Assessing the Current State of Amber Force Field Modifications for DNA

. 2016 Aug 09 ; 12 (8) : 4114-27. [epub] 20160707

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27300587

The utility of molecular dynamics (MD) simulations to model biomolecular structure, dynamics, and interactions has witnessed enormous advances in recent years due to the availability of optimized MD software and access to significant computational power, including GPU multicore computing engines and other specialized hardware. This has led researchers to routinely extend conformational sampling times to the microsecond level and beyond. The extended sampling time has allowed the community not only to converge conformational ensembles through complete sampling but also to discover deficiencies and overcome problems with the force fields. Accuracy of the force fields is a key component, along with sampling, toward being able to generate accurate and stable structures of biopolymers. The Amber force field for nucleic acids has been used extensively since the 1990s, and multiple artifacts have been discovered, corrected, and reassessed by different research groups. We present a direct comparison of two of the most recent and state-of-the-art Amber force field modifications, bsc1 and OL15, that focus on accurate modeling of double-stranded DNA. After extensive MD simulations with five test cases and two different water models, we conclude that both modifications are a remarkable improvement over the previous bsc0 force field. Both force field modifications show better agreement when compared to experimental structures. To ensure convergence, the Drew-Dickerson dodecamer (DDD) system was simulated using 100 independent MD simulations, each extended to at least 10 μs, and the independent MD simulations were concatenated into a single 1 ms long trajectory for each combination of force field and water model. This is significantly beyond the time scale needed to converge the conformational ensemble of the internal portions of a DNA helix absent internal base pair opening. Considering all of the simulations discussed in the current work, the MD simulations performed to assess and validate the current force fields and water models aggregate over 14 ms of simulation time. The results suggest that both the bsc1 and OL15 force fields render average structures that deviate significantly less than 1 Å from the average experimental structures. This can be compared to similar but less exhaustive simulations with the CHARMM 36 force field that aggregate to the ∼90 μs time scale and also perform well but do not produce structures as close to the DDD NMR average structures (with root-mean-square deviations of 1.3 Å) as the newer Amber force fields. On the basis of these analyses, any future research involving double-stranded DNA simulations using the Amber force fields should employ the bsc1 or OL15 modification.

Zobrazit více v PubMed

Dans P. D.; Faustino I.; Battistini F.; Zakrzewska K.; Lavery R.; Orozco M. Unraveling the Sequence-Dependent Polymorphic Behavior of d(CpG) Steps in B-DNA. Nucleic Acids Res. 2014, 42, 11304–11320. 10.1093/nar/gku809. PubMed DOI PMC

Drew H. R.; Wing R. M.; Takano T.; Broka C.; Tanaka S.; Itakura K.; Dickerson R. E. Structure of a B-DNA Dodecamer: Conformation and Dynamics. Proc. Natl. Acad. Sci. U. S. A. 1981, 78, 2179–2183. 10.1073/pnas.78.4.2179. PubMed DOI PMC

Galindo-Murillo R.; Roe D. R.; Cheatham T. E. III. On the Absence of Intra-Helical DNA Dynamics on the μs to ms Timescale. Nat. Commun. 2014, 5, 5152.10.1038/ncomms6152. PubMed DOI PMC

Robertson J. C.; Cheatham T. E. III. DNA Backbone BI/BII Distribution and Dynamics in E2 Protein-Bound Environment Determined by Molecular Dynamics Simulations. J. Phys. Chem. B 2015, 119, 14111–14119. 10.1021/acs.jpcb.5b08486. PubMed DOI

Pasi M.; Maddocks J. H.; Beveridge D. L.; Bishop T. C.; Case D. A.; Cheatham T. E. III; Dans P. D.; Jayaram B.; Lankas F.; Laughton C.; Mitchell J.; Osman R.; Orozco M.; Pérez A.; Petkevičiu̅tė D.; Spackova N.; Sponer J.; Zakrzewska K.; Lavery R. μABC: A Systematic Microsecond Molecular Dynamics Study of Tetranucleotide Sequence Effects in B-DNA. Nucleic Acids Res. 2014, 42, 12272–12283. 10.1093/nar/gku855. PubMed DOI PMC

Beveridge D. L.; Barreiro G.; Byun K. S.; Case D. A.; Cheatham T. E. III; Dixit S.; Giudice E.; Lankas F.; Lavery R.; Maddocks J. H.; Osman R.; Seibert E.; Sklenar H.; Stoll G.; Thayer K. M.; Varnai P.; Young M. A. Molecular Dynamics Simulations of the 136 Unique Tetranucleotide Sequences of DNA Oligonucleotides. I. Research Design and Results on d(CpG) Steps. Biophys. J. 2004, 87, 3799–3813. 10.1529/biophysj.104.045252. PubMed DOI PMC

Beveridge D. L.; Cheatham T. E. III; Mezei M. The ABCs of Molecular Dynamics Simulations on B-DNA, circa 2012. J. Biosci. 2012, 37, 379–397. 10.1007/s12038-012-9222-6. PubMed DOI PMC

Shaw D. E.; Chao J. C.; Eastwood M. P.; Gagliardo J.; Grossman J. P.; Ho C. R.; Lerardi D. J.; Kolossváry I.; Klepeis J. L.; Layman T.; McLeavey C.; Deneroff M. M.; Moraes M. A.; Mueller R.; Priest E. C.; Shan Y.; Spengler J.; Theobald M.; Towles B.; Wang S. C.; Dror R. O.; Kuskin J. S.; Larson R. H.; Salmon J. K.; Young C.; Batson B.; Bowers K. J. Anton, a Special-Purpose Machine for Molecular Dynamics Simulation. Commun. ACM 2008, 51, 91–97. 10.1145/1364782.1364802. DOI

Salomon-Ferrer R.; Götz A. W.; Poole D.; Le Grand S.; Walker R. C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. J. Chem. Theory Comput. 2013, 9, 3878–3888. 10.1021/ct400314y. PubMed DOI

Götz A. W.; Williamson M. J.; Xu D.; Poole D.; Le Grand S.; Walker R. C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. J. Chem. Theory Comput. 2012, 8, 1542–1555. 10.1021/ct200909j. PubMed DOI PMC

Sugita Y.; Okamoto Y. Replica-Exchange Molecular Dynamics Method for Protein Folding. Chem. Phys. Lett. 1999, 314, 141–151. 10.1016/S0009-2614(99)01123-9. DOI

Hamelberg D.; Mongan J.; McCammon J. A. Accelerated Molecular Dynamics: A Promising and Efficient Simulation Method for Biomolecules. J. Chem. Phys. 2004, 120, 11919–11929. 10.1063/1.1755656. PubMed DOI

Bergonzo C.; Henriksen N. M.; Roe D. R.; Swails J. M.; Roitberg A. E.; Cheatham T. E. III. Multidimensional Replica Exchange Molecular Dynamics Yields a Converged Ensemble of an RNA Tetranucleotide. J. Chem. Theory Comput. 2014, 10, 492–499. 10.1021/ct400862k. PubMed DOI PMC

Roe D. R.; Bergonzo C.; Cheatham T. E. III. Evaluation of Enhanced Sampling Provided by Accelerated Molecular Dynamics with Hamiltonian Replica Exchange Methods. J. Phys. Chem. B 2014, 118, 3543–3552. 10.1021/jp4125099. PubMed DOI PMC

Hart K.; Foloppe N.; Baker C. M.; Denning E. J.; Nilsson L.; Mackerell A. D. Optimization of the CHARMM Additive Force Field for DNA: Improved Treatment of the BI/BII Conformational Equilibrium. J. Chem. Theory Comput. 2012, 8, 348–362. 10.1021/ct200723y. PubMed DOI PMC

Ivani I.; Dans P. D.; Noy A.; Pérez A.; Faustino I.; Hospital A.; Walther J.; Andrio P.; Goñi R.; Balaceanu A.; Portella G.; Battistini F.; Gelpí J. L.; González C.; Vendruscolo M.; Laughton C. A.; Harris S. A.; Case D. A.; Orozco M. Parmbsc1: A Refined Force Field for DNA Simulations. Nat. Methods 2015, 13, 55–58. 10.1038/nmeth.3658. PubMed DOI PMC

Krepl M.; Zgarbová M.; Stadlbauer P.; Otyepka M.; Banáš P.; Koča J.; Cheatham T. E. III; Jurečka P.; Sponer J. Reference Simulations of Noncanonical Nucleic Acids with Different χ Variants of the AMBER Force Field: Quadruplex DNA, Quadruplex RNA and Z-DNA. J. Chem. Theory Comput. 2012, 8, 2506–2520. 10.1021/ct300275s. PubMed DOI PMC

Langley D. R. Molecular Dynamic Simulations of Environment and Sequence Dependent DNA Conformations: The Development of the BMS Nucleic Acid Force Field and Comparison with Experimental Results. J. Biomol. Struct. Dyn. 1998, 16, 487–509. 10.1080/07391102.1998.10508265. PubMed DOI

Lavery R.; Zakrzewska K.; Sklenar H. JUMNA (Junction Minimisation of Nucleic Acids). Comput. Phys. Commun. 1995, 91, 135–158. 10.1016/0010-4655(95)00046-I. DOI

Soares T. A.; Hünenberger P. H.; Kastenholz M. A.; Kräutler V.; Lenz T.; Lins R. D.; Oostenbrink C.; Van Gunsteren W. F. An Improved Nucleic Acid Parameter Set for the GROMOS Force Field. J. Comput. Chem. 2005, 26, 725–737. 10.1002/jcc.20193. PubMed DOI

Zgarbová M.; Otyepka M.; Šponer J.; Mládek A.; Banáš P.; Cheatham T. E. III; Jurečka P. Refinement of the Cornell et Al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. J. Chem. Theory Comput. 2011, 7, 2886–2902. 10.1021/ct200162x. PubMed DOI PMC

Zgarbová M.; Šponer J.; Otyepka M.; Cheatham T. E. III; Galindo-Murillo R.; Jurečka P. Refinement of the Sugar-Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA. J. Chem. Theory Comput. 2015, 11, 5723–5736. 10.1021/acs.jctc.5b00716. PubMed DOI

Zgarbová M.; Luque F. J.; Šponer J.; Cheatham T. E. III; Otyepka M.; Jurečka P. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters. J. Chem. Theory Comput. 2013, 9, 2339–2354. 10.1021/ct400154j. PubMed DOI PMC

Weiner S. J.; Kollman P. A.; Case D. A.; Singh U. C.; Ghio C.; Alagona G.; Profeta S.; Weiner P. A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins. J. Am. Chem. Soc. 1984, 106, 765–784. 10.1021/ja00315a051. DOI

Weiner S. J.; Kollman P. A.; Nguyen D. T.; Case D. A. An All Atom Force Field for Simulations of Proteins and Nucleic Acids. J. Comput. Chem. 1986, 7, 230–252. 10.1002/jcc.540070216. PubMed DOI

Šponer J.; Mládek A.; Šponer J. E.; Svozil D.; Zgarbová M.; Banáš P.; Jurečka P.; Otyepka M. The DNA and RNA Sugar-Phosphate Backbone Emerges as the Key Player. An Overview of Quantum-Chemical, Structural Biology and Simulation Studies. Phys. Chem. Chem. Phys. 2012, 14, 15257–15277. 10.1039/c2cp41987d. PubMed DOI

Šponer J.; Banáš P.; Jurečka P.; Zgarbová M.; Kührová P.; Havrila M.; Krepl M.; Stadlbauer P.; Otyepka M. Molecular Dynamics Simulations of Nucleic Acids. From Tetranucleotides to the Ribosome. J. Phys. Chem. Lett. 2014, 5, 1771–1782. 10.1021/jz500557y. PubMed DOI

Dans P. D.; Danila̅ne L.; Ivani I.; Dršata T.; Lankaš F.; Hospital A.; Walther J.; Pujagut R. I.; Battistini F.; Gelpí J. L.; Lavery R.; Orozco M. Long-Timescale Dynamics of the Drew-Dickerson Dodecamer. Nucleic Acids Res. 2016, 44, 4052–4066. 10.1093/nar/gkw264. PubMed DOI PMC

Galindo-Murillo R.; Roe D. R.; Cheatham T. E. III. Convergence and Reproducibility in Molecular Dynamics Simulations of the DNA Duplex d(GCACGAACGAACGAACGC). Biochim. Biophys. Acta, Gen. Subj. 2015, 1850, 1041–1058. 10.1016/j.bbagen.2014.09.007. PubMed DOI PMC

Cornell W. D.; Cieplak P.; Bayly C. I.; Gould I. R.; Merz K. M.; Ferguson D. M.; Spellmeyer D. C.; Fox T.; Caldwell J. W.; Kollman P. A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197. 10.1021/ja00124a002. DOI

Kollman P. A.; Dixon R.; Cornell W. D.; Fox T.; Chipot C.; Pohorille A.. The Development/Application of the “Minimalist” Organic/Biochemical Molecular Mechanic Force Field Using a Combination of ab Initio Calculations and Experimental Data. In Computer Simulations of Biomolecular Systems; Van Gunsteren W. F., Wilkinson A. J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997; pp 83–96.

Cheatham T. E. III; Cieplak P.; Kollman P. A. A Modified Version of the Cornell et Al. Force Field with Improved Sugar Pucker Phases and Helical Repeat. J. Biomol. Struct. Dyn. 1999, 16, 845–862. 10.1080/07391102.1999.10508297. PubMed DOI

Wang J.; Cieplak P.; Kollman P. A. How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules?. J. Comput. Chem. 2000, 21, 1049–1074. 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F. DOI

Pérez A.; Marchán I.; Svozil D.; Šponer J.; Cheatham T. E. III; Laughton C. A.; Orozco M. Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of Alpha/gamma Conformers. Biophys. J. 2007, 92, 3817–3829. 10.1529/biophysj.106.097782. PubMed DOI PMC

Wang A. H.; Quigley G. J.; Kolpak F. J.; Crawford J. L.; van Boom J. H.; van der Marel G.; Rich A. Molecular Structure of a Left-Handed Double Helical DNA Fragment at Atomic Resolution. Nature 1979, 282, 680–686. 10.1038/282680a0. PubMed DOI

Pohl F. M.; Jovin T. M. Salt-Induced Co-Operative Conformational Change of a Synthetic DNA: Equilibrium and Kinetic Studies with Poly (dG-dC). J. Mol. Biol. 1972, 67, 375–396. 10.1016/0022-2836(72)90457-3. PubMed DOI

Pohl F. M. Polymorphism of a Synthetic DNA in Solution. Nature 1976, 260, 365–366. 10.1038/260365a0. PubMed DOI

Pohl F. M.; Jovin T. M. Salt-Induced Co-Operative Conformational Change of a Synthetic DNA: Equilibrium and Kinetic Studies with poly(dG-dC). J. Mol. Biol. 1972, 67, 375–396. 10.1016/0022-2836(72)90457-3. PubMed DOI

Fuertes M. A.; Cepeda V.; Alonso C.; Pérez J. M. Molecular Mechanisms for the B-Z Transition in the Example of poly[d(G-C) X d(G-C)] Polymers. A Critical Review. Chem. Rev. 2006, 106, 2045–2064. 10.1021/cr050243f. PubMed DOI

Rich A.; Nordheim A.; Wang A. H. The Chemistry and Biology of Left-Handed Z-DNA. Annu. Rev. Biochem. 1984, 53, 791–846. 10.1146/annurev.bi.53.070184.004043. PubMed DOI

Rich A.; Zhang S. Timeline: Z-DNA: The Long Road to Biological Function. Nat. Rev. Genet. 2003, 4, 566–572. 10.1038/nrg1115. PubMed DOI

Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926.10.1063/1.445869. DOI

Berendsen H. J. C.; Grigera J. R.; Straatsma T. P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91, 6269–6271. 10.1021/j100308a038. DOI

Horn H. W.; Swope W. C.; Pitera J. W.; Madura J. D.; Dick T. J.; Hura G. L.; Head-Gordon T. Development of an Improved Four-Site Water Model for Biomolecular Simulations: TIP4P-Ew. J. Chem. Phys. 2004, 120, 9665–9678. 10.1063/1.1683075. PubMed DOI

Izadi S.; Anandakrishnan R.; Onufriev A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871. 10.1021/jz501780a. PubMed DOI PMC

Bergonzo C.; Cheatham T. E. III Improved Force Field Parameters Lead to a Better Description of RNA Structure. J. Chem. Theory Comput. 2015, 11, 3969–3972. 10.1021/acs.jctc.5b00444. PubMed DOI

Mukhopadhyay A.; Fenley A. T.; Tolokh I. S.; Onufriev A. V. Charge Hydration Asymmetry: The Basic Principle and How to Use It to Test and Improve Water Models. J. Phys. Chem. B 2012, 116, 9776–9783. 10.1021/jp305226j. PubMed DOI PMC

Wu Z.; Delaglio F.; Tjandra N.; Zhurkin V. B.; Bax A. Overall Structure and Sugar Dynamics of a DNA Dodecamer from Homo- and Heteronuclear Dipolar Couplings and 31P Chemical Shift Anisotropy. J. Biomol. NMR 2003, 26, 297–315. 10.1023/A:1024047103398. PubMed DOI

MacDonald D.; Herbert K.; Zhang X.; Polgruto T.; Lu P. Solution Structure of an A-Tract DNA Bend. J. Mol. Biol. 2001, 306, 1081–1098. 10.1006/jmbi.2001.4447. PubMed DOI

Han G. W.; Langs D.; Kopka M. L.; Dickerson R. E. The Ultra-High Resolution Structure of d(CTTTTAAAAG)2: Modulation of Bending by T-A Steps and Its Role in DNA Recognition (PDB entry 1SK5). http://www.rcsb.org/pdb/explore/explore.do?structureId=1sk5 (accessed June 13, 2016).

Maehigashi T.; Hsiao C.; Woods K. K.; Moulaei T.; Hud N. V.; Williams L. D. B-DNA Structure Is Intrinsically Polymorphic: Even at the Level of Base Pair Positions. Nucleic Acids Res. 2012, 40, 3714–3722. 10.1093/nar/gkr1168. PubMed DOI PMC

Tereshko V.; Wilds C. J.; Minasov G.; Prakash T. P.; Maier M. A.; Howard A.; Wawrzak Z.; Manoharan M.; Egli M. Detection of Alkali Metal Ions in DNA Crystals Using State-of-the-Art X-Ray Diffraction Experiments. Nucleic Acids Res. 2001, 29, 1208–1215. 10.1093/nar/29.5.1208. PubMed DOI PMC

Joung I. S.; Cheatham T. E. III. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B 2008, 112, 9020–9041. 10.1021/jp8001614. PubMed DOI PMC

Joung I. S.; Cheatham T. E. III. Molecular Dynamics Simulations of the Dynamic and Energetic Properties of Alkali and Halide Ions Using Water-Model-Specific Ion Parameters. J. Phys. Chem. B 2009, 113, 13279–13290. 10.1021/jp902584c. PubMed DOI PMC

Shih C. C.; Georghiou S. Large-Amplitude Fast Motions in Double-Stranded DNA Driven by Solvent Thermal Fluctuations. Biopolymers 2006, 81, 450–463. 10.1002/bip.20444. PubMed DOI

Pastor R. W.; Brooks B. R.; Szabo A. An Analysis of the Accuracy of Langevin and Molecular Dynamics Algorithms. Mol. Phys. 1988, 65, 1409–1419. 10.1080/00268978800101881. DOI

Ryckaert J.-P. J.-P.; Ciccotti G.; Berendsen H. J. C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of N-Alkanes. J. Comput. Phys. 1977, 23, 327–341. 10.1016/0021-9991(77)90098-5. DOI

Hopkins C. W.; Le Grand S.; Walker R. C.; Roitberg A. E. Long Time Step Molecular Dynamics through Hydrogen Mass Repartitioning. J. Chem. Theory Comput. 2015, 11, 1864–1874. 10.1021/ct5010406. PubMed DOI

Darden T. A.; York D.; Pedersen L. Particle Mesh Ewald: An N log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. 10.1063/1.464397. DOI

Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577–8593. 10.1063/1.470117. DOI

Case D. A.; Cheatham T. E. III; Darden T.; Gohlke H.; Luo R.; Merz K. M.; Onufriev A.; Simmerling C.; Wang B.; Woods R. J. The Amber Biomolecular Simulation Programs. J. Comput. Chem. 2005, 26, 1668–1688. 10.1002/jcc.20290. PubMed DOI PMC

Case D. A.; Darden T. A.; Cheatham T. E. III; Simmerling C. L.; Wang J.; Duke R. E.; Luo R.; Walker R. C.; Zhang W.; Merz K. M.; Roberts B.; Hayik S.; Roitberg A.; Seabra G.; Swails J.; Goetz A. W.; Kolossváry I.; Wong K. F.; Paesani F.; Vanicek J.; Wolf R. M.; Liu J.; Wu X.; Brozell S. R.; Steinbrecher T.; Gohlke H.; Cai Q.; Ye X.; Hsieh M.-J.; Cui G.; Roe D. R.; Mathews D. H.; Seetin M. G.; Salomon-Ferrer R.; Sagui C.; Babin V.; Luchko T.; Gusarov S.; Kovalenko A.; Kollman P. A.. AMBER14; University of California: San Francisco, 2014.

Cheatham T. E. III; Case D. A.. Using AMBER to Simulate DNA and DNA. In Computational Studies of DNA and RNA; Sponer J., Lankaš F., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp 45–72.

Roe D. R.; Cheatham T. E. III. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084–3095. 10.1021/ct400341p. PubMed DOI

Humphrey W.; Dalke A.; Schulten K. VMD: Visual Molecular Dynamics. J. Mol. Graphics 1996, 14, 33–38. 10.1016/0263-7855(96)00018-5. PubMed DOI

Bakan A.; Meireles L. M.; Bahar I. ProDy: Protein Dynamics Inferred from Theory and Experiments. Bioinformatics 2011, 27, 1575–1577. 10.1093/bioinformatics/btr168. PubMed DOI PMC

Dršata T.; Pérez A.; Orozco M.; Morozov A. V.; Šponer J.; Lankaš F. Structure, Stiffness and Substates of the Dickerson-Drew Dodecamer. J. Chem. Theory Comput. 2013, 9, 707–721. 10.1021/ct300671y. PubMed DOI PMC

Guéron M.; Kochoyan M.; Leroy J. L. A Single Mode of DNA Base-Pair Opening Drives Imino Proton Exchange. Nature 1987, 328, 89–92. 10.1038/328089a0. PubMed DOI

Leijon M.; Gräslund A. Effects of Sequence and Length on Imino Proton Exchange and Base Pair Opening Kinetics in DNA Oligonucleotide Duplexes. Nucleic Acids Res. 1992, 20, 5339–5343. 10.1093/nar/20.20.5339. PubMed DOI PMC

Moe J. G.; Russu I. M. Proton Exchange and Base-Pair Opening Kinetics in 5′-d(CGCGAATTCGCG)-3′ and Related Dodecamers. Nucleic Acids Res. 1990, 18, 821–827. 10.1093/nar/18.4.821. PubMed DOI PMC

Zgarbová M.; Otyepka M.; Šponer J.; Lankaš F.; Jurečka P. Base Pair Fraying in Molecular Dynamics Simulations of DNA and RNA. J. Chem. Theory Comput. 2014, 10, 3177–3189. 10.1021/ct500120v. PubMed DOI

Pérez A.; Lankas F.; Luque F. J.; Orozco M. Towards a Molecular Dynamics Consensus View of B-DNA Flexibility. Nucleic Acids Res. 2008, 36, 2379–2394. 10.1093/nar/gkn082. PubMed DOI PMC

Harris S. A.; Sands Z. A.; Laughton C. A. Molecular Dynamics Simulations of Duplex Stretching Reveal the Importance of Entropy in Determining the Biomechanical Properties of DNA. Biophys. J. 2005, 88, 1684–1691. 10.1529/biophysj.104.046912. PubMed DOI PMC

Harris S. A.; Laughton C. A.; Liverpool T. B. Mapping the Phase Diagram of the Writhe of DNA Nanocircles Using Atomistic Molecular Dynamics Simulations. Nucleic Acids Res. 2008, 36, 21–29. 10.1093/nar/gkm891. PubMed DOI PMC

Lankas F.; Lavery R.; Maddocks J. H. Kinking Occurs during Molecular Dynamics Simulations of Small DNA Minicircles. Structure 2006, 14, 1527–1534. 10.1016/j.str.2006.08.004. PubMed DOI

Čech P.; Kukal J.; Černý J.; Schneider B.; Svozil D. Automatic Workflow for the Classification of Local DNA Conformations. BMC Bioinf. 2013, 14, 205.10.1186/1471-2105-14-205. PubMed DOI PMC

Dickerson R. E.; Goodsell D. S.; Kopka M. L.; Pjura P. E. The Effect of Crystal Packing on Oligonucleotide Double Helix Structure. J. Biomol. Struct. Dyn. 1987, 5, 557–579. 10.1080/07391102.1987.10506413. PubMed DOI

Moradi M.; Babin V.; Roland C.; Sagui C. Reaction Path Ensemble of the B-Z-DNA Transition: A Comprehensive Atomistic Study. Nucleic Acids Res. 2013, 41, 33–43. 10.1093/nar/gks1003. PubMed DOI PMC

Kastenholz M. A.; Schwartz T. U.; Hünenberger P. H. The Transition between the B and Z Conformations of DNA Investigated by Targeted Molecular Dynamics Simulations with Explicit Solvation. Biophys. J. 2006, 91, 2976–2990. 10.1529/biophysj.106.083667. PubMed DOI PMC

Savelyev A.; MacKerell A. D. All-Atom Polarizable Force Field for DNA Based on the Classical Drude Oscillator Model. J. Comput. Chem. 2014, 35, 1219–1239. 10.1002/jcc.23611. PubMed DOI PMC

Lu X.-J. 3DNA: A Software Package for the Analysis, Rebuilding and Visualization of Three-Dimensional Nucleic Acid Structures. Nucleic Acids Res. 2003, 31, 5108–5121. 10.1093/nar/gkg680. PubMed DOI PMC

Tian Y.; Kayatta M.; Shultis K.; Gonzalez A.; Mueller L. J.; Hatcher M. E. 31P NMR Investigation of Backbone Dynamics in DNA Binding Sites. J. Phys. Chem. B 2009, 113, 2596–2603. 10.1021/jp711203m. PubMed DOI PMC

Schwieters C. D.; Clore G. M. A Physical Picture of Atomic Motions within the Dickerson DNA Dodecamer in Solution Derived from Joint Ensemble Refinement against NMR and Large-Angle X-Ray Scattering Data. Biochemistry 2007, 46, 1152–1166. 10.1021/bi061943x. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Refinement of the Sugar Puckering Torsion Potential in the AMBER DNA Force Field

. 2025 Jan 28 ; 21 (2) : 833-846. [epub] 20250102

Complex Biophysical and Computational Analyses of G-Quadruplex Ligands: The Porphyrin Stacks Back

. 2024 Dec 10 ; 30 (69) : e202402600. [epub] 20241103

Temperature-dependent elasticity of DNA, RNA, and hybrid double helices

. 2024 Mar 05 ; 123 (5) : 572-583. [epub] 20240202

Temperature-Dependent Twist of Double-Stranded RNA Probed by Magnetic Tweezer Experiments and Molecular Dynamics Simulations

. 2024 Jan 25 ; 128 (3) : 664-675. [epub] 20240110

Assessing the Current State of Amber Force Field Modifications for DNA─2023 Edition

. 2023 Jul 11 ; 19 (13) : 4299-4307. [epub] 20230621

Importance of base-pair opening for mismatch recognition

. 2020 Nov 18 ; 48 (20) : 11322-11334.

Parallel G-triplexes and G-hairpins as potential transitory ensembles in the folding of parallel-stranded DNA G-Quadruplexes

. 2019 Aug 22 ; 47 (14) : 7276-7293.

RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview

. 2018 Apr 25 ; 118 (8) : 4177-4338. [epub] 20180103

A DNA structural alphabet provides new insight into DNA flexibility

. 2018 Jan 01 ; 74 (Pt 1) : 52-64. [epub] 20180101

Exploring the Dynamics of Propeller Loops in Human Telomeric DNA Quadruplexes Using Atomistic Simulations

. 2017 Jun 13 ; 13 (6) : 2458-2480. [epub] 20170518

Interstrand cross-linking implies contrasting structural consequences for DNA: insights from molecular dynamics

. 2017 Feb 28 ; 45 (4) : 2188-2195.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...