Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Z99 DK999999
Intramural NIH HHS - United States
ZIA DK075104
Intramural NIH HHS - United States
PubMed
30896943
PubMed Central
PMC7491206
DOI
10.1021/acs.jctc.8b00955
Knihovny.cz E-zdroje
- MeSH
- RNA chemie MeSH
- simulace molekulární dynamiky * MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA MeSH
Molecular dynamics (MD) simulations became a leading tool for investigation of structural dynamics of nucleic acids. Despite recent efforts to improve the empirical potentials (force fields, ffs), RNA ffs have persisting deficiencies, which hamper their utilization in quantitatively accurate simulations. Previous studies have shown that at least two salient problems contribute to difficulties in the description of free-energy landscapes of small RNA motifs: (i) excessive stabilization of the unfolded single-stranded RNA ensemble by intramolecular base-phosphate and sugar-phosphate interactions and (ii) destabilization of the native folded state by underestimation of stability of base pairing. Here, we introduce a general ff term (gHBfix) that can selectively fine-tune nonbonding interaction terms in RNA ffs, in particular, the H bonds. The gHBfix potential affects the pairwise interactions between all possible pairs of the specific atom types, while all other interactions remain intact; i.e., it is not a structure-based model. In order to probe the ability of the gHBfix potential to refine the ff nonbonded terms, we performed an extensive set of folding simulations of RNA tetranucleotides and tetraloops. On the basis of these data, we propose particular gHBfix parameters to modify the AMBER RNA ff. The suggested parametrization significantly improves the agreement between experimental data and the simulation conformational ensembles, although our current ff version still remains far from being flawless. While attempts to tune the RNA ffs by conventional reparametrizations of dihedral potentials or nonbonded terms can lead to major undesired side effects, as we demonstrate for some recently published ffs, gHBfix has a clear promising potential to improve the ff performance while avoiding introduction of major new imbalances.
Zobrazit více v PubMed
Ditzler MA; Otyepka M; Sponer J; Walter NG, Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in. Acc Chem Res 2010, 43 (1), 40–7. PubMed PMC
Cheatham TE; Case DA, Twenty-Five Years of Nucleic Acid Simulations. Proc Natl Acad Sci U S A 2013, 99 (12), 969–977. PubMed PMC
Sponer J; Banas P; Jurecka P; Zgarbova M; Kuhrova P; Havrila M; Krepl M; Stadlbauer P; Otyepka M, Molecular Dynamics Simulations of Nucleic Acids. From Tetranucleotides to the Ribosome. J Phys Chem Lett 2014, 5 (10), 1771–1782. PubMed
Sponer J; Bussi G; Krepl M; Banas P; Bottaro S; Cunha RA; Gil-Ley A; Pinamonti G; Poblete S; Jurecka P; Walter NG; Otyepka M, RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018, 118 (8), 4177–4338. PubMed PMC
Maffeo C; Yoo J; Comer J; Wells DB; Luan B; Aksimentiev A, Close encounters with DNA. J Phys Condens Matter 2014, 26 (41), 413101. PubMed PMC
Vangaveti S; Ranganathan SV; Chen AA, Advances in RNA molecular dynamics: a simulator’s guide to RNA force fields. Wiley Interdiscip Rev RNA 2017, 8 (2). PubMed
Smith LG; Zhao J; Mathews DH; Turner DH, Physics-based all-atom modeling of RNA energetics and structure. Wiley Interdiscip Rev RNA 2017, 8 (5). PubMed PMC
Nerenberg PS; Head-Gordon T, New developments in force fields for biomolecular simulations. Curr Opin Struct Biol 2018, 49, 129–138. PubMed
Mackerell AD Jr.; Feig M; Brooks CL 3rd, Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 2004, 25 (11), 1400–15. PubMed
MacKerell AD Jr.; Banavali N; Foloppe N, Development and current status of the CHARMM force field for nucleic acids. Biopolymers 2000, 56 (4), 257–65. PubMed
Perez A; Marchan I; Svozil D; Sponer J; Cheatham TE; Laughton CA; Orozco M, Refinenement of the AMBER force field for nucleic acids: Improving the description of alpha/gamma conformers. Biophys J 2007, 92 (11), 3817–3829. PubMed PMC
Denning EJ; Priyakumar UD; Nilsson L; Mackerell AD Jr., Impact of 2’-hydroxyl sampling on the conformational properties of RNA: update of the CHARMM all-atom additive force field for RNA. J Comput Chem 2011, 32 (9), 1929–43. PubMed PMC
Zgarbova M; Otyepka M; Sponer J; Mladek A; Banas P; Cheatham TE 3rd; Jurecka P, Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. J Chem Theory Comput 2011, 7 (9), 2886–2902. PubMed PMC
Bergonzo C; Cheatham TE, Improved Force Field Parameters Lead to a Better Description of RNA Structure. J Chem Theory Comput 2015, 11 (9), 3969–3972. PubMed
Bergonzo C; Henriksen NM; Roe DR; Cheatham TE 3rd, Highly sampled tetranucleotide and tetraloop motifs enable evaluation of common RNA force fields. Rna 2015, 21 (9), 1578–90. PubMed PMC
Lemkul JA; MacKerell AD Jr., Polarizable Force Field for DNA Based on the Classical Drude Oscillator: II. Microsecond Molecular Dynamics Simulations of Duplex DNA. J Chem Theory Comput 2017, 13 (5), 2072–2085. PubMed PMC
Aytenfisu AH; Spasic A; Grossfield A; Stern HA; Mathews DH, Revised RNA Dihedral Parameters for the Amber Force Field Improve RNA Molecular Dynamics. J Chem Theory Comput 2017, 13 (2), 900–915. PubMed PMC
Zhang C; Lu C; Jing Z; Wu C; Piquemal JP; Ponder JW; Ren P, AMOEBA Polarizable Atomic Multipole Force Field for Nucleic Acids. J Chem Theory Comput 2018, 14 (4), 2084–2108. PubMed PMC
Lemkul JA; MacKerell AD Jr., Polarizable force field for RNA based on the classical drude oscillator. J Comput Chem 2018, 39 (32), 2624–2646. PubMed PMC
Bernardi RC; Melo MCR; Schulten K, Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochim Biophys Acta 2015, 1850 (5), 872–877. PubMed PMC
Valsson O; Tiwary P; Parrinello M, Enhancing Important Fluctuations: Rare Events and Metadynamics from a Conceptual Viewpoint. Annu Rev Phys Chem 2016, 67, 159–84. PubMed
Sugita Y; Okamoto Y, Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 1999, 314 (1–2), 141–151.
Wang L; Friesner RA; Berne BJ, Replica Exchange with Solute Scaling: A More Efficient Version of Replica Exchange with Solute Tempering (REST2) (vol 115, pg 9431, 2011). J Phys Chem B 2011, 115 (38), 11305–11305. PubMed PMC
Mlynsky V; Bussi G, Exploring RNA structure and dynamics through enhanced sampling simulations. Curr Opin Struct Biol 2018, 49, 63–71. PubMed
Yildirim I; Stern HA; Tubbs JD; Kennedy SD; Turner DH, Benchmarking AMBER Force Fields for RNA: Comparisons to NMR Spectra for Single-Stranded r(GACC) Are Improved by Revised chi Torsions. J Phys Chem B 2011, 115 (29), 9261–9270. PubMed PMC
Tubbs JD; Condon DE; Kennedy SD; Hauser M; Bevilacqua PC; Turner DH, The nuclear magnetic resonance of CCCC RNA reveals a right-handed helix, and revised parameters for AMBER force field torsions improve structural predictions from molecular dynamics. Biochemistry-Us 2013, 52 (6), 996–1010. PubMed PMC
Condon DE; Kennedy SD; Mort BC; Kierzek R; Yildirim I; Turner DH, Stacking in RNA: NMR of Four Tetramers Benchmark Molecular Dynamics. J Chem Theory Comput 2015, 11 (6), 2729–2742. PubMed PMC
Bergonzo C; Henriksen NM; Roe DR; Swails JM; Roitberg AE; Cheatham TE 3rd, Multidimensional Replica Exchange Molecular Dynamics Yields a Converged Ensemble of an RNA Tetranucleotide. J Chem Theory Comput 2014, 10 (1), 492–499. PubMed PMC
Gil-Ley A; Bottaro S; Bussi G, Empirical Corrections to the Amber RNA Force Field with Target Metadynamics. J Chem Theory Comput 2016, 12 (6), 2790–8. PubMed PMC
Cesari A; Gil-Ley A; Bussi G, Combining Simulations and Solution Experiments as a Paradigm for RNA Force Field Refinement. J Chem Theory Comput 2016, 12 (12), 6192–6200. PubMed
Yang C; Lim M; Kim E; Pak Y, Predicting RNA Structures via a Simple van der Waals Correction to an All-Atom Force Field. J Chem Theory Comput 2017, 13 (2), 395–399. PubMed
Schrodt MV; Andrews CT; Elcock AH, Large-Scale Analysis of 48 DNA and 48 RNA Tetranucleotides Studied by 1 mus Explicit-Solvent Molecular Dynamics Simulations. J Chem Theory Comput 2015, 11 (12), 5906–17. PubMed PMC
Bottaro S; Bussi G; Kennedy SD; Turner DH; Lindorff-Larsen K, Conformational ensembles of RNA oligonucleotides from integrating NMR and molecular simulations. Sci Adv 2018, 4 (5), eaar8521. PubMed PMC
Bottaro S; Gil-Ley A; Bussi G, RNA folding pathways in stop motion. Nucleic Acids Res 2016, 44 (12), 5883–91. PubMed PMC
Haldar S; Kuhrova P; Banas P; Spiwok V; Sponer J; Hobza P; Otyepka M, Insights into Stability and Folding of GNRA and UNCG Tetra loops Revealed by Microsecond Molecular Dynamics and Well-Tempered Metadynamics. J Chem Theory Comput 2015, 11 (8), 3866–3877. PubMed
Mathews DH; Turner DH, Prediction of RNA secondary structure by free energy minimization. Curr Opin Struct Biol 2006, 16 (3), 270–8. PubMed
Sweeney BA; Roy P; Leontis NB, An Introduction to Recurrent Nucleotide Interactions in RNA. Wiley Interdiscip Rev RNA 2015, 6, 17–45. PubMed
Hall KB, Mighty tiny. Rna 2015, 21 (4), 630–1. PubMed PMC
Hsiao C; Mohan S; Hershkovitz E; Tannenbaum A; Williams LD, Single nucleotide RNA choreography. Nucleic Acids Res 2006, 34 (5), 1481–1491. PubMed PMC
Tuerk CG,P; Thermes C; Groebe DR; Gayle M; Guild N; Stormo G; d’Aubenton-Carafa Y; Uhlenbeck OC; Tinoco I Jr. et al., CUUCGG hairpins: extraordinarily stable RNA secondary structures associated with various biochemical processes. Proc Natl Acad Sci U S A 1988, 85 (5), 1364–1368. PubMed PMC
Woese CR; Winker S; Gutell RR, Architecture of ribosomal RNA: constraints on the sequence of “tetra-loops”. Proc Natl Acad Sci U S A 1990, 87 (21), 8467–71. PubMed PMC
Varani G, Exceptionally Stable Nucleic-Acid Hairpins. Annu Rev Biophys Biom 1995, 24, 379–404. PubMed
Uhlenbeck OC, Nucleic-Acid Structure - Tetraloops and Rna Folding. Nature 1990, 346 (6285), 613–614. PubMed
Pley HW; Flaherty KM; Mckay DB, Model for an Rna Tertiary Interaction Front the Structure of an Intermolecular Complex between a Gaaa Tetraloop and an Rna Helix. Nature 1994, 372 (6501), 111–113. PubMed
Xin YR; Laing C; Leontis NB; Schlick T, Annotation of tertiary interactions in RNA structures reveals variations and correlations. Rna 2008, 14 (12), 2465–2477. PubMed PMC
Chauhan S; Woodson SA, Tertiary interactions determine the accuracy of RNA folding. J Amer Chem Soc 2008, 130 (4), 1296–1303. PubMed PMC
Marino JP; Gregorian RS; Csankovszki G; Crothers DM, Bent Helix Formation between Rna Hairpins with Complementary Loops. Science 1995, 268 (5216), 1448–1454. PubMed
Brion P; Westhof E, Hierarchy and dynamics of RNA folding. Annu Rev Biophys 1997, 26, 113–137. PubMed
Antao VP; Tinoco I, Thermodynamic Parameters for Loop Formation in Rna and DNA Hairpin Tetraloops. Nucleic Acids Res 1992, 20 (4), 819–824. PubMed PMC
Sheehy JP; Davis AR; Znosko BM, Thermodynamic characterization of naturally occurring RNA tetraloops. Rna 2010, 16 (2), 417–29. PubMed PMC
Mathews DH; Disney MD; Childs JL; Schroeder SJ; Zuker M; Turner DH, Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A 2004, 101 (19), 7287–7292. PubMed PMC
Abdelkafi M; Ghomi M; Turpin PY; Baumruk V; Herve du Penhoat C; Lampire O; Bouchemal-Chibani N; Goyer P; Namane A; Gouyette C; Huynh-Dinh T; Bednarova L, Common structural features of UUCG and UACG tetraloops in very short hairpins determined by UV absorption, Raman, IR and NMR spectroscopies. J Biomol Struct Dyn 1997, 14 (5), 579–93. PubMed
Bottaro S; Banas P; Sponer J; Bussi G, Free Energy Landscape of GAGA and UUCG RNA Tetraloops. J Phys Chem Lett 2016, 7 (20), 4032–4038. PubMed
Chen AA; Garcia AE, High-resolution reversible folding of hyperstable RNA tetraloops using molecular dynamics simulations. Proc Natl Acad Sci U S A 2013, 110 (42), 16820–16825. PubMed PMC
Kuhrova P; Banas P; Best RB; Sponer J; Otyepka M, Computer Folding of RNA Tetraloops? Are We There Yet? J Chem Theory Comput 2013, 9 (4), 2115–2125. PubMed
Smith LG; Tan Z; Spasic A; Dutta D; Salas-Estrada LA; Grossfield A; Mathews DH, Chemically Accurate Relative Folding Stability of RNA Hairpins from Molecular Simulations. J Chem Theory Comput 2018, 14 (12), 6598–6612. PubMed PMC
Yoo J; Aksimentiev A, Improved Parameterization of Amine-Carboxylate and Amine-Phosphate Interactions for Molecular Dynamics Simulations Using the CHARMM and AMBER Force Fields. J Chem Theory Comput 2016, 12 (1), 430–443. PubMed
Mlynsky V; Kuhrova P; Zgarbova M; Jurecka P; Walter NG; Otyepka M; Sponer J; Banas P, Reactive Conformation of the Active Site in the Hairpin Ribozyme Achieved by Molecular Dynamics Simulations with epsilon/zeta Force Field Reparametrizations. J Phys Chem B 2015, 119 (11), 4220–4229. PubMed
Zgarbova M; Jurecka P; Banas P; Havrila M; Sponer J; Otyepka M, Noncanonical alpha/gamma Backbone Conformations in RNA and the Accuracy of Their Description by the AMBER Force Field. J Phys Chem B 2017, 121 (11), 2420–2433. PubMed
Tan D; Piana S; Dirks RM; Shaw DE, RNA force field with accuracy comparable to state-of-the-art protein force fields. Proc Natl Acad Sci U S A 2018, 115 (7), E1346–E1355. PubMed PMC
Banas P; Hollas D; Zgarbova M; Jurecka P; Orozco M; Cheatham TE; Sponer J; Otyepka M, Performance of Molecular Mechanics Force Fields for RNA Simulations: Stability of UUCG and GNRA Hairpins. J Chem Theory Comput 2010, 6 (12), 3836–3849. PubMed PMC
Kuhrova P; Best RB; Bottaro S; Bussi G; Sponer J; Otyepka M; Banas P, Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies. J Chem Theory Comput 2016, 12 (9), 4534–4548. PubMed PMC
Steinbrecher T; Latzer J; Case DA, Revised AMBER Parameters for Bioorganic Phosphates. J Chem Theory Comput 2012, 8 (11), 4405–4412. PubMed PMC
Izadi S; Anandakrishnan R; Onufriev AV, Building Water Models: A Different Approach. J Phys Chem Lett 2014, 5 (21), 3863–3871. PubMed PMC
Havrila M; Stadlbauer P; Islam B; Otyepka M; Sponer J, Effect of Monovalent Ion Parameters on Molecular Dynamics Simulations of G-Quadruplexes. J Chem Theory Comput 2017, 13 (8), 3911–3926. PubMed
Krepl M; Vogele J; Kruse H; Duchardt-Ferner E; Wohnert J; Sponer J, An intricate balance of hydrogen bonding, ion atmosphere and dynamics facilitates a seamless uracil to cytosine substitution in the U-turn of the neomycin-sensing riboswitch. Nucleic Acids Res 2018, 46 (13), 6528–6543. PubMed PMC
Sponer J; Krepl M; Banas P; Kuhrova P; Zgarbova M; Jurecka P; Havrila M; Otyepka M, How to understand atomistic molecular dynamics simulations of RNA and protein-RNA complexes? Wiley Interdiscip Rev RNA 2017, 8 (3). PubMed
Salomon-Ferrer RC,AC; Walker RC, An overview of the Amber biomolecular simulation package. Wires Comput Mol Sci 2013, 3 (2), 198–210.
Brooks BRB,RE; Olafson BD; States DJ; Swaminathan S, CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 1983, Summer, 187–217.
Weiner SJK,PA; Case DA; Singh UC; Ghio C; Alagona G; Profeta S; Weiner P, A new force field for molecular mechanical simulation of nucleic acids and peptids. J Amer Chem Soc 1984, 106 (3), 765–784.
Nilsson LK,M, Empirical energy functions for energy minimization and dynamics of nucleic acids. . J Comput Chem 1986, October.
Cornell WD; Cieplak P; Bayly CI; Gould IR; Merz KM; Ferguson DM; Spellmeyer DC; Fox T; Caldwell JW; Kollman PA, A second generation force field for the simulation of proteins, nucleic acids, and organic molecules J Amer Chem Soc 1995, 117 (19), 5179–5197.
Cornell WD; Cieplak P; Bayly CI; Gould IR; Merz KM; Ferguson DM; Spellmeyer DC; Fox T; Caldwell JW; Kollman PA, A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (vol 117, pg 5179, 1995). J Amer Chem Soc 1996, 118 (9), 2309–2309.
Smith JCK, M., Empirical force field study of geometries and conformational transitions of some organic molecules. J Amer Chem Soc 1992, 114 (3), 801–812.
Sponer J; Jurecka P; Hobza P, Accurate interaction energies of hydrogen-bonded nucleic acid base pairs. J Am Chem Soc 2004, 126 (32), 10142–10151. PubMed
Pokorna P; Kruse H; Krepl M; Sponer J, QM/MM Calculations on Protein-RNA Complexes: Understanding Limitations of Classical MD Simulations and Search for Reliable Cost-Effective QM Methods. J Chem Theory Comput 2018, 14 (10), 5419–5433. PubMed
Wang JM; Cieplak P; Kollman PA, How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Chem Theory Comput 2000, 21 (12), 1049–1074.
Case DA; Betz RM; Cerutti DS; Cheatham TE; Darden TA; Duke RE; Giese TJ; Gohlke H; Goetz AW; Homeyer N; Izadi S; Janowski P; Kaus J; Kovalenko A; Lee TS; LeGrand S; Li P; Lin C; Luchko T; Luo R; Madej B; Mermelstein D; Merz KM; Monard G; Nguyen H; Nguyen HT; Omelyan I; Onufriev A; Roe DR; Roitberg A; Sagui C; Simmerling CL; Botello-Smith WM; Swails J; Walker RC; Wang J; Wolf RM; Wu X; Xiao L; P.A. K, AMBER 2016. San Francisco, 2016.
Abraham MJ; Murtola T; Schulz R; Páll S; Smith JC; Hess B; Lindahl E, GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25.
Case DA; Cheatham TE 3rd; Darden T; Gohlke H; Luo R; Merz KM Jr.; Onufriev A; Simmerling C; Wang B; Woods RJ, The Amber biomolecular simulation programs. J Comput Chem 2005, 26 (16), 1668–88. PubMed PMC
Joung IS; Cheatham TE, Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B 2008, 112 (30), 9020–9041. PubMed PMC
Besseova I; Banas P; Kuhrova P; Kosinova P; Otyepka M; Sponer J, Simulations of A-RNA Duplexes. The Effect of Sequence, Solute Force Field, Water Model, and Salt Concentration. J Phys Chem B 2012, 116 (33), 9899–9916. PubMed
Besseova I; Otyepka M; Reblova K; Sponer J, Dependence of A-RNA simulations on the choice of the force field and salt strength. Phys Chem Chem Phys 2009, 11 (45), 10701–10711. PubMed
Kuehrova P; Otyepka M; Sponer J; Banas P, Are Waters around RNA More than Just a Solvent? - An Insight from Molecular Dynamics Simulations. J Chem Theory Comput 2014, 10 (1), 401–411. PubMed
Hopkins CW; Le Grand S; Walker RC; Roitberg AE, Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. J Chem Theory Comput 2015, 11, 1864–1874. PubMed
Bottaro S; Di Palma F; Bussi G, The role of nucleobase interactions in RNA structure and dynamics. Nucleic Acids Res 2014, 42 (21), 13306–13314. PubMed PMC
Rodriguez A; Laio A, Clustering by fast search and find of density peaks. Science 2014, 344 (6191), 1492–1496. PubMed
Hall PH,J, A simple bootstrap method for constructing nonparametric confidence bands for functions. Ann Stat 2013, 41, 1892–1921.
Hall PH,J; Jing BY, On blocking rules for the bootstrap withe dependent data. Biometrika 1995, 82, 561–574.
Humphrey W; Dalke A; Schulten K, VMD: Visual molecular dynamics. J Mol Graph Model 1996, 14 (1), 33–38. PubMed
The PyMOL Molecular Graphics System, Version 2.0 .
Sponer J; Bussi G; Stadlbauer P; Kuhrova P; Banas P; Islam B; Haider S; Neidle S; Otyepka M, Folding of guanine quadruplex molecules-funnel-like mechanism or kinetic partitioning? An overview from MD simulation studies. Biochim Biophys Acta 2017, 1861 (5 Pt B), 1246–1263. PubMed
Yang C; Kulkarni M; Lim M; Pak Y, Insilico direct folding of thrombin-binding aptamer G-quadruplex at all-atom level. Nucleic Acids Res 2017, 45 (22), 12648–12656. PubMed PMC
Havrila M; Stadlbauer P; Kuhrova P; Banas P; Mergny JL; Otyepka M; Sponer J, Structural dynamics of propeller loop: towards folding of RNA G-quadruplex. Nucleic Acids Res 2018, 46 (17), 8754–8771. PubMed PMC
Leontis NB; Westhof E, Geometric nomenclature and classification of RNA base pairs. Rna 2001, 7 (4), 499–512. PubMed PMC
Banas P; Mladek A; Otyepka M; Zgarbova M; Jurecka P; Svozil D; Lankas F; Sponer J, Can We Accurately Describe the Structure of Adenine Tracts in B-DNA? Reference Quantum-Chemical Computations Reveal Overstabilization of Stacking by Molecular Mechanics. J Chem Theory Comput 2012, 8 (7), 2448–2460. PubMed
Hall K; Cruz P; Tinoco I Jr.; Jovin TM; van de Sande JH, ‘Z-RNA’--a left-handed RNA double helix. Nature 1984, 311 (5986), 584–586. PubMed
Zirbel CL; Sponer JE; Sponer J; Stombaugh J; Leontis NB, Classification and energetics of the base-phosphate interactions in RNA. Nucleic Acids Res 2009, 37 (15), 4898–918. PubMed PMC
Nozinovic S; Furtig B; Jonker HRA; Richter C; Schwalbe H, High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA. Nucleic Acids Res 2010, 38 (2), 683–694. PubMed PMC
Yoo J; Aksimentiev A, New tricks for old dogs: improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. Phys Chem Chem Phys 2018, 20 (13), 8432–8449. PubMed PMC
Best RB; Zheng W; Mittal J, Balanced Protein-Water Interactions Improve Properties of Disordered Proteins and Non-Specific Protein Association. J Chem Theory Comput 2014, 10 (11), 5113–5124. PubMed PMC
Nerenberg PS; Jo B; So C; Tripathy A; Head-Gordon T, Optimizing solute-water van der Waals interactions to reproduce solvation free energies. J Phys Chem B 2012, 116 (15), 4524–4534. PubMed
Miller MS; Lay WK; Li S; Hacker WC; An J; Ren J; Elcock AH, Reparametrization of Protein Force Field Nonbonded Interactions Guided by Osmotic Coefficient Measurements from Molecular Dynamics Simulations. J Chem Theory Comput 2017, 13 (4), 1812–1826. PubMed PMC
Yoo J; Aksimentiev A, Refined Parameterization of Nonbonded Interactions Improves Conformational Sampling and Kinetics of Protein Folding Simulations. J Phys Chem Lett 2016, 7 (19), 3812–3818. PubMed
Huang J; Rauscher S; Nawrocki G; Ran T; Feig M; de Groot BL; Grubmuller H; MacKerell AD Jr., CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 2017, 14 (1), 71–73. PubMed PMC
Lay WK; Miller MS; Elcock AH, Optimizing Solute-Solute Interactions in the GLYCAM06 and CHARMM36 Carbohydrate Force Fields Using Osmotic Pressure Measurements. J Chem Theory Comput 2016, 12 (4), 1401–1407. PubMed PMC
Berneche SR, B., Energetics of ion conduction through the K+ channel. Nature 2001, 414 (6859), 73–77. PubMed
Yoo JJ; Aksimentiev A, Improved Parametrization of Li+, Na+, K+, and Mg2+ Ions for All-Atom Molecular Dynamics Simulations of Nucleic Acid Systems. J Phys Chem Lett 2012, 3 (1), 45–50.
Piana S; Donchev AG; Robustelli P; Shaw DE, Water dispersion interactions strongly influence simulated structural properties of disordered protein states. J Phys Chem B 2015, 119 (16), 5113–23. PubMed
Goody TA; Melcher SE; Norman DG; Lilley DM, The kink-turn motif in RNA is dimorphic, and metal ion-dependent. Rna 2004, 10 (2), 254–264. PubMed PMC
Huang LLDMJ, The kink-turn in the structural biology of RNA. Quarterly reviews of Biophysics 2018, 51 (E5). PubMed
Krepl M; Havrila M; Stadlbauer P; Banas P; Otyepka M; Pasulka J; Stefl R; Sponer J, Can We Execute Stable Microsecond-Scale Atomistic Simulations of Protein-RNA Complexes? J Chem Theory Comput 2015, 11 (3), 1220–1243. PubMed
Computer Folding of Parallel DNA G-Quadruplex: Hitchhiker's Guide to the Conformational Space
Complexity of Guanine Quadruplex Unfolding Pathways Revealed by Atomistic Pulling Simulations
Automatic Learning of Hydrogen-Bond Fixes in the AMBER RNA Force Field
MD simulations reveal the basis for dynamic assembly of Hfq-RNA complexes
Insight into formation propensity of pseudocircular DNA G-hairpins