Complexity of Guanine Quadruplex Unfolding Pathways Revealed by Atomistic Pulling Simulations

. 2023 Aug 14 ; 63 (15) : 4716-4731. [epub] 20230717

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37458574

Guanine quadruplexes (GQs) are non-canonical nucleic acid structures involved in many biological processes. GQs formed in single-stranded regions often need to be unwound by cellular machinery, so their mechanochemical properties are important. Here, we performed steered molecular dynamics simulations of human telomeric GQs to study their unfolding. We examined four pulling regimes, including a very slow setup with pulling velocity and force load accessible to high-speed atomic force microscopy. We identified multiple factors affecting the unfolding mechanism, i.e.,: (i) the more the direction of force was perpendicular to the GQ channel axis (determined by GQ topology), the more the base unzipping mechanism happened, (ii) the more parallel the direction of force was, GQ opening and cross-like GQs were more likely to occur, (iii) strand slippage mechanism was possible for GQs with an all-anti pattern in a strand, and (iv) slower pulling velocity led to richer structural dynamics with sampling of more intermediates and partial refolding events. We also identified that a GQ may eventually unfold after a force drop under forces smaller than those that the GQ withstood before the drop. Finally, we found out that different unfolding intermediates could have very similar chain end-to-end distances, which reveals some limitations of structural interpretations of single-molecule spectroscopic data.

Zobrazit více v PubMed

Chambers V. S.; Marsico G.; Boutell J. M.; Di Antonio M.; Smith G. P.; Balasubramanian S. High-Throughput Sequencing of DNA G-Quadruplex Structures in the Human Genome. Nat. Biotechnol. 2015, 33, 877–881. 10.1038/nbt.3295. PubMed DOI

Bedrat A.; Lacroix L.; Mergny J.-L. Re-Evaluation of G-Quadruplex Propensity with G4Hunter. Nucleic Acids Res. 2016, 44, 1746–1759. 10.1093/nar/gkw006. PubMed DOI PMC

Rhodes D.; Lipps H. J. G-Quadruplexes and Their Regulatory Roles in Biology. Nucleic Acids Res. 2015, 43, 8627–8637. 10.1093/nar/gkv862. PubMed DOI PMC

Varshney D.; Spiegel J.; Zyner K.; Tannahill D.; Balasubramanian S. The Regulation and Functions of DNA and RNA G-Quadruplexes. Nat. Rev. Mol. Cell Biol. 2020, 21, 459–474. 10.1038/s41580-020-0236-x. PubMed DOI PMC

Lee W. T. C.; Yin Y.; Morten M. J.; Tonzi P.; Gwo P. P.; Odermatt D. C.; Modesti M.; Cantor S. B.; Gari K.; Huang T. T.; et al. Single-Molecule Imaging Reveals Replication Fork Coupled Formation of G-Quadruplex Structures Hinders Local Replication Stress Signaling. Nat. Commun. 2021, 12, 2525.10.1038/s41467-021-22830-9. PubMed DOI PMC

Lejault P.; Mitteaux J.; Sperti F. R.; Monchaud D. How to Untie G-Quadruplex Knots and Why?. Cell Chem. Biol. 2021, 28, 436–455. 10.1016/j.chembiol.2021.01.015. PubMed DOI

Di Antonio M.; Ponjavic A.; Radzevičius A.; Ranasinghe R. T.; Catalano M.; Zhang X.; Shen J.; Needham L.-M.; Lee S. F.; Klenerman D.; et al. Single-Molecule Visualization of DNA G-Quadruplex Formation in Live Cells. Nat. Chem. 2020, 12, 832–837. 10.1038/s41557-020-0506-4. PubMed DOI PMC

Cimino-Reale G.; Zaffaroni N.; Folini M. Emerging Role of G-Quadruplex DNA as Target in Anticancer Therapy. Curr. Pharm. Des. 2017, 22, 6612–6624. 10.2174/1381612822666160831101031. PubMed DOI

Tateishi-Karimata H.; Kawauchi K.; Sugimoto N. Destabilization of DNA G-Quadruplexes by Chemical Environment Changes during Tumor Progression Facilitates Transcription. J. Am. Chem. Soc. 2018, 140, 642–651. 10.1021/jacs.7b09449. PubMed DOI

Lee J.; Sung K.; Joo S. Y.; Jeong J.-H.; Kim S. K.; Lee H. Dynamic Interaction of BRCA2 with Telomeric G-Quadruplexes Underlies Telomere Replication Homeostasis. Nat. Commun. 2022, 13, 3396.10.1038/s41467-022-31156-z. PubMed DOI PMC

Carvalho J.; Mergny J.-L.; Salgado G. F.; Queiroz J. A.; Cruz C. G-quadruplex, Friend or Foe: The Role of the G-quartet in Anticancer Strategies. Trends Mol. Med. 2020, 26, 848–861. 10.1016/j.molmed.2020.05.002. PubMed DOI

Kosiol N.; Juranek S.; Brossart P.; Heine A.; Paeschke K. G-Quadruplexes: A Promising Target for Cancer Therapy. Mol. Cancer 2021, 20, 40.10.1186/s12943-021-01328-4. PubMed DOI PMC

Maizels N. G4-Associated Human Diseases. EMBO Rep. 2015, 16, 910–922. 10.15252/embr.201540607. PubMed DOI PMC

Balendra R.; Isaacs A. M. C9orf72-Mediated ALS and FTD: Multiple Pathways to Disease. Nat. Rev. Neurol. 2018, 14, 544–558. 10.1038/s41582-018-0047-2. PubMed DOI PMC

Asamitsu S.; Yabuki Y.; Ikenoshita S.; Wada T.; Shioda N. Pharmacological Prospects of G-Quadruplexes for Neurological Diseases Using Porphyrins. Biochem. Biophys. Res. Commun. 2020, 531, 51–55. 10.1016/j.bbrc.2020.01.054. PubMed DOI

Stefan L.; Monchaud D. Applications of Guanine Quartets in Nanotechnology and Chemical Biology. Nat. Rev. Chem. 2019, 3, 650–668. 10.1038/s41570-019-0132-0. DOI

Webba da Silva M. Geometric Formalism for DNA Quadruplex Folding. Chem.—Eur. J. 2007, 13, 9738–9745. 10.1002/chem.200701255. PubMed DOI

Karsisiotis A. I.; O’Kane C.; Webba da Silva M. DNA Quadruplex Folding Formalism - A Tutorial on Quadruplex Topologies. Methods 2013, 64, 28–35. 10.1016/j.ymeth.2013.06.004. PubMed DOI

Dvorkin S. A.; Karsisiotis A. I.; Webba da Silva M. Encoding Canonical DNA Quadruplex Structure. Sci. Adv. 2018, 4, eaat300710.1126/sciadv.aat3007. PubMed DOI PMC

Sponer J.; Islam B.; Stadlbauer P.; Haider S.. Chapter Seven—Molecular dynamics simulations of G-quadruplexes: The basic principles and their application to folding and ligand binding. In Annual Reports in Medicinal Chemistry; Neidle S., Ed.; Academic Press, 2020; Vol. 54, pp 197–241.

Dai J. X.; Carver M.; Yang D. Z. Polymorphism of Human Telomeric Quadruplex Structures. Biochimie 2008, 90, 1172–1183. 10.1016/j.biochi.2008.02.026. PubMed DOI PMC

Wang Y.; Patel D. J. Solution Structure of the Human Telomeric Repeat d[AG(3)(T(2)AG(3))3] G-tetraplex. Structure 1993, 1, 263–282. 10.1016/0969-2126(93)90015-9. PubMed DOI

Luu K. N.; Phan A. T.; Kuryavyi V.; Lacroix L.; Patel D. J. Structure of the Human Telomere in K+ Solution: An Intramolecular (3+1) G-Quadruplex Scaffold. J. Am. Chem. Soc. 2006, 128, 9963–9970. 10.1021/ja062791w. PubMed DOI PMC

Phan A. T.; Kuryavyi V.; Luu K. N.; Patel D. J. Structure of Two Intramolecular G-quadruplexes Formed by Natural Human Telomere Sequences in K+ Solution. Nucleic Acids Res. 2007, 35, 6517–6525. 10.1093/nar/gkm706. PubMed DOI PMC

Lim K. W.; Amrane S.; Bouaziz S.; Xu W.; Mu Y.; Patel D. J.; Luu K. N.; Phan A. T. Structure of the Human Telomere in K+ Solution: A Stable Basket-Type G-Quadruplex with Only Two G-Tetrad Layers. J. Am. Chem. Soc. 2009, 131, 4301–4309. 10.1021/ja807503g. PubMed DOI PMC

Parkinson G. N.; Lee M. P. H.; Neidle S. Crystal Structure of Parallel Quadruplexes from Human Telomeric DNA. Nature 2002, 417, 876–880. 10.1038/nature755. PubMed DOI

Lim K. W.; Ng V. C. M.; Martin-Pintado N.; Heddi B.; Phan A. T. Structure of the Human Telomere in Na+ Solution: An Antiparallel (2+2) G-quadruplex Scaffold Reveals Additional Diversity. Nucleic Acids Res. 2013, 41, 10556–10562. 10.1093/nar/gkt771. PubMed DOI PMC

Dai J.; Punchihewa C.; Ambrus A.; Chen D.; Jones R. A.; Yang D. Structure of the Intramolecular Human Telomeric G-quadruplex in Potassium Solution: A Novel Adenine Triple Formation. Nucleic Acids Res. 2007, 35, 2440–2450. 10.1093/nar/gkm009. PubMed DOI PMC

Palacky J.; Vorlickova M.; Kejnovska I.; Mojzes P. Polymorphism of Human Telomeric Quadruplex Structure Controlled by DNA Concentration: A Raman Study. Nucleic Acids Res. 2013, 41, 1005–1016. 10.1093/nar/gks1135. PubMed DOI PMC

Sponer J.; Bussi G.; Stadlbauer P.; Kuhrova P.; Banas P.; Islam B.; Haider S.; Neidle S.; Otyepka M. Folding of Guanine Quadruplex Molecules–Funnel-Like Mechanism or Kinetic Partitioning? An Overview From MD Simulation Studies. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 1246–1263. 10.1016/j.bbagen.2016.12.008. PubMed DOI

Bessi I.; Jonker H. R.; Richter C.; Schwalbe H. Involvement of Long-Lived Intermediate States in the Complex Folding Pathway of the Human Telomeric G-Quadruplex. Angew. Chem., Int. Ed. 2015, 54, 8444–8448. 10.1002/anie.201502286. PubMed DOI

Long X.; Stone M. D. Kinetic Partitioning Modulates Human Telomere DNA G-Quadruplex Structural Polymorphism. PLoS One 2013, 8, e8342010.1371/journal.pone.0083420. PubMed DOI PMC

Thirumalai D.; Klimov D. K.; Woodson S. A. Kinetic Partitioning Mechanism as a Unifying Theme in the Folding of Biomolecules. Theor. Chem. Acc. 1997, 96, 14–22. 10.1007/s002140050198. DOI

Stadlbauer P.; Kuhrova P.; Vicherek L.; Banas P.; Otyepka M.; Trantirek L.; Sponer J. Parallel G-Triplexes and G-Hairpins As Potential Transitory Ensembles in the Folding of Parallel-Stranded DNA G-Quadruplexes. Nucleic Acids Res. 2019, 47, 7276–7293. 10.1093/nar/gkz610. PubMed DOI PMC

Bian Y.; Ren W.; Song F.; Yu J.; Wang J. Exploration of the Folding Dynamics of Human Telomeric G-Quadruplex with a Hybrid Atomistic Structure-Based Model. J. Chem. Phys. 2018, 148, 204107.10.1063/1.5028498. PubMed DOI

Stadlbauer P.; Krepl M.; Cheatham T. E. 3rd; Koca J.; Sponer J. Structural Dynamics of Possible Late-Stage Intermediates in Folding of Quadruplex DNA Studied by Molecular Simulations. Nucleic Acids Res. 2013, 41, 7128–7143. 10.1093/nar/gkt412. PubMed DOI PMC

Rocca R.; Palazzesi F.; Amato J.; Costa G.; Ortuso F.; Pagano B.; Randazzo A.; Novellino E.; Alcaro S.; Moraca F.; et al. Folding Intermediate States of the Parallel Human Telomeric G-Quadruplex DNA Explored Using Well-Tempered Metadynamics. Sci. Rep. 2020, 10, 3176.10.1038/s41598-020-59774-x. PubMed DOI PMC

Bian Y.; Song F.; Cao Z.; Zhao L.; Yu J.; Guo X.; Wang J. Fast-Folding Pathways of the Thrombin-Binding Aptamer G-Quadruplex Revealed by a Markov State Model. Biophys. J. 2018, 114, 1529–1538. 10.1016/j.bpj.2018.02.021. PubMed DOI PMC

Bian Y.-Q.; Song F.; Cao Z.-X.; Yu J.-F.; Wang J.-H. Structure-Based Simulations Complemented by Conventional All-Atom Simulations to Provide New Insights Into the Folding Dynamics of Human Telomeric G-Quadruplex. Chin. Phys. B 2021, 30, 078702.10.1088/1674-1056/abe1a7. DOI

Marchand A.; Gabelica V. Folding and Misfolding Pathways of G-Quadruplex DNA. Nucleic Acids Res. 2016, 44, 10999–11012. 10.1093/nar/gkw970. PubMed DOI PMC

Bian Y.; Tan C.; Wang J.; Sheng Y.; Zhang J.; Wang W. Atomistic Picture for the Folding Pathway of a Hybrid-1 Type Human Telomeric DNA G-quadruplex. PLoS Comput. Biol. 2014, 10, e100356210.1371/journal.pcbi.1003562. PubMed DOI PMC

Stadlbauer P.; Trantirek L.; Cheatham T. E. 3rd; Koca J.; Sponer J. Triplex Intermediates in Folding of Human Telomeric Quadruplexes Probed by Microsecond-scale Molecular Dynamics Simulations. Biochimie 2014, 105, 22–35. 10.1016/j.biochi.2014.07.009. PubMed DOI

Mashimo T.; Yagi H.; Sannohe Y.; Rajendran A.; Sugiyama H. Folding Pathways of Human Telomeric Type-1 and Type-2 G-quadruplex Structures. J. Am. Chem. Soc. 2010, 132, 14910–14918. 10.1021/ja105806u. PubMed DOI

Koirala D.; Mashimo T.; Sannohe Y.; Yu Z. B.; Mao H. B.; Sugiyama H. Intramolecular Folding in Three Tandem Guanine Repeats of Human Telomeric DNA. Chem. Commun. 2012, 48, 2006–2008. 10.1039/c2cc16752b. PubMed DOI

Hou X.-M.; Fu Y.-B.; Wu W.-Q.; Wang L.; Teng F.-Y.; Xie P.; Wang P.-Y.; Xi X.-G. Involvement of G-Triplex and G-Hairpin in the Multi-Pathway Folding of Human Telomeric G-Quadruplex. Nucleic Acids Res. 2017, 45, 11401–11412. 10.1093/nar/gkx766. PubMed DOI PMC

Li W.; Hou X.-M.; Wang P.-Y.; Xi X.-G.; Li M. Direct Measurement of Sequential Folding Pathway and Energy Landscape of Human Telomeric G-quadruplex Structures. J. Am. Chem. Soc. 2013, 135, 6423–6426. 10.1021/ja4019176. PubMed DOI

Jiang H.-X.; Cui Y.; Zhao T.; Fu H.-W.; Koirala D.; Punnoose J. A.; Kong D.-M.; Mao H. Divalent Cations and Molecular Crowding Buffers Stabilize G-Triplex at Physiologically Relevant Temperatures. Sci. Rep. 2015, 5, 9255.10.1038/srep09255. PubMed DOI PMC

Lu X.-M.; Li H.; You J.; Li W.; Wang P.-Y.; Li M.; Dou S.-X.; Xi X.-G. Folding Dynamics of Parallel and Antiparallel G-Triplexes under the Influence of Proximal DNA. J. Phys. Chem. B 2018, 122, 9499–9506. 10.1021/acs.jpcb.8b08110. PubMed DOI

Limongelli V.; De Tito S.; Cerofolini L.; Fragai M.; Pagano B.; Trotta R.; Cosconati S.; Marinelli L.; Novellino E.; Bertini I.; et al. The G-Triplex DNA. Angew. Chem., Int. Ed. 2013, 52, 2269–2273. 10.1002/anie.201206522. PubMed DOI

Cerofolini L.; Amato J.; Giachetti A.; Limongelli V.; Novellino E.; Parrinello M.; Fragai M.; Randazzo A.; Luchinat C. G-Triplex Structure and Formation Propensity. Nucleic Acids Res. 2014, 42, 13393–13404. 10.1093/nar/gku1084. PubMed DOI PMC

Yang C.; Kulkarni M.; Lim M.; Pak Y. Insilico Direct Folding of Thrombin-Binding Aptamer G-Quadruplex at All-Atom Level. Nucleic Acids Res. 2017, 45, 12648–12656. 10.1093/nar/gkx1079. PubMed DOI PMC

Stadlbauer P.; Kuhrova P.; Banas P.; Koca J.; Bussi G.; Trantirek L.; Otyepka M.; Sponer J. Hairpins Participating in Folding of Human Telomeric Sequence Quadruplexes Studied by Standard and T-REMD Simulations. Nucleic Acids Res. 2015, 43, 9626–9644. 10.1093/nar/gkv994. PubMed DOI PMC

Stefl R.; Cheatham T. E.; Spackova N.; Fadrna E.; Berger I.; Koca J.; Sponer J. Formation Pathways of a Guanine-Quadruplex DNA Revealed by Molecular Dynamics and Thermodynamic Analysis of the Substates. Biophys. J. 2003, 85, 1787–1804. 10.1016/s0006-3495(03)74608-6. PubMed DOI PMC

Havrila M.; Stadlbauer P.; Kuhrova P.; Banas P.; Mergny J.-L.; Otyepka M.; Sponer J. Structural Dynamics of Propeller Loop: Towards Folding of RNA G-Quadruplex. Nucleic Acids Res. 2018, 46, 8754–8771. 10.1093/nar/gky712. PubMed DOI PMC

Islam B.; Stadlbauer P.; Krepl M.; Koca J.; Neidle S.; Haider S.; Sponer J. Extended Molecular Dynamics of a c-kit Promoter Quadruplex. Nucleic Acids Res. 2015, 43, 8673–8693. 10.1093/nar/gkv785. PubMed DOI PMC

Mendoza O.; Bourdoncle A.; Boulé J.-B.; Brosh R. M. Jr.; Mergny J.-L. G-Quadruplexes and Helicases. Nucleic Acids Res. 2016, 44, 1989–2006. 10.1093/nar/gkw079. PubMed DOI PMC

Hansel-Hertsch R.; Di Antonio M.; Balasubramanian S. DNA G-Quadruplexes in the Human Genome: Detection, Functions and Therapeutic Potential. Nat. Rev. Mol. Cell Biol. 2017, 18, 279–284. 10.1038/nrm.2017.3. PubMed DOI

Estep K. N.; Butler T. J.; Ding J.; Brosh R. M. G4-Interacting DNA Helicases and Polymerases: Potential Therapeutic Targets. Curr. Med. Chem. 2019, 26, 2881–2897. 10.2174/0929867324666171116123345. PubMed DOI PMC

Paeschke K.; Bochman M. L.; Garcia P. D.; Cejka P.; Friedman K. L.; Kowalczykowski S. C.; Zakian V. A. Pif1 Family Helicases Suppress Genome Instability at G-Quadruplex Motifs. Nature 2013, 497, 458–462. 10.1038/nature12149. PubMed DOI PMC

Postberg J.; Tsytlonok M.; Sparvoli D.; Rhodes D.; Lipps H. J. A Telomerase-associated RecQ Protein-like Helicase Resolves Telomeric G-quadruplex Structures during Replication. Gene 2012, 497, 147–154. 10.1016/j.gene.2012.01.068. PubMed DOI PMC

Yang B.; Liu Z.; Liu H.; Nash M. A. Next Generation Methods for Single-Molecule Force Spectroscopy on Polyproteins and Receptor-Ligand Complexes. Front. Mol. Biosci. 2020, 7, 85.10.3389/fmolb.2020.00085. PubMed DOI PMC

Fang J.; Xie C.; Tao Y.; Wei D. An Overview of Single-Molecule Techniques and Applications in the Study of Nucleic Acid Structure and Function. Biochimie 2023, 206, 1–11. 10.1016/j.biochi.2022.09.014. PubMed DOI

Cheng Y.; Zhang Y.; You H. Characterization of G-Quadruplexes Folding/Unfolding Dynamics and Interactions with Proteins from Single-Molecule Force Spectroscopy. Biomolecules 2021, 11, 1579.10.3390/biom11111579. PubMed DOI PMC

Laszlo A. H.; Derrington I. M.; Gundlach J. H. MspA Nanopore as a Single-Molecule Tool: From Sequencing to SPRNT. Methods 2016, 105, 75–89. 10.1016/j.ymeth.2016.03.026. PubMed DOI PMC

Koirala D.; Dhakal S.; Ashbridge B.; Sannohe Y.; Rodriguez R.; Sugiyama H.; Balasubramanian S.; Mao H. A Single-Molecule Platform for Investigation of Interactions Between G-Quadruplexes and Small-Molecule Ligands. Nat. Chem. 2011, 3, 782–787. 10.1038/nchem.1126. PubMed DOI PMC

You H.; Zeng X.; Xu Y.; Lim C. J.; Efremov A. K.; Phan A. T.; Yan J. Dynamics and Stability of Polymorphic Human Telomeric G-Quadruplex under Tension. Nucleic Acids Res. 2014, 42, 8789–8795. 10.1093/nar/gku581. PubMed DOI PMC

Mitra J.; Makurath M. A.; Ngo T. T. M.; Troitskaia A.; Chemla Y. R.; Ha T. Extreme Mechanical Diversity of Human Telomeric DNA Revealed by Fluorescence-Force Spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 8350–8359. 10.1073/pnas.1815162116. PubMed DOI PMC

Cheng Y.; Zhang Y.; Gong Z.; Zhang X.; Li Y.; Shi X.; Pei Y.; You H. High Mechanical Stability and Slow Unfolding Rates Are Prevalent in Parallel-Stranded DNA G-Quadruplexes. J. Phys. Chem. Lett. 2020, 11, 7966–7971. 10.1021/acs.jpclett.0c02229. PubMed DOI

Long X.; Parks J. W.; Bagshaw C. R.; Stone M. D. Mechanical Unfolding of Human Telomere G-quadruplex DNA Probed by Integrated Fluorescence and Magnetic Tweezers Spectroscopy. Nucleic Acids Res. 2013, 41, 2746–2755. 10.1093/nar/gks1341. PubMed DOI PMC

Dhakal S.; Cui Y.; Koirala D.; Ghimire C.; Kushwaha S.; Yu Z.; Yangyuoru P. M.; Mao H. Structural and Mechanical Properties of Individual Human Telomeric G-quadruplexes in Molecularly Crowded Solutions. Nucleic Acids Res. 2013, 41, 3915–3923. 10.1093/nar/gkt038. PubMed DOI PMC

Mitra J.; Ha T. Streamlining Effects of Extra Telomeric Repeat on Telomeric DNA Folding Revealed by Fluorescence-Force Spectroscopy. Nucleic Acids Res. 2019, 47, 11044–11056. 10.1093/nar/gkz906. PubMed DOI PMC

Zhang Y.; Cheng Y.; Chen J.; Zheng K.; You H. Mechanical Diversity and Folding Intermediates of Parallel-Stranded G-Quadruplexes with a Bulge. Nucleic Acids Res. 2021, 49, 7179–7188. 10.1093/nar/gkab531. PubMed DOI PMC

Lynch S.; Baker H.; Byker S. G.; Zhou D.; Sinniah K. Single Molecule Force Spectroscopy on G-Quadruplex DNA. Chem.—Eur. J. 2009, 15, 8113–8116. 10.1002/chem.200901390. PubMed DOI PMC

You H.; Wu J.; Shao F.; Yan J. Stability and Kinetics of c-MYC Promoter G-Quadruplexes Studied by Single-Molecule Manipulation. J. Am. Chem. Soc. 2015, 137, 2424–2427. 10.1021/ja511680u. PubMed DOI

Yu Z.; Gaerig V.; Cui Y.; Kang H.; Gokhale V.; Zhao Y.; Hurley L. H.; Mao H. Tertiary DNA Structure in the Single-Stranded hTERT Promoter Fragment Unfolds and Refolds by Parallel Pathways via Cooperative or Sequential Events. J. Am. Chem. Soc. 2012, 134, 5157–5164. 10.1021/ja210399h. PubMed DOI PMC

Cheng Y.; Tang Q.; Li Y.; Zhang Y.; Zhao C.; Yan J.; You H. Folding/Unfolding Kinetics of G-Quadruplexes Upstream of the P1 Promoter of the Human BCL-2 Oncogene. J. Biol. Chem. 2019, 294, 5890–5895. 10.1074/jbc.ra119.007516. PubMed DOI PMC

Yu Z.; Schonhoft J. D.; Dhakal S.; Bajracharya R.; Hegde R.; Basu S.; Mao H. ILPR G-Quadruplexes Formed in Seconds Demonstrate High Mechanical Stabilities. J. Am. Chem. Soc. 2009, 131, 1876–1882. 10.1021/ja806782s. PubMed DOI

de Messieres M.; Chang J.-C.; Brawn-Cinani B.; La Porta A. Single-Molecule Study of G-Quadruplex Disruption Using Dynamic Force Spectroscopy. Phys. Rev. Lett. 2012, 109, 058101.10.1103/physrevlett.109.058101. PubMed DOI

Yin H.; Wang M. D.; Svoboda K.; Landick R.; Block S. M.; Gelles J. Transcription Against an Applied Force. Science 1995, 270, 1653–1657. 10.1126/science.270.5242.1653. PubMed DOI

Galburt E. A.; Grill S. W.; Wiedmann A.; Lubkowska L.; Choy J.; Nogales E.; Kashlev M.; Bustamante C. Backtracking Determines the Force Sensitivity of RNAP II in a Factor-Dependent Manner. Nature 2007, 446, 820–823. 10.1038/nature05701. PubMed DOI

Mejia Y. X.; Mao H.; Forde N. R.; Bustamante C. Thermal Probing of E. coli RNA Polymerase Off-Pathway Mechanisms. J. Mol. Biol. 2008, 382, 628–637. 10.1016/j.jmb.2008.06.079. PubMed DOI PMC

Meyhöfer E.; Howard J. The Force Generated by a Single Kinesin Molecule Against an Elastic Load. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 574–578. 10.1073/pnas.92.2.574. PubMed DOI PMC

Yang C.; Jang S.; Pak Y. Multiple Stepwise Pattern for Potential of Mean Force in Unfolding the Thrombin Binding Aptamer in Complex with Sr2+. J. Chem. Phys. 2011, 135, 225104.10.1063/1.3669424. PubMed DOI

Li H.; Cao E. H.; Gisler T. Force-Induced Unfolding of Human Telomeric G-quadruplex: A Steered Molecular Dynamics Simulation Study. Biochem. Biophys. Res. Commun. 2009, 379, 70–75. 10.1016/j.bbrc.2008.12.006. PubMed DOI

Bergues-Pupo A. E.; Arias-Gonzalez J. R.; Moron M. C.; Fiasconaro A.; Falo F. Role of the Central Cations in the Mechanical Unfolding of DNA and RNA G-quadruplexes. Nucleic Acids Res. 2015, 43, 7638–7647. 10.1093/nar/gkv690. PubMed DOI PMC

Bergues-Pupo A. E.; Gutiérrez I.; Arias-Gonzalez J. R.; Falo F.; Fiasconaro A. Mesoscopic Model for DNA G-Quadruplex Unfolding. Sci. Rep. 2017, 7, 11756.10.1038/s41598-017-10849-2. PubMed DOI PMC

Sotomayor M.; Schulten K. Single-Molecule Experiments in Vitro and in Silico. Science 2007, 316, 1144–1148. 10.1126/science.1137591. PubMed DOI

Franz F.; Daday C.; Gräter F. Advances in Molecular Simulations of Protein Mechanical Properties and Function. Curr. Opin. Struct. Biol. 2020, 61, 132–138. 10.1016/j.sbi.2019.12.015. PubMed DOI

Sheridan S.; Gräter F.; Daday C. How Fast Is Too Fast in Force-Probe Molecular Dynamics Simulations?. J. Phys. Chem. B 2019, 123, 3658–3664. 10.1021/acs.jpcb.9b01251. PubMed DOI

Stirnemann G. Recent Advances and Emerging Challenges in the Molecular Modeling of Mechanobiological Processes. J. Phys. Chem. B 2022, 126, 1365–1374. 10.1021/acs.jpcb.1c10715. PubMed DOI

Dai J.; Carver M.; Punchihewa C.; Jones R. A.; Yang D. Structure of the Hybrid-2 Type Intramolecular Human Telomeric G-quadruplex in K+ Solution: Insights into Structure Polymorphism of the Human Telomeric Sequence. Nucleic Acids Res. 2007, 35, 4927–4940. 10.1093/nar/gkm522. PubMed DOI PMC

Case D. A.; Betz R. M.; Botello-Smith W.; Cerutti D. S.; T.E. Cheatham I.; Darden T. A.; Duke R. E.; Giese T. J.; Gohlke H.; Goetz A. W.; et al.AMBER 2016; University of California: San Francisco, CA, 2016.

Zgarbova M.; Sponer J.; Otyepka M.; Cheatham T. E.; Galindo-Murillo R.; Jurecka P. Refinement of the Sugar–Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA. J. Chem. Theory Comput. 2015, 11, 5723–5736. 10.1021/acs.jctc.5b00716. PubMed DOI

Berendsen H. J. C.; Grigera J. R.; Straatsma T. P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91, 6269–6271. 10.1021/j100308a038. DOI

Joung I. S.; Cheatham T. E. Determination of Alkali and Halide Monovalent Ion Parameters for Use In Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B 2008, 112, 9020–9041. 10.1021/jp8001614. PubMed DOI PMC

Zgarbová M.; Šponer J.; Jurečka P. Z-DNA as a Touchstone for Additive Empirical Force Fields and a Refinement of the Alpha/Gamma DNA Torsions for AMBER. J. Chem. Theory Comput. 2021, 17, 6292–6301. 10.1021/acs.jctc.1c00697. PubMed DOI

Kuhrova P.; Mlynsky V.; Zgarbova M.; Krepl M.; Bussi G.; Best R. B.; Otyepka M.; Sponer J.; Banáš P. Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions. J. Chem. Theory Comput. 2019, 15, 3288–3305. 10.1021/acs.jctc.8b00955. PubMed DOI PMC

Shirts M. R.; Klein C.; Swails J. M.; Yin J.; Gilson M. K.; Mobley D. L.; Case D. A.; Zhong E. D. Lessons Learned from Comparing Molecular Dynamics Engines on the SAMPL5 Dataset. J. Comput.-Aided Mol. Des. 2017, 31, 147–161. 10.1007/s10822-016-9977-1. PubMed DOI PMC

Abraham M. J.; Murtola T.; Schulz R.; Pall S.; Smith J. C.; Hess B.; Lindahl E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. 10.1016/j.softx.2015.06.001. DOI

Tribello G. A.; Bonomi M.; Branduardi D.; Camilloni C.; Bussi G. PLUMED 2: New Feathers for an Old Bird. Comput. Phys. Commun. 2014, 185, 604–613. 10.1016/j.cpc.2013.09.018. DOI

Bussi G.; Donadio D.; Parrinello M. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007, 126, 014101.10.1063/1.2408420. PubMed DOI

Parrinello M.; Rahman A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52, 7182–7190. 10.1063/1.328693. DOI

Hopkins C. W.; Le Grand S.; Walker R. C.; Roitberg A. E. Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. J. Chem. Theory Comput. 2015, 11, 1864–1874. 10.1021/ct5010406. PubMed DOI

Jacobson D. R.; Uyetake L.; Perkins T. T. Membrane-Protein Unfolding Intermediates Detected with Enhanced Precision Using a Zigzag Force Ramp. Biophys. J. 2020, 118, 667–675. 10.1016/j.bpj.2019.12.003. PubMed DOI PMC

Jarzynski C. Nonequilibrium Equality for Free Energy Differences. Phys. Rev. Lett. 1997, 78, 2690–2693. 10.1103/physrevlett.78.2690. DOI

Jarzynski C. Equilibrium Free-Energy Differences from Nonequilibrium Measurements: A Master-Equation Approach. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 1997, 56, 5018–5035. 10.1103/physreve.56.5018. DOI

Lee J. Y.; Okumus B.; Kim D. S.; Ha T. Extreme Conformational Diversity in Human Telomeric DNA. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 18938–18943. 10.1073/pnas.0506144102. PubMed DOI PMC

Burge S.; Parkinson G. N.; Hazel P.; Todd A. K.; Neidle S. Quadruplex DNA: Sequence, Topology and Structure. Nucleic Acids Res. 2006, 34, 5402–5415. 10.1093/nar/gkl655. PubMed DOI PMC

Hazel P.; Huppert J.; Balasubramanian S.; Neidle S. Loop-Length-Dependent Folding of G-Quadruplexes. J. Am. Chem. Soc. 2004, 126, 16405–16415. 10.1021/ja045154j. PubMed DOI

Islam B.; Stadlbauer P.; Gil-Ley A.; Perez-Hernandez G.; Haider S.; Neidle S.; Bussi G.; Banas P.; Otyepka M.; Sponer J. Exploring the Dynamics of Propeller Loops in Human Telomeric DNA Quadruplexes Using Atomistic Simulations. J. Chem. Theory Comput. 2017, 13, 2458–2480. 10.1021/acs.jctc.7b00226. PubMed DOI PMC

Rico F.; Russek A.; González L.; Grubmüller H.; Scheuring S. Heterogeneous and Rate-Dependent Streptavidin–Biotin Unbinding Revealed by High-Speed Force Spectroscopy and Atomistic Simulations. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 6594–6601. 10.1073/pnas.1816909116. PubMed DOI PMC

Rico F.; Gonzalez L.; Casuso I.; Puig-Vidal M.; Scheuring S. High-Speed Force Spectroscopy Unfolds Titin at the Velocity of Molecular Dynamics Simulations. Science 2013, 342, 741–743. 10.1126/science.1239764. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...