Complexity of Guanine Quadruplex Unfolding Pathways Revealed by Atomistic Pulling Simulations
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37458574
PubMed Central
PMC10428220
DOI
10.1021/acs.jcim.3c00171
Knihovny.cz E-zdroje
- MeSH
- G-kvadruplexy * MeSH
- guanin * chemie MeSH
- lidé MeSH
- mechanické jevy MeSH
- simulace molekulární dynamiky MeSH
- telomery MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- guanin * MeSH
Guanine quadruplexes (GQs) are non-canonical nucleic acid structures involved in many biological processes. GQs formed in single-stranded regions often need to be unwound by cellular machinery, so their mechanochemical properties are important. Here, we performed steered molecular dynamics simulations of human telomeric GQs to study their unfolding. We examined four pulling regimes, including a very slow setup with pulling velocity and force load accessible to high-speed atomic force microscopy. We identified multiple factors affecting the unfolding mechanism, i.e.,: (i) the more the direction of force was perpendicular to the GQ channel axis (determined by GQ topology), the more the base unzipping mechanism happened, (ii) the more parallel the direction of force was, GQ opening and cross-like GQs were more likely to occur, (iii) strand slippage mechanism was possible for GQs with an all-anti pattern in a strand, and (iv) slower pulling velocity led to richer structural dynamics with sampling of more intermediates and partial refolding events. We also identified that a GQ may eventually unfold after a force drop under forces smaller than those that the GQ withstood before the drop. Finally, we found out that different unfolding intermediates could have very similar chain end-to-end distances, which reveals some limitations of structural interpretations of single-molecule spectroscopic data.
Zobrazit více v PubMed
Chambers V. S.; Marsico G.; Boutell J. M.; Di Antonio M.; Smith G. P.; Balasubramanian S. High-Throughput Sequencing of DNA G-Quadruplex Structures in the Human Genome. Nat. Biotechnol. 2015, 33, 877–881. 10.1038/nbt.3295. PubMed DOI
Bedrat A.; Lacroix L.; Mergny J.-L. Re-Evaluation of G-Quadruplex Propensity with G4Hunter. Nucleic Acids Res. 2016, 44, 1746–1759. 10.1093/nar/gkw006. PubMed DOI PMC
Rhodes D.; Lipps H. J. G-Quadruplexes and Their Regulatory Roles in Biology. Nucleic Acids Res. 2015, 43, 8627–8637. 10.1093/nar/gkv862. PubMed DOI PMC
Varshney D.; Spiegel J.; Zyner K.; Tannahill D.; Balasubramanian S. The Regulation and Functions of DNA and RNA G-Quadruplexes. Nat. Rev. Mol. Cell Biol. 2020, 21, 459–474. 10.1038/s41580-020-0236-x. PubMed DOI PMC
Lee W. T. C.; Yin Y.; Morten M. J.; Tonzi P.; Gwo P. P.; Odermatt D. C.; Modesti M.; Cantor S. B.; Gari K.; Huang T. T.; et al. Single-Molecule Imaging Reveals Replication Fork Coupled Formation of G-Quadruplex Structures Hinders Local Replication Stress Signaling. Nat. Commun. 2021, 12, 2525.10.1038/s41467-021-22830-9. PubMed DOI PMC
Lejault P.; Mitteaux J.; Sperti F. R.; Monchaud D. How to Untie G-Quadruplex Knots and Why?. Cell Chem. Biol. 2021, 28, 436–455. 10.1016/j.chembiol.2021.01.015. PubMed DOI
Di Antonio M.; Ponjavic A.; Radzevičius A.; Ranasinghe R. T.; Catalano M.; Zhang X.; Shen J.; Needham L.-M.; Lee S. F.; Klenerman D.; et al. Single-Molecule Visualization of DNA G-Quadruplex Formation in Live Cells. Nat. Chem. 2020, 12, 832–837. 10.1038/s41557-020-0506-4. PubMed DOI PMC
Cimino-Reale G.; Zaffaroni N.; Folini M. Emerging Role of G-Quadruplex DNA as Target in Anticancer Therapy. Curr. Pharm. Des. 2017, 22, 6612–6624. 10.2174/1381612822666160831101031. PubMed DOI
Tateishi-Karimata H.; Kawauchi K.; Sugimoto N. Destabilization of DNA G-Quadruplexes by Chemical Environment Changes during Tumor Progression Facilitates Transcription. J. Am. Chem. Soc. 2018, 140, 642–651. 10.1021/jacs.7b09449. PubMed DOI
Lee J.; Sung K.; Joo S. Y.; Jeong J.-H.; Kim S. K.; Lee H. Dynamic Interaction of BRCA2 with Telomeric G-Quadruplexes Underlies Telomere Replication Homeostasis. Nat. Commun. 2022, 13, 3396.10.1038/s41467-022-31156-z. PubMed DOI PMC
Carvalho J.; Mergny J.-L.; Salgado G. F.; Queiroz J. A.; Cruz C. G-quadruplex, Friend or Foe: The Role of the G-quartet in Anticancer Strategies. Trends Mol. Med. 2020, 26, 848–861. 10.1016/j.molmed.2020.05.002. PubMed DOI
Kosiol N.; Juranek S.; Brossart P.; Heine A.; Paeschke K. G-Quadruplexes: A Promising Target for Cancer Therapy. Mol. Cancer 2021, 20, 40.10.1186/s12943-021-01328-4. PubMed DOI PMC
Maizels N. G4-Associated Human Diseases. EMBO Rep. 2015, 16, 910–922. 10.15252/embr.201540607. PubMed DOI PMC
Balendra R.; Isaacs A. M. C9orf72-Mediated ALS and FTD: Multiple Pathways to Disease. Nat. Rev. Neurol. 2018, 14, 544–558. 10.1038/s41582-018-0047-2. PubMed DOI PMC
Asamitsu S.; Yabuki Y.; Ikenoshita S.; Wada T.; Shioda N. Pharmacological Prospects of G-Quadruplexes for Neurological Diseases Using Porphyrins. Biochem. Biophys. Res. Commun. 2020, 531, 51–55. 10.1016/j.bbrc.2020.01.054. PubMed DOI
Stefan L.; Monchaud D. Applications of Guanine Quartets in Nanotechnology and Chemical Biology. Nat. Rev. Chem. 2019, 3, 650–668. 10.1038/s41570-019-0132-0. DOI
Webba da Silva M. Geometric Formalism for DNA Quadruplex Folding. Chem.—Eur. J. 2007, 13, 9738–9745. 10.1002/chem.200701255. PubMed DOI
Karsisiotis A. I.; O’Kane C.; Webba da Silva M. DNA Quadruplex Folding Formalism - A Tutorial on Quadruplex Topologies. Methods 2013, 64, 28–35. 10.1016/j.ymeth.2013.06.004. PubMed DOI
Dvorkin S. A.; Karsisiotis A. I.; Webba da Silva M. Encoding Canonical DNA Quadruplex Structure. Sci. Adv. 2018, 4, eaat300710.1126/sciadv.aat3007. PubMed DOI PMC
Sponer J.; Islam B.; Stadlbauer P.; Haider S.. Chapter Seven—Molecular dynamics simulations of G-quadruplexes: The basic principles and their application to folding and ligand binding. In Annual Reports in Medicinal Chemistry; Neidle S., Ed.; Academic Press, 2020; Vol. 54, pp 197–241.
Dai J. X.; Carver M.; Yang D. Z. Polymorphism of Human Telomeric Quadruplex Structures. Biochimie 2008, 90, 1172–1183. 10.1016/j.biochi.2008.02.026. PubMed DOI PMC
Wang Y.; Patel D. J. Solution Structure of the Human Telomeric Repeat d[AG(3)(T(2)AG(3))3] G-tetraplex. Structure 1993, 1, 263–282. 10.1016/0969-2126(93)90015-9. PubMed DOI
Luu K. N.; Phan A. T.; Kuryavyi V.; Lacroix L.; Patel D. J. Structure of the Human Telomere in K+ Solution: An Intramolecular (3+1) G-Quadruplex Scaffold. J. Am. Chem. Soc. 2006, 128, 9963–9970. 10.1021/ja062791w. PubMed DOI PMC
Phan A. T.; Kuryavyi V.; Luu K. N.; Patel D. J. Structure of Two Intramolecular G-quadruplexes Formed by Natural Human Telomere Sequences in K+ Solution. Nucleic Acids Res. 2007, 35, 6517–6525. 10.1093/nar/gkm706. PubMed DOI PMC
Lim K. W.; Amrane S.; Bouaziz S.; Xu W.; Mu Y.; Patel D. J.; Luu K. N.; Phan A. T. Structure of the Human Telomere in K+ Solution: A Stable Basket-Type G-Quadruplex with Only Two G-Tetrad Layers. J. Am. Chem. Soc. 2009, 131, 4301–4309. 10.1021/ja807503g. PubMed DOI PMC
Parkinson G. N.; Lee M. P. H.; Neidle S. Crystal Structure of Parallel Quadruplexes from Human Telomeric DNA. Nature 2002, 417, 876–880. 10.1038/nature755. PubMed DOI
Lim K. W.; Ng V. C. M.; Martin-Pintado N.; Heddi B.; Phan A. T. Structure of the Human Telomere in Na+ Solution: An Antiparallel (2+2) G-quadruplex Scaffold Reveals Additional Diversity. Nucleic Acids Res. 2013, 41, 10556–10562. 10.1093/nar/gkt771. PubMed DOI PMC
Dai J.; Punchihewa C.; Ambrus A.; Chen D.; Jones R. A.; Yang D. Structure of the Intramolecular Human Telomeric G-quadruplex in Potassium Solution: A Novel Adenine Triple Formation. Nucleic Acids Res. 2007, 35, 2440–2450. 10.1093/nar/gkm009. PubMed DOI PMC
Palacky J.; Vorlickova M.; Kejnovska I.; Mojzes P. Polymorphism of Human Telomeric Quadruplex Structure Controlled by DNA Concentration: A Raman Study. Nucleic Acids Res. 2013, 41, 1005–1016. 10.1093/nar/gks1135. PubMed DOI PMC
Sponer J.; Bussi G.; Stadlbauer P.; Kuhrova P.; Banas P.; Islam B.; Haider S.; Neidle S.; Otyepka M. Folding of Guanine Quadruplex Molecules–Funnel-Like Mechanism or Kinetic Partitioning? An Overview From MD Simulation Studies. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 1246–1263. 10.1016/j.bbagen.2016.12.008. PubMed DOI
Bessi I.; Jonker H. R.; Richter C.; Schwalbe H. Involvement of Long-Lived Intermediate States in the Complex Folding Pathway of the Human Telomeric G-Quadruplex. Angew. Chem., Int. Ed. 2015, 54, 8444–8448. 10.1002/anie.201502286. PubMed DOI
Long X.; Stone M. D. Kinetic Partitioning Modulates Human Telomere DNA G-Quadruplex Structural Polymorphism. PLoS One 2013, 8, e8342010.1371/journal.pone.0083420. PubMed DOI PMC
Thirumalai D.; Klimov D. K.; Woodson S. A. Kinetic Partitioning Mechanism as a Unifying Theme in the Folding of Biomolecules. Theor. Chem. Acc. 1997, 96, 14–22. 10.1007/s002140050198. DOI
Stadlbauer P.; Kuhrova P.; Vicherek L.; Banas P.; Otyepka M.; Trantirek L.; Sponer J. Parallel G-Triplexes and G-Hairpins As Potential Transitory Ensembles in the Folding of Parallel-Stranded DNA G-Quadruplexes. Nucleic Acids Res. 2019, 47, 7276–7293. 10.1093/nar/gkz610. PubMed DOI PMC
Bian Y.; Ren W.; Song F.; Yu J.; Wang J. Exploration of the Folding Dynamics of Human Telomeric G-Quadruplex with a Hybrid Atomistic Structure-Based Model. J. Chem. Phys. 2018, 148, 204107.10.1063/1.5028498. PubMed DOI
Stadlbauer P.; Krepl M.; Cheatham T. E. 3rd; Koca J.; Sponer J. Structural Dynamics of Possible Late-Stage Intermediates in Folding of Quadruplex DNA Studied by Molecular Simulations. Nucleic Acids Res. 2013, 41, 7128–7143. 10.1093/nar/gkt412. PubMed DOI PMC
Rocca R.; Palazzesi F.; Amato J.; Costa G.; Ortuso F.; Pagano B.; Randazzo A.; Novellino E.; Alcaro S.; Moraca F.; et al. Folding Intermediate States of the Parallel Human Telomeric G-Quadruplex DNA Explored Using Well-Tempered Metadynamics. Sci. Rep. 2020, 10, 3176.10.1038/s41598-020-59774-x. PubMed DOI PMC
Bian Y.; Song F.; Cao Z.; Zhao L.; Yu J.; Guo X.; Wang J. Fast-Folding Pathways of the Thrombin-Binding Aptamer G-Quadruplex Revealed by a Markov State Model. Biophys. J. 2018, 114, 1529–1538. 10.1016/j.bpj.2018.02.021. PubMed DOI PMC
Bian Y.-Q.; Song F.; Cao Z.-X.; Yu J.-F.; Wang J.-H. Structure-Based Simulations Complemented by Conventional All-Atom Simulations to Provide New Insights Into the Folding Dynamics of Human Telomeric G-Quadruplex. Chin. Phys. B 2021, 30, 078702.10.1088/1674-1056/abe1a7. DOI
Marchand A.; Gabelica V. Folding and Misfolding Pathways of G-Quadruplex DNA. Nucleic Acids Res. 2016, 44, 10999–11012. 10.1093/nar/gkw970. PubMed DOI PMC
Bian Y.; Tan C.; Wang J.; Sheng Y.; Zhang J.; Wang W. Atomistic Picture for the Folding Pathway of a Hybrid-1 Type Human Telomeric DNA G-quadruplex. PLoS Comput. Biol. 2014, 10, e100356210.1371/journal.pcbi.1003562. PubMed DOI PMC
Stadlbauer P.; Trantirek L.; Cheatham T. E. 3rd; Koca J.; Sponer J. Triplex Intermediates in Folding of Human Telomeric Quadruplexes Probed by Microsecond-scale Molecular Dynamics Simulations. Biochimie 2014, 105, 22–35. 10.1016/j.biochi.2014.07.009. PubMed DOI
Mashimo T.; Yagi H.; Sannohe Y.; Rajendran A.; Sugiyama H. Folding Pathways of Human Telomeric Type-1 and Type-2 G-quadruplex Structures. J. Am. Chem. Soc. 2010, 132, 14910–14918. 10.1021/ja105806u. PubMed DOI
Koirala D.; Mashimo T.; Sannohe Y.; Yu Z. B.; Mao H. B.; Sugiyama H. Intramolecular Folding in Three Tandem Guanine Repeats of Human Telomeric DNA. Chem. Commun. 2012, 48, 2006–2008. 10.1039/c2cc16752b. PubMed DOI
Hou X.-M.; Fu Y.-B.; Wu W.-Q.; Wang L.; Teng F.-Y.; Xie P.; Wang P.-Y.; Xi X.-G. Involvement of G-Triplex and G-Hairpin in the Multi-Pathway Folding of Human Telomeric G-Quadruplex. Nucleic Acids Res. 2017, 45, 11401–11412. 10.1093/nar/gkx766. PubMed DOI PMC
Li W.; Hou X.-M.; Wang P.-Y.; Xi X.-G.; Li M. Direct Measurement of Sequential Folding Pathway and Energy Landscape of Human Telomeric G-quadruplex Structures. J. Am. Chem. Soc. 2013, 135, 6423–6426. 10.1021/ja4019176. PubMed DOI
Jiang H.-X.; Cui Y.; Zhao T.; Fu H.-W.; Koirala D.; Punnoose J. A.; Kong D.-M.; Mao H. Divalent Cations and Molecular Crowding Buffers Stabilize G-Triplex at Physiologically Relevant Temperatures. Sci. Rep. 2015, 5, 9255.10.1038/srep09255. PubMed DOI PMC
Lu X.-M.; Li H.; You J.; Li W.; Wang P.-Y.; Li M.; Dou S.-X.; Xi X.-G. Folding Dynamics of Parallel and Antiparallel G-Triplexes under the Influence of Proximal DNA. J. Phys. Chem. B 2018, 122, 9499–9506. 10.1021/acs.jpcb.8b08110. PubMed DOI
Limongelli V.; De Tito S.; Cerofolini L.; Fragai M.; Pagano B.; Trotta R.; Cosconati S.; Marinelli L.; Novellino E.; Bertini I.; et al. The G-Triplex DNA. Angew. Chem., Int. Ed. 2013, 52, 2269–2273. 10.1002/anie.201206522. PubMed DOI
Cerofolini L.; Amato J.; Giachetti A.; Limongelli V.; Novellino E.; Parrinello M.; Fragai M.; Randazzo A.; Luchinat C. G-Triplex Structure and Formation Propensity. Nucleic Acids Res. 2014, 42, 13393–13404. 10.1093/nar/gku1084. PubMed DOI PMC
Yang C.; Kulkarni M.; Lim M.; Pak Y. Insilico Direct Folding of Thrombin-Binding Aptamer G-Quadruplex at All-Atom Level. Nucleic Acids Res. 2017, 45, 12648–12656. 10.1093/nar/gkx1079. PubMed DOI PMC
Stadlbauer P.; Kuhrova P.; Banas P.; Koca J.; Bussi G.; Trantirek L.; Otyepka M.; Sponer J. Hairpins Participating in Folding of Human Telomeric Sequence Quadruplexes Studied by Standard and T-REMD Simulations. Nucleic Acids Res. 2015, 43, 9626–9644. 10.1093/nar/gkv994. PubMed DOI PMC
Stefl R.; Cheatham T. E.; Spackova N.; Fadrna E.; Berger I.; Koca J.; Sponer J. Formation Pathways of a Guanine-Quadruplex DNA Revealed by Molecular Dynamics and Thermodynamic Analysis of the Substates. Biophys. J. 2003, 85, 1787–1804. 10.1016/s0006-3495(03)74608-6. PubMed DOI PMC
Havrila M.; Stadlbauer P.; Kuhrova P.; Banas P.; Mergny J.-L.; Otyepka M.; Sponer J. Structural Dynamics of Propeller Loop: Towards Folding of RNA G-Quadruplex. Nucleic Acids Res. 2018, 46, 8754–8771. 10.1093/nar/gky712. PubMed DOI PMC
Islam B.; Stadlbauer P.; Krepl M.; Koca J.; Neidle S.; Haider S.; Sponer J. Extended Molecular Dynamics of a c-kit Promoter Quadruplex. Nucleic Acids Res. 2015, 43, 8673–8693. 10.1093/nar/gkv785. PubMed DOI PMC
Mendoza O.; Bourdoncle A.; Boulé J.-B.; Brosh R. M. Jr.; Mergny J.-L. G-Quadruplexes and Helicases. Nucleic Acids Res. 2016, 44, 1989–2006. 10.1093/nar/gkw079. PubMed DOI PMC
Hansel-Hertsch R.; Di Antonio M.; Balasubramanian S. DNA G-Quadruplexes in the Human Genome: Detection, Functions and Therapeutic Potential. Nat. Rev. Mol. Cell Biol. 2017, 18, 279–284. 10.1038/nrm.2017.3. PubMed DOI
Estep K. N.; Butler T. J.; Ding J.; Brosh R. M. G4-Interacting DNA Helicases and Polymerases: Potential Therapeutic Targets. Curr. Med. Chem. 2019, 26, 2881–2897. 10.2174/0929867324666171116123345. PubMed DOI PMC
Paeschke K.; Bochman M. L.; Garcia P. D.; Cejka P.; Friedman K. L.; Kowalczykowski S. C.; Zakian V. A. Pif1 Family Helicases Suppress Genome Instability at G-Quadruplex Motifs. Nature 2013, 497, 458–462. 10.1038/nature12149. PubMed DOI PMC
Postberg J.; Tsytlonok M.; Sparvoli D.; Rhodes D.; Lipps H. J. A Telomerase-associated RecQ Protein-like Helicase Resolves Telomeric G-quadruplex Structures during Replication. Gene 2012, 497, 147–154. 10.1016/j.gene.2012.01.068. PubMed DOI PMC
Yang B.; Liu Z.; Liu H.; Nash M. A. Next Generation Methods for Single-Molecule Force Spectroscopy on Polyproteins and Receptor-Ligand Complexes. Front. Mol. Biosci. 2020, 7, 85.10.3389/fmolb.2020.00085. PubMed DOI PMC
Fang J.; Xie C.; Tao Y.; Wei D. An Overview of Single-Molecule Techniques and Applications in the Study of Nucleic Acid Structure and Function. Biochimie 2023, 206, 1–11. 10.1016/j.biochi.2022.09.014. PubMed DOI
Cheng Y.; Zhang Y.; You H. Characterization of G-Quadruplexes Folding/Unfolding Dynamics and Interactions with Proteins from Single-Molecule Force Spectroscopy. Biomolecules 2021, 11, 1579.10.3390/biom11111579. PubMed DOI PMC
Laszlo A. H.; Derrington I. M.; Gundlach J. H. MspA Nanopore as a Single-Molecule Tool: From Sequencing to SPRNT. Methods 2016, 105, 75–89. 10.1016/j.ymeth.2016.03.026. PubMed DOI PMC
Koirala D.; Dhakal S.; Ashbridge B.; Sannohe Y.; Rodriguez R.; Sugiyama H.; Balasubramanian S.; Mao H. A Single-Molecule Platform for Investigation of Interactions Between G-Quadruplexes and Small-Molecule Ligands. Nat. Chem. 2011, 3, 782–787. 10.1038/nchem.1126. PubMed DOI PMC
You H.; Zeng X.; Xu Y.; Lim C. J.; Efremov A. K.; Phan A. T.; Yan J. Dynamics and Stability of Polymorphic Human Telomeric G-Quadruplex under Tension. Nucleic Acids Res. 2014, 42, 8789–8795. 10.1093/nar/gku581. PubMed DOI PMC
Mitra J.; Makurath M. A.; Ngo T. T. M.; Troitskaia A.; Chemla Y. R.; Ha T. Extreme Mechanical Diversity of Human Telomeric DNA Revealed by Fluorescence-Force Spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 8350–8359. 10.1073/pnas.1815162116. PubMed DOI PMC
Cheng Y.; Zhang Y.; Gong Z.; Zhang X.; Li Y.; Shi X.; Pei Y.; You H. High Mechanical Stability and Slow Unfolding Rates Are Prevalent in Parallel-Stranded DNA G-Quadruplexes. J. Phys. Chem. Lett. 2020, 11, 7966–7971. 10.1021/acs.jpclett.0c02229. PubMed DOI
Long X.; Parks J. W.; Bagshaw C. R.; Stone M. D. Mechanical Unfolding of Human Telomere G-quadruplex DNA Probed by Integrated Fluorescence and Magnetic Tweezers Spectroscopy. Nucleic Acids Res. 2013, 41, 2746–2755. 10.1093/nar/gks1341. PubMed DOI PMC
Dhakal S.; Cui Y.; Koirala D.; Ghimire C.; Kushwaha S.; Yu Z.; Yangyuoru P. M.; Mao H. Structural and Mechanical Properties of Individual Human Telomeric G-quadruplexes in Molecularly Crowded Solutions. Nucleic Acids Res. 2013, 41, 3915–3923. 10.1093/nar/gkt038. PubMed DOI PMC
Mitra J.; Ha T. Streamlining Effects of Extra Telomeric Repeat on Telomeric DNA Folding Revealed by Fluorescence-Force Spectroscopy. Nucleic Acids Res. 2019, 47, 11044–11056. 10.1093/nar/gkz906. PubMed DOI PMC
Zhang Y.; Cheng Y.; Chen J.; Zheng K.; You H. Mechanical Diversity and Folding Intermediates of Parallel-Stranded G-Quadruplexes with a Bulge. Nucleic Acids Res. 2021, 49, 7179–7188. 10.1093/nar/gkab531. PubMed DOI PMC
Lynch S.; Baker H.; Byker S. G.; Zhou D.; Sinniah K. Single Molecule Force Spectroscopy on G-Quadruplex DNA. Chem.—Eur. J. 2009, 15, 8113–8116. 10.1002/chem.200901390. PubMed DOI PMC
You H.; Wu J.; Shao F.; Yan J. Stability and Kinetics of c-MYC Promoter G-Quadruplexes Studied by Single-Molecule Manipulation. J. Am. Chem. Soc. 2015, 137, 2424–2427. 10.1021/ja511680u. PubMed DOI
Yu Z.; Gaerig V.; Cui Y.; Kang H.; Gokhale V.; Zhao Y.; Hurley L. H.; Mao H. Tertiary DNA Structure in the Single-Stranded hTERT Promoter Fragment Unfolds and Refolds by Parallel Pathways via Cooperative or Sequential Events. J. Am. Chem. Soc. 2012, 134, 5157–5164. 10.1021/ja210399h. PubMed DOI PMC
Cheng Y.; Tang Q.; Li Y.; Zhang Y.; Zhao C.; Yan J.; You H. Folding/Unfolding Kinetics of G-Quadruplexes Upstream of the P1 Promoter of the Human BCL-2 Oncogene. J. Biol. Chem. 2019, 294, 5890–5895. 10.1074/jbc.ra119.007516. PubMed DOI PMC
Yu Z.; Schonhoft J. D.; Dhakal S.; Bajracharya R.; Hegde R.; Basu S.; Mao H. ILPR G-Quadruplexes Formed in Seconds Demonstrate High Mechanical Stabilities. J. Am. Chem. Soc. 2009, 131, 1876–1882. 10.1021/ja806782s. PubMed DOI
de Messieres M.; Chang J.-C.; Brawn-Cinani B.; La Porta A. Single-Molecule Study of G-Quadruplex Disruption Using Dynamic Force Spectroscopy. Phys. Rev. Lett. 2012, 109, 058101.10.1103/physrevlett.109.058101. PubMed DOI
Yin H.; Wang M. D.; Svoboda K.; Landick R.; Block S. M.; Gelles J. Transcription Against an Applied Force. Science 1995, 270, 1653–1657. 10.1126/science.270.5242.1653. PubMed DOI
Galburt E. A.; Grill S. W.; Wiedmann A.; Lubkowska L.; Choy J.; Nogales E.; Kashlev M.; Bustamante C. Backtracking Determines the Force Sensitivity of RNAP II in a Factor-Dependent Manner. Nature 2007, 446, 820–823. 10.1038/nature05701. PubMed DOI
Mejia Y. X.; Mao H.; Forde N. R.; Bustamante C. Thermal Probing of E. coli RNA Polymerase Off-Pathway Mechanisms. J. Mol. Biol. 2008, 382, 628–637. 10.1016/j.jmb.2008.06.079. PubMed DOI PMC
Meyhöfer E.; Howard J. The Force Generated by a Single Kinesin Molecule Against an Elastic Load. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 574–578. 10.1073/pnas.92.2.574. PubMed DOI PMC
Yang C.; Jang S.; Pak Y. Multiple Stepwise Pattern for Potential of Mean Force in Unfolding the Thrombin Binding Aptamer in Complex with Sr2+. J. Chem. Phys. 2011, 135, 225104.10.1063/1.3669424. PubMed DOI
Li H.; Cao E. H.; Gisler T. Force-Induced Unfolding of Human Telomeric G-quadruplex: A Steered Molecular Dynamics Simulation Study. Biochem. Biophys. Res. Commun. 2009, 379, 70–75. 10.1016/j.bbrc.2008.12.006. PubMed DOI
Bergues-Pupo A. E.; Arias-Gonzalez J. R.; Moron M. C.; Fiasconaro A.; Falo F. Role of the Central Cations in the Mechanical Unfolding of DNA and RNA G-quadruplexes. Nucleic Acids Res. 2015, 43, 7638–7647. 10.1093/nar/gkv690. PubMed DOI PMC
Bergues-Pupo A. E.; Gutiérrez I.; Arias-Gonzalez J. R.; Falo F.; Fiasconaro A. Mesoscopic Model for DNA G-Quadruplex Unfolding. Sci. Rep. 2017, 7, 11756.10.1038/s41598-017-10849-2. PubMed DOI PMC
Sotomayor M.; Schulten K. Single-Molecule Experiments in Vitro and in Silico. Science 2007, 316, 1144–1148. 10.1126/science.1137591. PubMed DOI
Franz F.; Daday C.; Gräter F. Advances in Molecular Simulations of Protein Mechanical Properties and Function. Curr. Opin. Struct. Biol. 2020, 61, 132–138. 10.1016/j.sbi.2019.12.015. PubMed DOI
Sheridan S.; Gräter F.; Daday C. How Fast Is Too Fast in Force-Probe Molecular Dynamics Simulations?. J. Phys. Chem. B 2019, 123, 3658–3664. 10.1021/acs.jpcb.9b01251. PubMed DOI
Stirnemann G. Recent Advances and Emerging Challenges in the Molecular Modeling of Mechanobiological Processes. J. Phys. Chem. B 2022, 126, 1365–1374. 10.1021/acs.jpcb.1c10715. PubMed DOI
Dai J.; Carver M.; Punchihewa C.; Jones R. A.; Yang D. Structure of the Hybrid-2 Type Intramolecular Human Telomeric G-quadruplex in K+ Solution: Insights into Structure Polymorphism of the Human Telomeric Sequence. Nucleic Acids Res. 2007, 35, 4927–4940. 10.1093/nar/gkm522. PubMed DOI PMC
Case D. A.; Betz R. M.; Botello-Smith W.; Cerutti D. S.; T.E. Cheatham I.; Darden T. A.; Duke R. E.; Giese T. J.; Gohlke H.; Goetz A. W.; et al.AMBER 2016; University of California: San Francisco, CA, 2016.
Zgarbova M.; Sponer J.; Otyepka M.; Cheatham T. E.; Galindo-Murillo R.; Jurecka P. Refinement of the Sugar–Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA. J. Chem. Theory Comput. 2015, 11, 5723–5736. 10.1021/acs.jctc.5b00716. PubMed DOI
Berendsen H. J. C.; Grigera J. R.; Straatsma T. P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91, 6269–6271. 10.1021/j100308a038. DOI
Joung I. S.; Cheatham T. E. Determination of Alkali and Halide Monovalent Ion Parameters for Use In Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B 2008, 112, 9020–9041. 10.1021/jp8001614. PubMed DOI PMC
Zgarbová M.; Šponer J.; Jurečka P. Z-DNA as a Touchstone for Additive Empirical Force Fields and a Refinement of the Alpha/Gamma DNA Torsions for AMBER. J. Chem. Theory Comput. 2021, 17, 6292–6301. 10.1021/acs.jctc.1c00697. PubMed DOI
Kuhrova P.; Mlynsky V.; Zgarbova M.; Krepl M.; Bussi G.; Best R. B.; Otyepka M.; Sponer J.; Banáš P. Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions. J. Chem. Theory Comput. 2019, 15, 3288–3305. 10.1021/acs.jctc.8b00955. PubMed DOI PMC
Shirts M. R.; Klein C.; Swails J. M.; Yin J.; Gilson M. K.; Mobley D. L.; Case D. A.; Zhong E. D. Lessons Learned from Comparing Molecular Dynamics Engines on the SAMPL5 Dataset. J. Comput.-Aided Mol. Des. 2017, 31, 147–161. 10.1007/s10822-016-9977-1. PubMed DOI PMC
Abraham M. J.; Murtola T.; Schulz R.; Pall S.; Smith J. C.; Hess B.; Lindahl E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. 10.1016/j.softx.2015.06.001. DOI
Tribello G. A.; Bonomi M.; Branduardi D.; Camilloni C.; Bussi G. PLUMED 2: New Feathers for an Old Bird. Comput. Phys. Commun. 2014, 185, 604–613. 10.1016/j.cpc.2013.09.018. DOI
Bussi G.; Donadio D.; Parrinello M. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007, 126, 014101.10.1063/1.2408420. PubMed DOI
Parrinello M.; Rahman A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52, 7182–7190. 10.1063/1.328693. DOI
Hopkins C. W.; Le Grand S.; Walker R. C.; Roitberg A. E. Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. J. Chem. Theory Comput. 2015, 11, 1864–1874. 10.1021/ct5010406. PubMed DOI
Jacobson D. R.; Uyetake L.; Perkins T. T. Membrane-Protein Unfolding Intermediates Detected with Enhanced Precision Using a Zigzag Force Ramp. Biophys. J. 2020, 118, 667–675. 10.1016/j.bpj.2019.12.003. PubMed DOI PMC
Jarzynski C. Nonequilibrium Equality for Free Energy Differences. Phys. Rev. Lett. 1997, 78, 2690–2693. 10.1103/physrevlett.78.2690. DOI
Jarzynski C. Equilibrium Free-Energy Differences from Nonequilibrium Measurements: A Master-Equation Approach. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 1997, 56, 5018–5035. 10.1103/physreve.56.5018. DOI
Lee J. Y.; Okumus B.; Kim D. S.; Ha T. Extreme Conformational Diversity in Human Telomeric DNA. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 18938–18943. 10.1073/pnas.0506144102. PubMed DOI PMC
Burge S.; Parkinson G. N.; Hazel P.; Todd A. K.; Neidle S. Quadruplex DNA: Sequence, Topology and Structure. Nucleic Acids Res. 2006, 34, 5402–5415. 10.1093/nar/gkl655. PubMed DOI PMC
Hazel P.; Huppert J.; Balasubramanian S.; Neidle S. Loop-Length-Dependent Folding of G-Quadruplexes. J. Am. Chem. Soc. 2004, 126, 16405–16415. 10.1021/ja045154j. PubMed DOI
Islam B.; Stadlbauer P.; Gil-Ley A.; Perez-Hernandez G.; Haider S.; Neidle S.; Bussi G.; Banas P.; Otyepka M.; Sponer J. Exploring the Dynamics of Propeller Loops in Human Telomeric DNA Quadruplexes Using Atomistic Simulations. J. Chem. Theory Comput. 2017, 13, 2458–2480. 10.1021/acs.jctc.7b00226. PubMed DOI PMC
Rico F.; Russek A.; González L.; Grubmüller H.; Scheuring S. Heterogeneous and Rate-Dependent Streptavidin–Biotin Unbinding Revealed by High-Speed Force Spectroscopy and Atomistic Simulations. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 6594–6601. 10.1073/pnas.1816909116. PubMed DOI PMC
Rico F.; Gonzalez L.; Casuso I.; Puig-Vidal M.; Scheuring S. High-Speed Force Spectroscopy Unfolds Titin at the Velocity of Molecular Dynamics Simulations. Science 2013, 342, 741–743. 10.1126/science.1239764. PubMed DOI
Computer Folding of Parallel DNA G-Quadruplex: Hitchhiker's Guide to the Conformational Space