How Binding Site Flexibility Promotes RNA Scanning by TbRGG2 RRM: A Molecular Dynamics Simulation Study

. 2025 Jan 27 ; 65 (2) : 896-907. [epub] 20250113

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39804219

RNA recognition motifs (RRMs) are a key class of proteins that primarily bind single-stranded RNAs. In this study, we applied standard atomistic molecular dynamics simulations to obtain insights into the intricate binding dynamics between uridine-rich RNAs and TbRGG2 RRM using the recently developed OL3-Stafix AMBER force field, which improves the description of single-stranded RNA molecules. Complementing structural experiments that unveil a primary binding mode with a single uridine bound, our simulations uncover two supplementary binding modes in which adjacent nucleotides encroach upon the binding pocket. This leads to a unique molecular mechanism through which the TbRGG2 RRM is capable of rapidly transitioning the U-rich sequence. In contrast, the presence of non-native cytidines induces stalling and destabilization of the complex. By leveraging extensive equilibrium dynamics and a large variety of binding states, TbRGG2 RRM effectively expedites diffusion along the RNA substrate while ensuring robust selectivity for U-rich sequences despite featuring a solitary binding pocket. We further substantiate our description of the complex dynamics by simulating the fully spontaneous association process of U-rich sequences to the TbRGG2 RRM. Our study highlights the critical role of dynamics and auxiliary binding states in interface dynamics employed by RNA-binding proteins, which is not readily apparent in traditional structural studies but could represent a general type of binding strategy employed by many RNA-binding proteins.

Zobrazit více v PubMed

Venter J. C.; Adams M. D.; Myers E. W.; Li P. W.; Mural R. J.; Sutton G. G.; Smith H. O.; Yandell M.; Evans C. A.; Holt R. A.; et al. The Sequence of the Human Genome. Science 2001, 291 (5507), 1304–1351. 10.1126/science.1058040. PubMed DOI

Daubner G. M.; Cléry A.; Allain F. H. T. RRM–RNA Recognition: NMR or Crystallography···and New Findings. Curr. Opin. Struct. Biol. 2013, 23 (1), 100–108. 10.1016/j.sbi.2012.11.006. PubMed DOI

Cléry A.; Blatter M.; Allain F. H. T. RNA Recognition Motifs: Boring? Not Quite. Curr. Opin. Struct. Biol. 2008, 18 (3), 290–298. 10.1016/j.sbi.2008.04.002. PubMed DOI

Muto Y.; Yokoyama S. Structural Insight into RNA Recognition Motifs: Versatile Molecular Lego Building Blocks for Biological Systems. Wiley Interdiscip. Rev.: RNA 2012, 3 (2), 229–246. 10.1002/wrna.1107. PubMed DOI

Burd C. G.; Dreyfuss G. Conserved Structures and Diversity of Functions of RNA-Binding Proteins. Science 1994, 265 (5172), 615–621. 10.1126/science.8036511. PubMed DOI

Afroz T.; Cienikova Z.; Cléry A.; Allain F. H. T.. One, Two, Three, Four! How Multiple RRMs Read the Genome Sequence. In Methods in Enzymology; Woodson S. A.; Allain F. H. T., Eds.; Academic Press, 2015; Vol. 558, pp 235–278. PubMed

Mazza C.; Segref A.; Mattaj I. W.; Cusack S. Large-Scale Induced Fit Recognition of an m(7)GpppG Cap Analogue by the Human Nuclear Cap-Binding Complex. EMBO J. 2002, 21 (20), 5548–5557. 10.1093/emboj/cdf538. PubMed DOI PMC

Johansson C.; Finger L. D.; Trantirek L.; Mueller T. D.; Kim S.; Laird-Offringa I. A.; Feigon J. Solution structure of the complex formed by the two N-terminal RNA-binding domains of nucleolin and a pre-rRNA target. J. Mol. Biol. 2004, 337 (4), 799–816. 10.1016/j.jmb.2004.01.056. PubMed DOI

Tsuda K.; Kuwasako K.; Takahashi M.; Someya T.; Inoue M.; Terada T.; Kobayashi N.; Shirouzu M.; Kigawa T.; Tanaka A.; et al. Structural Basis for the Sequence-specific RNA-recognition Mechanism of Human CUG-BP1 RRM3. Nucleic Acids Res. 2009, 37 (15), 5151–5166. 10.1093/nar/gkp546. PubMed DOI PMC

Tintaru A. M.; Hautbergue G. M.; Hounslow A. M.; Hung M.-L.; Lian L.-Y.; Craven C. J.; Wilson S. A. Structural and Functional Analysis of RNA and TAP Binding to SF2/ASF. EMBO Rep. 2007, 8 (8), 756–762. 10.1038/sj.embor.7401031. PubMed DOI PMC

Cléry A.; Krepl M.; Nguyen C. K. X.; Moursy A.; Jorjani H.; Katsantoni M.; Okoniewski M.; Mittal N.; Zavolan M.; Sponer J.; Allain F. H. T. Structure of SRSF1 RRM1 Bound to RNA Reveals an Unexpected Bimodal Mode of Interaction and Explains its Involvement in SMN1 exon7 Splicing. Nat. Commun. 2021, 12 (1), 42810.1038/s41467-020-20481-w. PubMed DOI PMC

Allain F. H. T.; Bouvet P.; Dieckmann T.; Feigon J. Molecular Basis of Sequence-Specific Recognition of Pre-Ribosomal RNA by Nucleolin. EMBO J. 2000, 19 (24), 6870–6881. 10.1093/emboj/19.24.6870. PubMed DOI PMC

Cléry A.; Sinha R.; Anczuków O.; Corrionero A.; Moursy A.; Daubner G. M.; Valcárcel J.; Krainer A. R.; Allain F. H.-T. Isolated Pseudo–RNA-recognition Motifs of SR Proteins Can Regulate Splicing Using a Noncanonical Mode of RNA Recognition. Proc. Natl. Acad. Sci. U.S.A. 2013, 110 (30), E2802–E2811. 10.1073/pnas.1303445110. PubMed DOI PMC

Dominguez C.; Fisette J. F.; Chabot B.; Allain F. H. T. Structural Basis of G-tract Recognition and Encaging by hnRNP F Quasi-RRMs. Nat. Struct. Mol. Biol. 2010, 17 (7), 853–U104. 10.1038/nsmb.1814. PubMed DOI

Nagata T.; Suzuki S.; Endo R.; Shirouzu M.; Terada T.; Inoue M.; Kigawa T.; Kobayashi N.; Güntert P.; Tanaka A.; et al. The RRM domain of poly(A)-specific ribonuclease has a noncanonical binding site for mRNA cap analog recognition. Nucleic Acids Res. 2008, 36 (14), 4754–4767. 10.1093/nar/gkn458. PubMed DOI PMC

Oubridge C.; Ito N.; Evans P. R.; Teo C. H.; Nagai K. Crystal-Structure at 1.92 Angstrom Resolution of the RNA-Binding Domain of the U1A Spliceosomal Protein Complexed with an RNA Hairpin. Nature 1994, 372 (6505), 432–438. 10.1038/372432a0. PubMed DOI

Oberstrass F. C.; Auweter S. D.; Erat M.; Hargous Y.; Henning A.; Wenter P.; Reymond L.; Amir-Ahmady B.; Pitsch S.; Black D. L.; Allain F. H.-T. Structure of PTB Bound to RNA: Specific Binding and Implications for Splicing Regulation. Science 2005, 309 (5743), 2054–2057. 10.1126/science.1114066. PubMed DOI

Cléry A.; Jayne S.; Benderska N.; Dominguez C.; Stamm S.; Allain F. H. T. Molecular Basis of Purine-rich RNA Recognition by the Human SR-like Protein Tra2-β1. Nat. Struct. Mol. Biol. 2011, 18 (4), 443–450. 10.1038/nsmb.2001. PubMed DOI

Ripin N.; Boudet J.; Duszczyk M. M.; Hinniger A.; Faller M.; Krepl M.; Gadi A.; Schneider R. J.; Šponer J.; Meisner-Kober N. C.; Allain F. H.-T. Molecular basis for AU-rich element recognition and dimerization by the HuR C-terminal RRM. Proc. Natl. Acad. Sci. U.S.A. 2019, 116 (8), 2935–2944. 10.1073/pnas.1808696116. PubMed DOI PMC

Campagne S.; Krepl M.; Sponer J.; Allain F. H. T.. Combining NMR Spectroscopy and Molecular Dynamic Simulations to Solve and Analyze the Structure of Protein–RNA Complexes. In Methods in Enzymology; Wand A. J., Ed.; Academic Press, 2019; Chapter 14; Vol. 614, pp 393–422. PubMed

Rozza R.; Janoš P.; Magistrato A. Monovalent Ionic Atmosphere Modulates the Selection of Suboptimal RNA Sequences by Splicing Factors’ RNA Recognition Motifs. J. Chem. Inf. Model. 2023, 63 (10), 3086–3093. 10.1021/acs.jcim.3c00110. PubMed DOI

Rozza R.; Janoš P.; Magistrato A. Assessing the Binding Mode of a Splicing Modulator Stimulating Pre-mRNA Binding to the Plastic U2AF2 Splicing Factor. J. Chem. Inf. Model. 2023, 63 (23), 7508–7517. 10.1021/acs.jcim.3c01204. PubMed DOI

Krepl M.; Pokorná P.; Mlýnský V.; Stadlbauer P.; Šponer J. Spontaneous Binding of Single-stranded RNAs to RRM Proteins Visualized by Unbiased Atomistic Simulations with a Rescaled RNA Force Field. Nucleic Acids Res. 2022, 50 (21), 12480–12496. 10.1093/nar/gkac1106. PubMed DOI PMC

Šponer J.; Bussi G.; Krepl M.; Banáš P.; Bottaro S.; Cunha R. A.; Gil-Ley A.; Pinamonti G.; Poblete S.; Jurečka P.; et al. RNA Structural Dynamics as Captured by Molecular Simulations: A Comprehensive Overview. Chem. Rev. 2018, 118 (8), 4177–4338. 10.1021/acs.chemrev.7b00427. PubMed DOI PMC

Yoo J.; Winogradoff D.; Aksimentiev A. Molecular Dynamics Simulations of DNA–DNA and DNA–protein Interactions. Curr. Opin. Struct. Biol. 2020, 64, 88–96. 10.1016/j.sbi.2020.06.007. PubMed DOI

Palermo G.; Casalino L.; Magistrato A.; Andrew McCammon J. Understanding the Mechanistic Basis of Non-coding RNA through Molecular Dynamics Simulations. J. Struct. Biol. 2019, 206 (3), 267–279. 10.1016/j.jsb.2019.03.004. PubMed DOI PMC

Tubbs J. D.; Condon D. E.; Kennedy S. D.; Hauser M.; Bevilacqua P. C.; Turner D. H. The Nuclear Magnetic Resonance of CCCC RNA Reveals a Right-handed Helix, and Revised Parameters for AMBER Force Field Torsions Improve Structural Predictions from Molecular Dynamics. Biochemistry 2013, 52 (6), 996–1010. 10.1021/bi3010347. PubMed DOI PMC

Condon D. E.; Kennedy S. D.; Mort B. C.; Kierzek R.; Yildirim I.; Turner D. H. Stacking in RNA: NMR of Four Tetramers Benchmark Molecular Dynamics. J. Chem. Theory Comput. 2015, 11 (6), 2729–2742. 10.1021/ct501025q. PubMed DOI PMC

Zhao J.; Kennedy S. D.; Berger K. D.; Turner D. H. Nuclear Magnetic Resonance of Single-Stranded RNAs and DNAs of CAAU and UCAAUC as Benchmarks for Molecular Dynamics Simulations. J. Chem. Theory Comput. 2020, 16 (3), 1968–1984. 10.1021/acs.jctc.9b00912. PubMed DOI

Krepl M.; Havrila M.; Stadlbauer P.; Banas P.; Otyepka M.; Pasulka J.; Stefl R.; Sponer J. Can We Execute Stable Microsecond-Scale Atomistic Simulations of Protein-RNA Complexes?. J. Chem. Theory Comput. 2015, 11 (3), 1220–1243. 10.1021/ct5008108. PubMed DOI

Krepl M.; Damberger F. F.; von Schroetter C.; Theler D.; Pokorná P.; Allain F. H. T.; Šponer J. Recognition of N6-Methyladenosine by the YTHDC1 YTH Domain Studied by Molecular Dynamics and NMR Spectroscopy: The Role of Hydration. J. Phys. Chem. B 2021, 125 (28), 7691–7705. 10.1021/acs.jpcb.1c03541. PubMed DOI

Lomoschitz A.; Meyer J.; Guitart T.; Krepl M.; Lapouge K.; Hayn C.; Schweimer K.; Simon B.; Šponer J.; Gebauer F.; Hennig J. The Drosophila RNA binding protein Hrp48 binds a specific RNA sequence of the msl-2 mRNA 3′UTR to regulate translation. Biophys. Chem. 2025, 316, 10734610.1016/j.bpc.2024.107346. PubMed DOI

Yoo J.; Aksimentiev A. New tricks for old dogs: improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. Phys. Chem. Chem. Phys. 2018, 20 (13), 8432–8449. 10.1039/C7CP08185E. PubMed DOI PMC

Mlýnský V.; Kührová P.; Pykal M.; Krepl M.; Stadlbauer P.; Otyepka M.; Banáš P.; Šponer J.. Can We Ever Develop an Ideal RNA Force Field? Lessons Learned from Simulations of UUCG RNA Tetraloop and Other Systems; bioRxiv, 2024. 10.1101/2024.10.08.617195. PubMed DOI

Paloncýová M.; Pykal M.; Kührová P.; Banáš P.; Šponer J.; Otyepka M. Computer Aided Development of Nucleic Acid Applications in Nanotechnologies. Small 2022, 18 (49), 220440810.1002/smll.202204408. PubMed DOI

Fisk J. C.; Ammerman M. L.; Presnyak V.; Read L. K. TbRGG2, an Essential RNA Editing Accessory Factor in Two Trypanosoma brucei Life Cycle Stages. J. Biol. Chem. 2008, 283 (34), 23016–23025. 10.1074/jbc.M801021200. PubMed DOI PMC

Read L. K.; Lukeš J.; Hashimi H. Trypanosome RNA Editing: The Complexity of Getting U in and Taking U out. WIREs RNA 2016, 7 (1), 33–51. 10.1002/wrna.1313. PubMed DOI PMC

Simpson L.; Sbicego S.; Aphasizhev R. Uridine insertion/deletion RNA editing in trypanosome mitochondria: A complex business. RNA 2003, 9 (3), 265–276. 10.1261/rna.2178403. PubMed DOI PMC

Ammerman M. L.; Presnyak V.; Fisk J. C.; Foda B. M.; Read L. K. TbRGG2 Facilitates Kinetoplastid RNA Editing Initiation and Progression Past Intrinsic Pause Sites. RNA 2010, 16 (11), 2239–2251. 10.1261/rna.2285510. PubMed DOI PMC

Foda B. M.; Downey K. M.; Fisk J. C.; Read L. K. Multifunctional G-Rich and RRM-Containing Domains of TbRGG2 Perform Separate yet Essential Functions in Trypanosome RNA Editing. Eukaryotic Cell 2012, 11 (9), 1119–1131. 10.1128/EC.00175-12. PubMed DOI PMC

Travis B.; Shaw P. L. R.; Liu B.; Ravindra K.; Iliff H.; Al-Hashimi H. M.; Schumacher M. A. The RRM of the kRNA-editing Protein TbRGG2 Uses Multiple Surfaces to Bind and Remodel RNA. Nucleic Acids Res. 2019, 47 (4), 2130–2142. 10.1093/nar/gky1259. PubMed DOI PMC

Salinas R.; Cannistraci E.; Schumacher M. A. Structure of the T. brucei kinetoplastid RNA editing substrate-binding complex core component, RESC5. PLoS One 2023, 18 (3), e028215510.1371/journal.pone.0282155. PubMed DOI PMC

Sortino K.; Tylec B. L.; Chen R.; Sun Y.; Read L. K. Conserved and transcript-specific functions of the RESC factors, RESC13 and RESC14, in kinetoplastid RNA editing. RNA 2022, 28 (11), 1496–1508. 10.1261/rna.079389.122. PubMed DOI PMC

Vallurupalli P.; Bouvignies G.; Kay L. E. Studying “invisible” excited protein states in slow exchange with a major state conformation. J. Am. Chem. Soc. 2012, 134 (19), 8148–8161. 10.1021/ja3001419. PubMed DOI

AMBER 20; University of California: San Francisco, 2021.

Zgarbová M.; Otyepka M.; Sponer J.; Mladek A.; Banas P.; Cheatham T. E.; Jurecka P. Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. J. Chem. Theory Comput. 2011, 7 (9), 2886–2902. 10.1021/ct200162x. PubMed DOI PMC

Maier J. A.; Martinez C.; Kasavajhala K.; Wickstrom L.; Hauser K.; Simmerling C. ff14SB: Improving The Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11 (8), 3696–3713. 10.1021/acs.jctc.5b00255. PubMed DOI PMC

Berendsen H. J. C.; Grigera J. R.; Straatsma T. P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. A 1987, 91 (24), 6269–6271. 10.1021/j100308a038. DOI

Izadi S.; Anandakrishnan R.; Onufriev A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5 (21), 3863–3871. 10.1021/jz501780a. PubMed DOI PMC

Kührová P.; Mlynsky V.; Zgarbová M.; Krepl M.; Bussi G.; Best R. B.; Otyepka M.; Sponer J.; Banas P. Improving the performance of the amber RNA force field by tuning the hydrogen-bonding interactions. J. Chem. Theory Comput. 2019, 15 (5), 3288–3305. 10.1021/acs.jctc.8b00955. PubMed DOI PMC

Joung I. S.; Cheatham T. E. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B 2008, 112 (30), 9020–9041. 10.1021/jp8001614. PubMed DOI PMC

Krepl M.; Vögele J.; Kruse H.; Duchardt-Ferner E.; Wöhnert J.; Sponer J. An Intricate Balance of Hydrogen Bonding, Ion Atmosphere and Dynamics Facilitates a Seamless Uracil to Cytosine Substitution in the U-turn of the Neomycin-sensing Riboswitch. Nucleic Acids Res. 2018, 46 (13), 6528–6543. 10.1093/nar/gky490. PubMed DOI PMC

Le Grand S.; Götz A. W.; Walker R. C. SPFP: Speed without Compromise—A Mixed Precision Model for GPU Accelerated Molecular Dynamics Simulations. Comput. Phys. Commun. 2013, 184 (2), 374–380. 10.1016/j.cpc.2012.09.022. DOI

Ryckaert J.-P.; Ciccotti G.; Berendsen H. J. C. Numerical-Integration of Cartesian Equations of Motion of a System with Constraints - Molecular-Dynamics of N-Alkanes. J. Comput. Phys. 1977, 23 (3), 327–341. 10.1016/0021-9991(77)90098-5. DOI

Hopkins C. W.; Le Grand S.; Walker R. C.; Roitberg A. E. Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. J. Chem. Theory Comput. 2015, 11 (4), 1864–1874. 10.1021/ct5010406. PubMed DOI

Darden T.; York D.; Pedersen L. Particle Mesh Ewald - An N.Log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98 (12), e1008910.1063/1.464397. DOI

Roe D. R.; Cheatham T. E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9 (7), 3084–3095. 10.1021/ct400341p. PubMed DOI

Humphrey W.; Dalke A.; Schulten K. VMD: Visual Molecular Dynamics. J. Mol. Graphics 1996, 14 (1), 33–38. 10.1016/0263-7855(96)00018-5. PubMed DOI

Berg O. G.; von Hippel P. H. Diffusion-controlled macromolecular interactions. Annu. Rev. Biophys. Biophys. Chem. 1985, 14 (1), 131–158. 10.1146/annurev.bb.14.060185.001023. PubMed DOI

Yu S.; Wang S.; Larson R. G. Proteins searching for their target on DNA by one-dimensional diffusion: overcoming the “speed-stability” paradox. Biophys. J. 2013, 104 (2), 255A.10.1016/j.bpj.2012.11.1434. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace