tanaka A.; et al. The RRM domain of poly(A)-specific ribonuclease has a noncanonical binding site for mRNA cap analog recognition. Nucleic Acids Res. 2008, 36 (14), 4754–4767. 10.1093/nar/gkn458. PubMed DOI PMC
Oubridge C.; Ito N.; Evans P. R.; Teo C. H.; Nagai K. Crystal-Structure at 1.92 Angstrom Resolution of the RNA-Binding Domain of the U1A Spliceosomal Protein Complexed with an RNA Hairpin. Nature 1994, 372 (6505), 432–438. 10.1038/372432a0. PubMed DOI
Oberstrass F. C.; Auweter S. D.; Erat M.; Hargous Y.; Henning A.; Wenter P.; Reymond L.; Amir-Ahmady B.; Pitsch S.; Black D. L.; Allain F. H.-T. Structure of PTB Bound to RNA: Specific Binding and Implications for Splicing Regulation. Science 2005, 309 (5743), 2054–2057. 10.1126/science.1114066. PubMed DOI
Cléry A.; Jayne S.; Benderska N.; Dominguez C.; Stamm S.; Allain F. H. T. Molecular Basis of Purine-rich RNA Recognition by the Human SR-like Protein Tra2-β1. Nat. Struct. Mol. Biol. 2011, 18 (4), 443–450. 10.1038/nsmb.2001. PubMed DOI
Ripin N.; Boudet J.; Duszczyk M. M.; Hinniger A.; Faller M.; Krepl M.; Gadi A.; Schneider R. J.; Šponer J.; Meisner-Kober N. C.; Allain F. H.-T. Molecular basis for AU-rich element recognition and dimerization by the HuR C-terminal RRM. Proc. Natl. Acad. Sci. U.S.A. 2019, 116 (8), 2935–2944. 10.1073/pnas.1808696116. PubMed DOI PMC
Campagne S.; Krepl M.; Sponer J.; Allain F. H. T.. Combining NMR Spectroscopy and Molecular Dynamic Simulations to Solve and Analyze the Structure of Protein–RNA Complexes. In Methods in Enzymology; Wand A. J., Ed.; Academic Press, 2019; Chapter 14; Vol. 614, pp 393–422. PubMed
Rozza R.; Janoš P.; Magistrato A. Monovalent Ionic Atmosphere Modulates the Selection of Suboptimal RNA Sequences by Splicing Factors’ RNA Recognition Motifs. J. Chem. Inf. Model. 2023, 63 (10), 3086–3093. 10.1021/acs.jcim.3c00110. PubMed DOI
Rozza R.; Janoš P.; Magistrato A. Assessing the Binding Mode of a Splicing Modulator Stimulating Pre-mRNA Binding to the Plastic U2AF2 Splicing Factor. J. Chem. Inf. Model. 2023, 63 (23), 7508–7517. 10.1021/acs.jcim.3c01204. PubMed DOI
Krepl M.; Pokorná P.; Mlýnský V.; Stadlbauer P.; Šponer J. Spontaneous Binding of Single-stranded RNAs to RRM Proteins Visualized by Unbiased Atomistic Simulations with a Rescaled RNA Force Field. Nucleic Acids Res. 2022, 50 (21), 12480–12496. 10.1093/nar/gkac1106. PubMed DOI PMC
Šponer J.; Bussi G.; Krepl M.; Banáš P.; Bottaro S.; Cunha R. A.; Gil-Ley A.; Pinamonti G.; Poblete S.; Jurečka P.; et al. RNA Structural Dynamics as Captured by Molecular Simulations: A Comprehensive Overview. Chem. Rev. 2018, 118 (8), 4177–4338. 10.1021/acs.chemrev.7b00427. PubMed DOI PMC
Yoo J.; Winogradoff D.; Aksimentiev A. Molecular Dynamics Simulations of DNA–DNA and DNA–protein Interactions. Curr. Opin. Struct. Biol. 2020, 64, 88–96. 10.1016/j.sbi.2020.06.007. PubMed DOI
Palermo G.; Casalino L.; Magistrato A.; Andrew McCammon J. Understanding the Mechanistic Basis of Non-coding RNA through Molecular Dynamics Simulations. J. Struct. Biol. 2019, 206 (3), 267–279. 10.1016/j.jsb.2019.03.004. PubMed DOI PMC
Tubbs J. D.; Condon D. E.; Kennedy S. D.; Hauser M.; Bevilacqua P. C.; Turner D. H. The Nuclear Magnetic Resonance of CCCC RNA Reveals a Right-handed Helix, and Revised Parameters for AMBER Force Field Torsions Improve Structural Predictions from Molecular Dynamics. Biochemistry 2013, 52 (6), 996–1010. 10.1021/bi3010347. PubMed DOI PMC
Condon D. E.; Kennedy S. D.; Mort B. C.; Kierzek R.; Yildirim I.; Turner D. H. Stacking in RNA: NMR of Four Tetramers Benchmark Molecular Dynamics. J. Chem. Theory Comput. 2015, 11 (6), 2729–2742. 10.1021/ct501025q. PubMed DOI PMC
Zhao J.; Kennedy S. D.; Berger K. D.; Turner D. H. Nuclear Magnetic Resonance of Single-Stranded RNAs and DNAs of CAAU and UCAAUC as Benchmarks for Molecular Dynamics Simulations. J. Chem. Theory Comput. 2020, 16 (3), 1968–1984. 10.1021/acs.jctc.9b00912. PubMed DOI
Krepl M.; Havrila M.; Stadlbauer P.; Banas P.; Otyepka M.; Pasulka J.; Stefl R.; Sponer J. Can We Execute Stable Microsecond-Scale Atomistic Simulations of Protein-RNA Complexes?. J. Chem. Theory Comput. 2015, 11 (3), 1220–1243. 10.1021/ct5008108. PubMed DOI
Krepl M.; Damberger F. F.; von Schroetter C.; Theler D.; Pokorná P.; Allain F. H. T.; Šponer J. Recognition of N6-Methyladenosine by the YTHDC1 YTH Domain Studied by Molecular Dynamics and NMR Spectroscopy: The Role of Hydration. J. Phys. Chem. B 2021, 125 (28), 7691–7705. 10.1021/acs.jpcb.1c03541. PubMed DOI
Lomoschitz A.; Meyer J.; Guitart T.; Krepl M.; Lapouge K.; Hayn C.; Schweimer K.; Simon B.; Šponer J.; Gebauer F.; Hennig J. The Drosophila RNA binding protein Hrp48 binds a specific RNA sequence of the msl-2 mRNA 3′UTR to regulate translation. Biophys. Chem. 2025, 316, 10734610.1016/j.bpc.2024.107346. PubMed DOI
Yoo J.; Aksimentiev A. New tricks for old dogs: improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. Phys. Chem. Chem. Phys. 2018, 20 (13), 8432–8449. 10.1039/C7CP08185E. PubMed DOI PMC
Mlýnský V.; Kührová P.; Pykal M.; Krepl M.; Stadlbauer P.; Otyepka M.; Banáš P.; Šponer J.. Can We Ever Develop an Ideal RNA Force Field? Lessons Learned from Simulations of UUCG RNA Tetraloop and Other Systems; bioRxiv, 2024. 10.1101/2024.10.08.617195. PubMed DOI
Paloncýová M.; Pykal M.; Kührová P.; Banáš P.; Šponer J.; Otyepka M. Computer Aided Development of Nucleic Acid Applications in Nanotechnologies. Small 2022, 18 (49), 220440810.1002/smll.202204408. PubMed DOI
Fisk J. C.; Ammerman M. L.; Presnyak V.; Read L. K. TbRGG2, an Essential RNA Editing Accessory Factor in Two Trypanosoma brucei Life Cycle Stages. J. Biol. Chem. 2008, 283 (34), 23016–23025. 10.1074/jbc.M801021200. PubMed DOI PMC
Read L. K.; Lukeš J.; Hashimi H. Trypanosome RNA Editing: The Complexity of Getting U in and Taking U out. WIREs RNA 2016, 7 (1), 33–51. 10.1002/wrna.1313. PubMed DOI PMC
Simpson L.; Sbicego S.; Aphasizhev R. Uridine insertion/deletion RNA editing in trypanosome mitochondria: A complex business. RNA 2003, 9 (3), 265–276. 10.1261/rna.2178403. PubMed DOI PMC
Ammerman M. L.; Presnyak V.; Fisk J. C.; Foda B. M.; Read L. K. TbRGG2 Facilitates Kinetoplastid RNA Editing Initiation and Progression Past Intrinsic Pause Sites. RNA 2010, 16 (11), 2239–2251. 10.1261/rna.2285510. PubMed DOI PMC
Foda B. M.; Downey K. M.; Fisk J. C.; Read L. K. Multifunctional G-Rich and RRM-Containing Domains of TbRGG2 Perform Separate yet Essential Functions in Trypanosome RNA Editing. Eukaryotic Cell 2012, 11 (9), 1119–1131. 10.1128/EC.00175-12. PubMed DOI PMC
Travis B.; Shaw P. L. R.; Liu B.; Ravindra K.; Iliff H.; Al-Hashimi H. M.; Schumacher M. A. The RRM of the kRNA-editing Protein TbRGG2 Uses Multiple Surfaces to Bind and Remodel RNA. Nucleic Acids Res. 2019, 47 (4), 2130–2142. 10.1093/nar/gky1259. PubMed DOI PMC
Salinas R.; Cannistraci E.; Schumacher M. A. Structure of the T. brucei kinetoplastid RNA editing substrate-binding complex core component, RESC5. PLoS One 2023, 18 (3), e028215510.1371/journal.pone.0282155. PubMed DOI PMC
Sortino K.; Tylec B. L.; Chen R.; Sun Y.; Read L. K. Conserved and transcript-specific functions of the RESC factors, RESC13 and RESC14, in kinetoplastid RNA editing. RNA 2022, 28 (11), 1496–1508. 10.1261/rna.079389.122. PubMed DOI PMC
Vallurupalli P.; Bouvignies G.; Kay L. E. Studying “invisible” excited protein states in slow exchange with a major state conformation. J. Am. Chem. Soc. 2012, 134 (19), 8148–8161. 10.1021/ja3001419. PubMed DOI
AMBER 20; University of California: San Francisco, 2021.
Zgarbová M.; Otyepka M.; Sponer J.; Mladek A.; Banas P.; Cheatham T. E.; Jurecka P. Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. J. Chem. Theory Comput. 2011, 7 (9), 2886–2902. 10.1021/ct200162x. PubMed DOI PMC
Maier J. A.; Martinez C.; Kasavajhala K.; Wickstrom L.; Hauser K.; Simmerling C. ff14SB: Improving The Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11 (8), 3696–3713. 10.1021/acs.jctc.5b00255. PubMed DOI PMC
Berendsen H. J. C.; Grigera J. R.; Straatsma T. P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. A 1987, 91 (24), 6269–6271. 10.1021/j100308a038. DOI
Izadi S.; Anandakrishnan R.; Onufriev A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5 (21), 3863–3871. 10.1021/jz501780a. PubMed DOI PMC
Kührová P.; Mlynsky V.; Zgarbová M.; Krepl M.; Bussi G.; Best R. B.; Otyepka M.; Sponer J.; Banas P. Improving the performance of the amber RNA force field by tuning the hydrogen-bonding interactions. J. Chem. Theory Comput. 2019, 15 (5), 3288–3305. 10.1021/acs.jctc.8b00955. PubMed DOI PMC
Joung I. S.; Cheatham T. E. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B 2008, 112 (30), 9020–9041. 10.1021/jp8001614. PubMed DOI PMC
Krepl M.; Vögele J.; Kruse H.; Duchardt-Ferner E.; Wöhnert J.; Sponer J. An Intricate Balance of Hydrogen Bonding, Ion Atmosphere and Dynamics Facilitates a Seamless Uracil to Cytosine Substitution in the U-turn of the Neomycin-sensing Riboswitch. Nucleic Acids Res. 2018, 46 (13), 6528–6543. 10.1093/nar/gky490. PubMed DOI PMC
Le Grand S.; Götz A. W.; Walker R. C. SPFP: Speed without Compromise—A Mixed Precision Model for GPU Accelerated Molecular Dynamics Simulations. Comput. Phys. Commun. 2013, 184 (2), 374–380. 10.1016/j.cpc.2012.09.022. DOI
Ryckaert J.-P.; Ciccotti G.; Berendsen H. J. C. Numerical-Integration of Cartesian Equations of Motion of a System with Constraints - Molecular-Dynamics of N-Alkanes. J. Comput. Phys. 1977, 23 (3), 327–341. 10.1016/0021-9991(77)90098-5. DOI
Hopkins C. W.; Le Grand S.; Walker R. C.; Roitberg A. E. Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. J. Chem. Theory Comput. 2015, 11 (4), 1864–1874. 10.1021/ct5010406. PubMed DOI
Darden T.; York D.; Pedersen L. Particle Mesh Ewald - An N.Log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98 (12), e1008910.1063/1.464397. DOI
Roe D. R.; Cheatham T. E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9 (7), 3084–3095. 10.1021/ct400341p. PubMed DOI
Humphrey W.; Dalke A.; Schulten K. VMD: Visual Molecular Dynamics. J. Mol. Graphics 1996, 14 (1), 33–38. 10.1016/0263-7855(96)00018-5. PubMed DOI
Berg O. G.; von Hippel P. H. Diffusion-controlled macromolecular interactions. Annu. Rev. Biophys. Biophys. Chem. 1985, 14 (1), 131–158. 10.1146/annurev.bb.14.060185.001023. PubMed DOI
Yu S.; Wang S.; Larson R. G. Proteins searching for their target on DNA by one-dimensional diffusion: overcoming the “speed-stability” paradox. Biophys. J. 2013, 104 (2), 255A.10.1016/j.bpj.2012.11.1434. PubMed DOI PMC