Exploring the Dynamics of Propeller Loops in Human Telomeric DNA Quadruplexes Using Atomistic Simulations
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28475322
PubMed Central
PMC5514396
DOI
10.1021/acs.jctc.7b00226
Knihovny.cz E-zdroje
- MeSH
- DNA chemie genetika metabolismus MeSH
- G-kvadruplexy * MeSH
- lidé MeSH
- sekvence nukleotidů MeSH
- shluková analýza MeSH
- simulace molekulární dynamiky * MeSH
- telomery genetika MeSH
- voda chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
- voda MeSH
We have carried out a series of extended unbiased molecular dynamics (MD) simulations (up to 10 μs long, ∼162 μs in total) complemented by replica-exchange with the collective variable tempering (RECT) approach for several human telomeric DNA G-quadruplex (GQ) topologies with TTA propeller loops. We used different AMBER DNA force-field variants and also processed simulations by Markov State Model (MSM) analysis. The slow conformational transitions in the propeller loops took place on a scale of a few μs, emphasizing the need for long simulations in studies of GQ dynamics. The propeller loops sampled similar ensembles for all GQ topologies and for all force-field dihedral-potential variants. The outcomes of standard and RECT simulations were consistent and captured similar spectrum of loop conformations. However, the most common crystallographic loop conformation was very unstable with all force-field versions. Although the loss of canonical γ-trans state of the first propeller loop nucleotide could be related to the indispensable bsc0 α/γ dihedral potential, even supporting this particular dihedral by a bias was insufficient to populate the experimentally dominant loop conformation. In conclusion, while our simulations were capable of providing a reasonable albeit not converged sampling of the TTA propeller loop conformational space, the force-field description still remained far from satisfactory.
Scuola Internazionale Superiore di Studi Avanzati Via Bonomea 265 34136 Trieste Italy
UCL School of Pharmacy 29 39 Brunswick Square London WC1N 1AX U K
Zobrazit více v PubMed
Lewis K. A.; Wuttke D. S. Telomerase and Telomere-Associated Proteins: Structural Insights into Mechanism and Evolution. Structure 2012, 20, 28–39. 10.1016/j.str.2011.10.017. PubMed DOI PMC
Chan S. W. L.; Blackburn E. H. Telomerase and ATM/Tel1p Protect Telomeres from Nonhomologous End Joining. Mol. Cell 2003, 11, 1379–1387. 10.1016/S1097-2765(03)00174-6. PubMed DOI
Verdun R. E.; Karlseder J. Replication and Protection of Telomeres. Nature 2007, 447, 924–931. 10.1038/nature05976. PubMed DOI
Blackburn E. H. Structure and Function of Telomeres. Nature 1991, 350, 569–573. 10.1038/350569a0. PubMed DOI
Lee M. E.; Rha S. Y.; Jeung H.-C.; Kim T. S.; Chung H. C.; Oh B.-K. Variation of the 3′ Telomeric Overhang Lengths in Human Cells. Cancer Lett. 2008, 264, 107–118. 10.1016/j.canlet.2008.01.024. PubMed DOI
Wright W. E.; Tesmer V. M.; Huffman K. E.; Levene S. D.; Shay J. W. Normal Human Chromosomes Have Long G-Rich Telomeric Overhangs at One End. Genes Dev. 1997, 11, 2801–2809. 10.1101/gad.11.21.2801. PubMed DOI PMC
Moyzis R. K.; Buckingham J. M.; Cram L. S.; Dani M.; Deaven L. L.; Jones M. D.; Meyne J.; Ratliff R. L.; Wu J. R. A Highly Conserved Repetitive DNA Sequence, (TTAGGG)n, Present at the Telomeres of Human Chromosomes. Proc. Natl. Acad. Sci. U. S. A. 1988, 85, 6622–6626. 10.1073/pnas.85.18.6622. PubMed DOI PMC
Shay J. W.; Zou Y.; Hiyama E.; Wright W. E. Telomerase and Cancer. Hum. Mol. Genet. 2001, 10, 677–685. 10.1093/hmg/10.7.677. PubMed DOI
Levy M. Z.; Allsopp R. C.; Futcher A. B.; Greider C. W.; Harley C. B. Telomere End-Replication Problem and Cell Aging. J. Mol. Biol. 1992, 225, 951–960. 10.1016/0022-2836(92)90096-3. PubMed DOI
Kim N. W.; Piatyszek M. A.; Prowse K. R.; Harley C. B.; West M. D.; Ho P. L.; Coviello G. M.; Wright W. E.; Weinrich S. L.; Shay J. W. Specific Association of Human Telomerase Activity with Immortal Cells and Cancer. Science 1994, 266, 2011–2015. 10.1126/science.7605428. PubMed DOI
Gilson E.; Geli V. How Telomeres are Replicated. Nat. Rev. Mol. Cell Biol. 2007, 8, 825–838. 10.1038/nrm2259. PubMed DOI
Maida Y.; Masutomi K. Telomerase Reverse Transcriptase Moonlights: Therapeutic Targets Beyond Telomerase. Cancer Sci. 2015, 106, 1486–1492. 10.1111/cas.12806. PubMed DOI PMC
Hoos A.; Hepp H. H.; Kaul S.; Ahlert T.; Bastert G.; Wallwiener D. Telomerase Activity Correlates with Tumor Aggressiveness and Reflects Therapy Effect in Breast Cancer. Int. J. Cancer 1998, 79, 8–12. 10.1002/(SICI)1097-0215(19980220)79:1<8::AID-IJC2>3.0.CO;2-5. PubMed DOI
Takuma Y.; Nouso K.; Kobayashi Y.; Nakamura S.; Tanaka H.; Matsumoto E.; Fujikawa T.; Suzuki M.; Hanafusa T.; Shiratori Y. Telomerase Reverse Transcriptase Gene Amplification in Hepatocellular Carcinoma. J. Gastroenterol. Hepatol. 2004, 19, 1300–1304. 10.1111/j.1440-1746.2004.03447.x. PubMed DOI
Wang J. C.; Warner J. K.; Erdmann N.; Lansdorp P. M.; Harrington L.; Dick J. E. Dissociation of Telomerase Activity and Telomere Length Maintenance in Primitive Human Hematopoietic Cells. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 14398–14403. 10.1073/pnas.0504161102. PubMed DOI PMC
Zhao T.; Hu F.; Qiao B.; Chen Z.; Tao Q. Telomerase Reverse Transcriptase Potentially Promotes the Progression of Oral Squamous Cell Carcinoma through Induction of Epithelial-Mesenchymal Transition. Int. J. Oncol. 2015, 46, 2205–2215. 10.3892/ijo.2015.2927. PubMed DOI
Buseman C. M.; Wright W. E.; Shay J. W. Is Telomerase a Viable Target in Cancer?. Mutat. Res., Fundam. Mol. Mech. Mutagen. 2012, 730, 90–97. 10.1016/j.mrfmmm.2011.07.006. PubMed DOI PMC
Li S.; Crothers J.; Haqq C. M.; Blackburn E. H. Cellular and Gene Expression Responses Involved in the Rapid Growth Inhibition of Human Cancer Cells by RNA Interference-Mediated Depletion of Telomerase RNA. J. Biol. Chem. 2005, 280, 23709–23717. 10.1074/jbc.M502782200. PubMed DOI
Hahn W. C.; Stewart S. A.; Brooks M. W.; York S. G.; Eaton E.; Kurachi A.; Beijersbergen R. L.; Knoll J. H. M.; Meyerson M.; Weinberg R. A. Inhibition of Telomerase Limits the Growth of Human Cancer Cells. Nat. Med. 1999, 5, 1164–1170. 10.1038/13495. PubMed DOI
Herbert B.; Pitts A. E.; Baker S. I.; Hamilton S. E.; Wright W. E.; Shay J. W.; Corey D. R. Inhibition of Human Telomerase in Immortal Human Cells Leads to Progressive Telomere Shortening and Cell Death. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 14276–14281. 10.1073/pnas.96.25.14276. PubMed DOI PMC
Burge S.; Parkinson G. N.; Hazel P.; Todd A. K.; Neidle S. Quadruplex DNA: Sequence, Topology and Structure. Nucleic Acids Res. 2006, 34, 5402–5415. 10.1093/nar/gkl655. PubMed DOI PMC
Davis J. T. G-Quartets 40 Years Later: From 5′-GMP to Molecular Biology and Supramolecular Chemistry. Angew. Chem., Int. Ed. 2004, 43, 668–698. 10.1002/anie.200300589. PubMed DOI
Simonsson T. G-Quadruplex DNA Structures--Variations on a Theme. Biol. Chem. 2001, 382, 621–628. 10.1515/BC.2001.073. PubMed DOI
Williamson J. R.; Raghuraman M. K.; Cech T. R. Monovalent Cation-Induced Structure of Telomeric DNA: The G-Quartet Model. Cell 1989, 59, 871–880. 10.1016/0092-8674(89)90610-7. PubMed DOI
Grand C. L.; Han H.; Munoz R. M.; Weitman S.; Von Hoff D. D.; Hurley L. H.; Bearss D. J. The Cationic Porphyrin TMPyP4 Down-Regulates c-MYC and Human Telomerase Reverse Transcriptase Expression and Inhibits Tumor Growth in vivo. Mol. Cancer Ther. 2002, 1, 565–573. PubMed
Bochman M. L.; Paeschke K.; Zakian V. A. DNA Secondary Structures: Stability and Function of G-Quadruplex Structures. Nat. Rev. Genet. 2012, 13, 770–780. 10.1038/nrg3296. PubMed DOI PMC
Mergny J. L.; Helene C. G-Quadruplex DNA: A Target for Drug Design. Nat. Med. 1998, 4, 1366–1367. 10.1038/3949. PubMed DOI
Moye A. L.; Porter K. C.; Cohen S. B.; Phan T.; Zyner K. G.; Sasaki N.; Lovrecz G. O.; Beck J. L.; Bryan T. M. Telomeric G-Quadruplexes Are a Substrate and Site of Localization for Human Telomerase. Nat. Commun. 2015, 6, 7643.10.1038/ncomms8643. PubMed DOI PMC
Harrison R. J.; Cuesta J.; Chessari G.; Read M. A.; Basra S. K.; Reszka A. P.; Morrell J.; Gowan S. M.; Incles C. M.; Tanious F. A.; Wilson W. D.; Kelland L. R.; Neidle S. Trisubstituted Acridine Derivatives as Potent and Selective Telomerase Inhibitors. J. Med. Chem. 2003, 46, 4463–4476. 10.1021/jm0308693. PubMed DOI
Neidle S.; Parkinson G. Telomere Maintenance as a Target for Anticancer Drug Discovery. Nat. Rev. Drug Discovery 2002, 1, 383–393. 10.1038/nrd793. PubMed DOI
McLuckie K. I.; Di Antonio M.; Zecchini H.; Xian J.; Caldas C.; Krippendorff B. F.; Tannahill D.; Lowe C.; Balasubramanian S. G-Quadruplex DNA as a Molecular Target for Induced Synthetic Lethality in Cancer Cells. J. Am. Chem. Soc. 2013, 135, 9640–9643. 10.1021/ja404868t. PubMed DOI PMC
Balasubramanian S.; Neidle S. G-Quadruplex Nucleic Acids as Therapeutic Targets. Curr. Opin. Chem. Biol. 2009, 13, 345–353. 10.1016/j.cbpa.2009.04.637. PubMed DOI PMC
Collie G. W.; Promontorio R.; Hampel S. M.; Micco M.; Neidle S.; Parkinson G. N. Structural Basis for Telomeric G-Quadruplex Targeting by Naphthalene Diimide Ligands. J. Am. Chem. Soc. 2012, 134, 2723–2731. 10.1021/ja2102423. PubMed DOI
Siddiqui-Jain A.; Grand C. L.; Bearss D. J.; Hurley L. H. Direct Evidence for a G-Quadruplex in a Promoter Region and Its Targeting with a Small Molecule to Repress c-MYC Transcription. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 11593–11598. 10.1073/pnas.182256799. PubMed DOI PMC
Bejugam M.; Gunaratnam M.; Müller S.; Sanders D. A.; Sewitz S.; Fletcher J. A.; Neidle S.; Balasubramanian S. Targeting the c-Kit Promoter G-Quadruplexes with 6-Substituted Indenoisoquinolines. ACS Med. Chem. Lett. 2010, 1, 306–310. 10.1021/ml100062z. PubMed DOI PMC
Campbell N. H.; Parkinson G. N.; Reszka A. P.; Neidle S. Structural Basis of DNA Quadruplex Recognition by an Acridine Drug. J. Am. Chem. Soc. 2008, 130, 6722–6724. 10.1021/ja8016973. PubMed DOI
Gunaratnam M.; Swank S.; Haider S. M.; Galesa K.; Reszka A. P.; Beltran M.; Cuenca F.; Fletcher J. A.; Neidle S. Targeting Human Gastrointestinal Stromal Tumor Cells with a Quadruplex-Binding Small Molecule. J. Med. Chem. 2009, 52, 3774–3783. 10.1021/jm900424a. PubMed DOI PMC
Micco M.; Collie G. W.; Dale A. G.; Ohnmacht S. A.; Pazitna I.; Gunaratnam M.; Reszka A. P.; Neidle S. Structure-Based Design and Evaluation of Naphthalene Diimide G-Quadruplex Ligands as Telomere Targeting Agents in Pancreatic Cancer Cells. J. Med. Chem. 2013, 56, 2959–2974. 10.1021/jm301899y. PubMed DOI
Gomez D.; O’Donohue M. F.; Wenner T.; Douarre C.; Macadre J.; Koebel P.; Giraud-Panis M. J.; Kaplan H.; Kolkes A.; Shin-ya K.; Riou J. F. The G-Quadruplex Ligand Telomestatin Inhibits POT1 Binding to Telomeric Sequences in vitro and Induces GFP-POT1 Dissociation from Telomeres in Human Cells. Cancer Res. 2006, 66, 6908–6912. 10.1158/0008-5472.CAN-06-1581. PubMed DOI
Gellert M.; Lipsett M. N.; Davies D. R. Helix Formation by Guanylic Acid. Proc. Natl. Acad. Sci. U. S. A. 1962, 48, 2013–2018. 10.1073/pnas.48.12.2013. PubMed DOI PMC
Lim K. W.; Amrane S.; Bouaziz S.; Xu W.; Mu Y.; Patel D. J.; Luu K. N.; Phan A. T. Structure of the Human Telomere in K+ Solution: A Stable Basket-Type G-Quadruplex with Only Two G-Tetrad Layers. J. Am. Chem. Soc. 2009, 131, 4301–4309. 10.1021/ja807503g. PubMed DOI PMC
Lim K. W.; Ng V. C.; Martin-Pintado N.; Heddi B.; Phan A. T. Structure of the Human Telomere in Na+ Solution: An Antiparallel (2 + 2) G-Quadruplex Scaffold Reveals Additional Diversity. Nucleic Acids Res. 2013, 41, 10556–10562. 10.1093/nar/gkt771. PubMed DOI PMC
Luu K. N.; Phan A. T.; Kuryavyi V.; Lacroix L.; Patel D. J. Structure of the Human Telomere in K+ Solution: An Intramolecular (3 + 1) G-Quadruplex Scaffold. J. Am. Chem. Soc. 2006, 128, 9963–9970. 10.1021/ja062791w. PubMed DOI PMC
Dai J.; Carver M.; Punchihewa C.; Jones R. A.; Yang D. Structure of the Hybrid-2 Type Intramolecular Human Telomeric G-Quadruplex in K+ Solution: Insights into Structure Polymorphism of the Human Telomeric Sequence. Nucleic Acids Res. 2007, 35, 4927–4940. 10.1093/nar/gkm522. PubMed DOI PMC
Wang Y.; Patel D. J. Solution Structure of the Human Telomeric Repeat d[AG3(T2AG3)3] G-Tetraplex. Structure 1993, 1, 263–282. 10.1016/0969-2126(93)90015-9. PubMed DOI
Parkinson G. N.; Lee M. P. H.; Neidle S. Crystal Structure of Parallel Quadruplexes from Human Telomeric DNA. Nature 2002, 417, 876–880. 10.1038/nature755. PubMed DOI
Heddi B.; Phan A. T. Structure of Human Telomeric DNA in Crowded Solution. J. Am. Chem. Soc. 2011, 133, 9824–9833. 10.1021/ja200786q. PubMed DOI
Stadlbauer P.; Krepl M.; Cheatham T. E.; Koca J.; Sponer J. Structural Dynamics of Possible Late-Stage Intermediates in Folding of Quadruplex DNA Studied by Molecular Simulations. Nucleic Acids Res. 2013, 41, 7128–7143. 10.1093/nar/gkt412. PubMed DOI PMC
Dai J.; Punchihewa C.; Ambrus A.; Chen D.; Jones R. A.; Yang D. Structure of the Intramolecular Human Telomeric G-Quadruplex in Potassium Solution: A Novel Adenine Triple Formation. Nucleic Acids Res. 2007, 35, 2440–2450. 10.1093/nar/gkm009. PubMed DOI PMC
Phan A. T.; Kuryavyi V.; Luu K. N.; Patel D. J. Structure of Two Intramolecular G-Quadruplexes Formed by Natural Human Telomere Sequences in K+ Solution. Nucleic Acids Res. 2007, 35, 6517–6525. 10.1093/nar/gkm706. PubMed DOI PMC
Bessi I.; Jonker H. R. A.; Richter C.; Schwalbe H. Involvement of Long-Lived Intermediate States in the Complex Folding Pathway of the Human Telomeric G-Quadruplex. Angew. Chem., Int. Ed. 2015, 54, 8444–8448. 10.1002/anie.201502286. PubMed DOI
Stadlbauer P.; Kuhrova P.; Banas P.; Koca J.; Bussi G.; Trantirek L.; Otyepka M.; Sponer J. Hairpins Participating in Folding of Human Telomeric Sequence Quadruplexes Studied by Standard and T-REMD Simulations. Nucleic Acids Res. 2015, 43, 9626–9644. 10.1093/nar/gkv994. PubMed DOI PMC
Aznauryan M.; Sondergaard S.; Noer S. L.; Schiott B.; Birkedal V. A Direct View of the Complex Multi-Pathway Folding of Telomeric G-Quadruplexes. Nucleic Acids Res. 2016, 44, 11024–11032. 10.1093/nar/gkw1010. PubMed DOI PMC
Marchand A.; Gabelica V. Folding and Misfolding Pathways of G-Quadruplex DNA. Nucleic Acids Res. 2016, 44, 10999–11012. 10.1093/nar/gkw970. PubMed DOI PMC
Sponer J.; Bussi G.; Stadlbauer P.; Kuhrova P.; Banas P.; Islam B.; Haider S.; Neidle S.; Otyepka M. Folding of Guanine Quadruplex Molecules–Funnel-Like Mechanism or Kinetic Partitioning? An Overview from MD Simulation Studies. Biochim. Biophys. Acta, Gen. Subj. 2016, 10.1016/j.bbagen.2016.12.008. PubMed DOI
Palacky J.; Vorlickova M.; Kejnovska I.; Mojzes P. Polymorphism of Human Telomeric Quadruplex Structure Controlled by DNA Concentration: A Raman Study. Nucleic Acids Res. 2013, 41, 1005–1016. 10.1093/nar/gks1135. PubMed DOI PMC
Kejnovska I.; Vorlickova M.; Brazdova M.; Sagi J. Stability of Human Telomere Quadruplexes at High DNA Concentrations. Biopolymers 2014, 101, 428–438. 10.1002/bip.22400. PubMed DOI
Hansel R.; Lohr F.; Foldynova-Trantirkova S.; Bamberg E.; Trantirek L.; Dotsch V. The Parallel G-Quadruplex Structure of Vertebrate Telomeric Repeat Sequences Is Not the Preferred Folding Topology under Physiological Conditions. Nucleic Acids Res. 2011, 39, 5768–5775. 10.1093/nar/gkr174. PubMed DOI PMC
Parkinson G. N.; Ghosh R.; Neidle S. Structural Basis for Binding of Porphyrin to Human Telomeres. Biochemistry 2007, 46, 2390–2397. 10.1021/bi062244n. PubMed DOI
Collie G. W.; Campbell N. H.; Neidle S. Loop Flexibility in Human Telomeric Quadruplex Small-Molecule Complexes. Nucleic Acids Res. 2015, 43, 4785–4799. 10.1093/nar/gkv427. PubMed DOI PMC
Fadrna E.; Spackova N.; Sarzynska J.; Koca J.; Orozco M.; Cheatham T. E.; Kulinski T.; Sponer J. Single Stranded Loops of Quadruplex DNA As Key Benchmark for Testing Nucleic Acids Force Fields. J. Chem. Theory Comput. 2009, 5, 2514–2530. 10.1021/ct900200k. PubMed DOI
Fadrna E.; Spackova N.; Stefl R.; Koca J.; Cheatham T. E. 3rd; Sponer J. Molecular Dynamics Simulations of Guanine Quadruplex Loops: Advances and Force Field Limitations. Biophys. J. 2004, 87, 227–242. 10.1529/biophysj.103.034751. PubMed DOI PMC
Islam B.; Sgobba M.; Laughton C.; Orozco M.; Sponer J.; Neidle S.; Haider S. Conformational Dynamics of the Human Propeller Telomeric DNA Quadruplex on a Microsecond Time Scale. Nucleic Acids Res. 2013, 41, 2723–2735. 10.1093/nar/gks1331. PubMed DOI PMC
Islam B.; Stadlbauer P.; Krepl M.; Koca J.; Neidle S.; Haider S.; Sponer J. Extended Molecular Dynamics of a c-kit Promoter Quadruplex. Nucleic Acids Res. 2015, 43, 8673–8693. 10.1093/nar/gkv785. PubMed DOI PMC
Sponer J.; Banas P.; Jurecka P.; Zgarbova M.; Kuhrova P.; Havrila M.; Krepl M.; Stadlbauer P.; Otyepka M. Molecular Dynamics Simulations of Nucleic Acids. From Tetranucleotides to the Ribosome. J. Phys. Chem. Lett. 2014, 5, 1771–1782. 10.1021/jz500557y. PubMed DOI
Stefl R.; Cheatham T. E. 3rd; Spackova N.; Fadrna E.; Berger I.; Koca J.; Sponer J. Formation Pathways of a Guanine-Quadruplex DNA Revealed by Molecular Dynamics and Thermodynamic Analysis of the Substates. Biophys. J. 2003, 85, 1787–1804. 10.1016/S0006-3495(03)74608-6. PubMed DOI PMC
Haider S.; Parkinson G. N.; Neidle S. Molecular Dynamics and Principal Components Analysis of Human Telomeric Quadruplex Multimers. Biophys. J. 2008, 95, 296–311. 10.1529/biophysj.107.120501. PubMed DOI PMC
Cavallari M.; Garbesi A.; Di Felice R. Porphyrin Intercalation in G4-DNA Quadruplexes by Molecular Dynamics Simulations. J. Phys. Chem. B 2009, 113, 13152–13160. 10.1021/jp9039226. PubMed DOI
Hou J. Q.; Chen S. B.; Tan J. H.; Ou T. M.; Luo H. B.; Li D.; Xu J.; Gu L. Q.; Huang Z. S. New Insights into the Structures of Ligand-Quadruplex Complexes from Molecular Dynamics Simulations. J. Phys. Chem. B 2010, 114, 15301–15310. 10.1021/jp106683n. PubMed DOI
Rebic M.; Mocci F.; Laaksonen A.; Ulicny J. Multiscale Simulations of Human Telomeric G-Quadruplex DNA. J. Phys. Chem. B 2015, 119, 105–113. 10.1021/jp5103274. PubMed DOI
Zhu H.; Xiao S.; Liang H. Structural Dynamics of Human Telomeric G-Quadruplex Loops Studied by Molecular Dynamics Simulations. PLoS One 2013, 8, e71380.10.1371/journal.pone.0071380. PubMed DOI PMC
Bian Y.; Tan C.; Wang J.; Sheng Y.; Zhang J.; Wang W. Atomistic Picture for the Folding Pathway of a Hybrid-1 Type Human Telomeric DNA G-Quadruplex. PLoS Comput. Biol. 2014, 10, e1003562.10.1371/journal.pcbi.1003562. PubMed DOI PMC
Perez A.; Marchan I.; Svozil D.; Sponer J.; Cheatham T. E. 3rd; Laughton C. A.; Orozco M. Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of Alpha/Gamma Conformers. Biophys. J. 2007, 92, 3817–3829. 10.1529/biophysj.106.097782. PubMed DOI PMC
Cornell W. D.; Cieplak P.; Bayly C. I.; Gould I. R.; Merz K. M.; Ferguson D. M.; Spellmeyer D. C.; Fox T.; Caldwell J. W.; Kollman P. A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197. 10.1021/ja00124a002. DOI
Islam B.; Stadlbauer P.; Neidle S.; Haider S.; Sponer J. Can We Execute Reliable MM-PBSA Free Energy Computations of Relative Stabilities of Different Guanine Quadruplex Folds?. J. Phys. Chem. B 2016, 120, 2899–2912. 10.1021/acs.jpcb.6b01059. PubMed DOI
Gil-Ley A.; Bussi G. Enhanced Conformational Sampling Using Replica Exchange with Collective-Variable Tempering. J. Chem. Theory Comput. 2015, 11, 1077–1085. 10.1021/ct5009087. PubMed DOI PMC
Bottaro S.; Gil-Ley A.; Bussi G. RNA Folding Pathways in Stop Motion. Nucleic Acids Res. 2016, 44, 5883–5891. 10.1093/nar/gkw239. PubMed DOI PMC
Plattner N.; Noe F. Protein Conformational Plasticity and Complex Ligand-Binding Kinetics Explored by Atomistic Simulations and Markov Models. Nat. Commun. 2015, 6, 7653.10.1038/ncomms8653. PubMed DOI PMC
Zgarbova M.; Sponer J.; Otyepka M.; Cheatham T. E. 3rd; Galindo-Murillo R.; Jurecka P. Refinement of the Sugar-Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA. J. Chem. Theory Comput. 2015, 11, 5723–5736. 10.1021/acs.jctc.5b00716. PubMed DOI
Galindo-Murillo R.; Robertson J. C.; Zgarbova M.; Sponer J.; Otyepka M.; Jurecka P.; Cheatham T. E. Assessing the Current State of Amber Force Field Modifications for DNA. J. Chem. Theory Comput. 2016, 12, 4114–4127. 10.1021/acs.jctc.6b00186. PubMed DOI PMC
Joung I. S.; Cheatham T. E. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B 2008, 112, 9020–9041. 10.1021/jp8001614. PubMed DOI PMC
Izadi S.; Anandakrishnan R.; Onufriev A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871. 10.1021/jz501780a. PubMed DOI PMC
Krepl M.; Zgarbova M.; Stadlbauer P.; Otyepka M.; Banas P.; Koca J.; Cheatham T. E. 3rd; Jurecka P.; Sponer J. Reference Simulations of Noncanonical Nucleic Acids with Different Chi Variants of the AMBER Force Field: Quadruplex DNA, Quadruplex RNA and Z-DNA. J. Chem. Theory Comput. 2012, 8, 2506–2520. 10.1021/ct300275s. PubMed DOI PMC
Zgarbova M.; Luque F. J.; Sponer J.; Cheatham T. E. 3rd; Otyepka M.; Jurecka P. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters. J. Chem. Theory Comput. 2013, 9, 2339–2354. 10.1021/ct400154j. PubMed DOI PMC
Ivani I.; Dans P. D.; Noy A.; Perez A.; Faustino I.; Hospital A.; Walther J.; Andrio P.; Goni R.; Balaceanu A.; Portella G.; Battistini F.; Gelpi J. L.; Gonzalez C.; Vendruscolo M.; Laughton C. A.; Harris S. A.; Case D. A.; Orozco M. Parmbsc1: A Refined Force Field for DNA Simulations. Nat. Methods 2016, 13, 55–58. 10.1038/nmeth.3658. PubMed DOI PMC
Case D. A.; Darden T.; Cheatham T. E. III; Simmerling C. L.; Wang J.; Duke R. E.; Luo R.; Walker R., Zhang W.; Merz K. M.; Roberts S.; Hayik S.; Roitberg A.; Seabra G.; Swails J.; Goetz A. W.; Kolossvai I.; Wong K. F.; Paesani F.; Vanicek J.; Wolf R. M.; Liu J.; Wu X.; Brozell S. R.; Steinbrecher T.; Gohlke H.; Cai Q.; Ye X.; Wang J.; Hsieh M.-J.; Cui G.; Roe D. R.; Mathews D. H.; Seetin M. G.; Salomon-Ferrer R.; Sagui C.; Babin V.; Luchko T.; Gusarov S.; Kovalenko A.; Kollman P. A., AMBER 12; University of California: San Francisco, CA, 2012.
Salomon-Ferrer R.; Gotz A. W.; Poole D.; Le Grand S.; Walker R. C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. J. Chem. Theory Comput. 2013, 9, 3878–3888. 10.1021/ct400314y. PubMed DOI
Le Grand S.; Gotz A. W.; Walker R. C. SPFP: Speed without Compromise—A Mixed Precision Model for GPU Accelerated Molecular Dynamics Simulations. Comput. Phys. Commun. 2013, 184, 374–380. 10.1016/j.cpc.2012.09.022. DOI
Darden T.; York D.; Pedersen L. Particle Mesh Ewald: An N·log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. 10.1063/1.464397. DOI
Ryckaert J.-P.; Ciccotti G.; Berendsen H. J. C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. J. Comput. Phys. 1977, 23, 327–341. 10.1016/0021-9991(77)90098-5. DOI
Hopkins C. W.; Le Grand S.; Walker R. C.; Roitberg A. E. Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. J. Chem. Theory Comput. 2015, 11, 1864–1874. 10.1021/ct5010406. PubMed DOI
Berendsen H. J. C.; Postma J. P. M.; van Gunsteren W. F.; DiNola A.; Haak J. R. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81, 3684–3690. 10.1063/1.448118. DOI
Roe D. R.; Cheatham T. E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084–3095. 10.1021/ct400341p. PubMed DOI
Humphrey W.; Dalke A.; Schulten K. VMD: Visual Molecular Dynamics. J. Mol. Graphics 1996, 14, 33–38. 10.1016/0263-7855(96)00018-5. PubMed DOI
DeLano W. L.The PyMOL Molecular Graphics System; LLC: Schrodinger, 2008.
Laio A.; Parrinello M. Escaping Free-Energy Minima. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 12562–12566. 10.1073/pnas.202427399. PubMed DOI PMC
Barducci A.; Bussi G.; Parrinello M. Well-Tempered Metadynamics: A Smoothly Converging and Tunable Free-Energy Method. Phys. Rev. Lett. 2008, 100, 020603.10.1103/PhysRevLett.100.020603. PubMed DOI
Curuksu J.; Zacharias M. Enhanced Conformational Sampling of Nucleic Acids by a New Hamiltonian Replica Exchange Molecular Dynamics Approach. J. Chem. Phys. 2009, 130, 104110.10.1063/1.3086832. PubMed DOI
Berendsen H. J. C.; Grigera J. R.; Straatsma T. P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91, 6269–6271. 10.1021/j100308a038. DOI
Sousa da Silva A. W.; Vranken W. F. ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res. Notes 2012, 5, 367.10.1186/1756-0500-5-367. PubMed DOI PMC
Hess B.; Kutzner C.; Van Der Spoel D.; Lindahl E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. 10.1021/ct700301q. PubMed DOI
Tribello G. A.; Bonomi M.; Branduardi D.; Camilloni C.; Bussi G. PLUMED 2: New Feathers for an Old Bird. Comput. Phys. Commun. 2014, 185, 604–613. 10.1016/j.cpc.2013.09.018. DOI
Hess B.; Bekker H.; Berendsen H. J. C.; Fraaije J. G. E. M. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18, 1463–1472. 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Kuhrova P.; Best R. B.; Bottaro S.; Bussi G.; Sponer J.; Otyepka M.; Banas P. Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies. J. Chem. Theory Comput. 2016, 12, 4534–4548. 10.1021/acs.jctc.6b00300. PubMed DOI PMC
Feig M.; Karanicolas J.; Brooks C. L. 3rd MMTSB Tool Set: Enhanced Sampling and Multiscale Modeling Methods for Applications in Structural Biology. J. Mol. Graphics Modell. 2004, 22, 377–395. 10.1016/j.jmgm.2003.12.005. PubMed DOI
Scherer M. K.; Trendelkamp-Schroer B.; Paul F.; Perez-Hernandez G.; Hoffmann M.; Plattner N.; Wehmeyer C.; Prinz J.-H.; Noe F. PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models. J. Chem. Theory Comput. 2015, 11, 5525–5542. 10.1021/acs.jctc.5b00743. PubMed DOI
Senne M.; Trendelkamp-Schroer B.; Mey A. S. J. S.; Schutte C.; Noe F. EMMA: A Software Package for Markov Model Building and Analysis. J. Chem. Theory Comput. 2012, 8, 2223–2238. 10.1021/ct300274u. PubMed DOI
Perez-Hernandez G.; Paul F.; Giorgino T.; De Fabritiis G.; Noe F. Identification of Slow Molecular Order Parameters for Markov Model Construction. J. Chem. Phys. 2013, 139, 015102.10.1063/1.4811489. PubMed DOI
Schwantes C. R.; Pande V. S. Improvements in Markov State Model Construction Reveal Many Non-Native Interactions in the Folding of NTL9. J. Chem. Theory Comput. 2013, 9, 2000–2009. 10.1021/ct300878a. PubMed DOI PMC
Lloyd S. Least Squares Quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. 10.1109/TIT.1982.1056489. DOI
Pande V. S.; Beauchamp K.; Bowman G. R. Everything You Wanted to Know about Markov State Models But Were Afraid to Ask. Methods 2010, 52, 99–105. 10.1016/j.ymeth.2010.06.002. PubMed DOI PMC
Roblitz S.; Weber M. Fuzzy Spectral Clustering by PCCA+: Application to Markov State Models and Data Classification. Adv. Data Anal. Classif. 2013, 7, 147–179. 10.1007/s11634-013-0134-6. DOI
Deuflhard P.; Weber M. Robust Perron Cluster Analysis in Conformation Dynamics. Linear Algebra Appl. 2005, 398, 161–184. 10.1016/j.laa.2004.10.026. DOI
Prinz J. H.; Wu H.; Sarich M.; Keller B.; Senne M.; Held M.; Chodera J. D.; Schutte C.; Noe F. Markov Models of Molecular Kinetics: Generation and Validation. J. Chem. Phys. 2011, 134, 174105.10.1063/1.3565032. PubMed DOI
Metzner P.; Schutte C.; Vanden-Eijnden E. Transition Path Theory for Markov Jump Processes. Multiscale Model. Simul. 2009, 7, 1192–1219. 10.1137/070699500. DOI
E W.; Vanden-Eijnden E. Towards a Theory of Transition Paths. J. Stat. Phys. 2006, 123, 503–523. 10.1007/s10955-005-9003-9. DOI
Noe F.; Schutte C.; Vanden-Eijnden E.; Reich L.; Weikl T. R. Constructing the Equilibrium Ensemble of Folding Pathways from Short Off-Equilibrium Simulations. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 19011–19016. 10.1073/pnas.0905466106. PubMed DOI PMC
Shao J.; Tanner S. W.; Thompson N.; Cheatham T. E. Clustering Molecular Dynamics Trajectories: 1. Characterizing the Performance of Different Clustering Algorithms. J. Chem. Theory Comput. 2007, 3, 2312–2334. 10.1021/ct700119m. PubMed DOI
Bottaro S.; Di Palma F.; Bussi G. The Role of Nucleobase Interactions in RNA Structure and Dynamics. Nucleic Acids Res. 2014, 42, 13306–13314. 10.1093/nar/gku972. PubMed DOI PMC
Bazzicalupi C.; Ferraroni M.; Bilia A. R.; Scheggi F.; Gratteri P. The Crystal Structure of Human Telomeric DNA Complexed with Berberine: An Interesting Case of Stacked Ligand to G-Tetrad Ratio Higher Than 1:1. Nucleic Acids Res. 2013, 41, 632–638. 10.1093/nar/gks1001. PubMed DOI PMC
Sponer J.; Mladek A.; Sponer J. E.; Svozil D.; Zgarbova M.; Banas P.; Jurecka P.; Otyepka M. The DNA and RNA Sugar-Phosphate Backbone Emerges as the Key Player. An Overview of Quantum-Chemical, Structural Biology and Simulation Studies. Phys. Chem. Chem. Phys. 2012, 14, 15257–15277. 10.1039/c2cp41987d. PubMed DOI
Parkinson G. N.; Cuenca F.; Neidle S. Topology Conservation and Loop Flexibility in Quadruplex-Drug Recognition: Crystal Structures of Inter- and Intramolecular Telomeric DNA Quadruplex-Drug Complexes. J. Mol. Biol. 2008, 381, 1145–1156. 10.1016/j.jmb.2008.06.022. PubMed DOI
Sklenovsky P.; Florova P.; Banas P.; Reblova K.; Lankas F.; Otyepka M.; Sponer J. Understanding RNA Flexibility Using Explicit Solvent Simulations: The Ribosomal and Group I Intron Reverse Kink-Turn Motifs. J. Chem. Theory Comput. 2011, 7, 2963–2980. 10.1021/ct200204t. PubMed DOI
Luo D.; Mu Y. Computational Insights into the Stability and Folding Pathways of Human Telomeric DNA G-Quadruplexes. J. Phys. Chem. B 2016, 120, 4912–4926. 10.1021/acs.jpcb.6b01919. PubMed DOI
Rosta E.; Hummer G. Error and Efficiency of Replica Exchange Molecular Dynamics Simulations. J. Chem. Phys. 2009, 131, 165102.10.1063/1.3249608. PubMed DOI PMC
Cang X.; Sponer J.; Cheatham T. E. 3rd Explaining the Varied Glycosidic Conformational, G-Tract Length and Sequence Preferences for Anti-Parallel G-Quadruplexes. Nucleic Acids Res. 2011, 39, 4499–4512. 10.1093/nar/gkr031. PubMed DOI PMC
Sponer J.; Mladek A.; Spackova N.; Cang X.; Cheatham T. E. 3rd; Grimme S. Relative Stability of Different DNA Guanine Quadruplex Stem Topologies Derived Using Large-Scale Quantum-Chemical Computations. J. Am. Chem. Soc. 2013, 135, 9785–9796. 10.1021/ja402525c. PubMed DOI PMC
Complexity of Guanine Quadruplex Unfolding Pathways Revealed by Atomistic Pulling Simulations
Structural dynamics of propeller loop: towards folding of RNA G-quadruplex
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview