Assessing the Current State of Amber Force Field Modifications for DNA
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27300587
PubMed Central
PMC4980684
DOI
10.1021/acs.jctc.6b00186
Knihovny.cz E-zdroje
- MeSH
- B-DNA chemie MeSH
- DNA chemie MeSH
- konformace nukleové kyseliny MeSH
- magnetická rezonanční spektroskopie MeSH
- párování bází MeSH
- simulace molekulární dynamiky MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- B-DNA MeSH
- DNA MeSH
- voda MeSH
The utility of molecular dynamics (MD) simulations to model biomolecular structure, dynamics, and interactions has witnessed enormous advances in recent years due to the availability of optimized MD software and access to significant computational power, including GPU multicore computing engines and other specialized hardware. This has led researchers to routinely extend conformational sampling times to the microsecond level and beyond. The extended sampling time has allowed the community not only to converge conformational ensembles through complete sampling but also to discover deficiencies and overcome problems with the force fields. Accuracy of the force fields is a key component, along with sampling, toward being able to generate accurate and stable structures of biopolymers. The Amber force field for nucleic acids has been used extensively since the 1990s, and multiple artifacts have been discovered, corrected, and reassessed by different research groups. We present a direct comparison of two of the most recent and state-of-the-art Amber force field modifications, bsc1 and OL15, that focus on accurate modeling of double-stranded DNA. After extensive MD simulations with five test cases and two different water models, we conclude that both modifications are a remarkable improvement over the previous bsc0 force field. Both force field modifications show better agreement when compared to experimental structures. To ensure convergence, the Drew-Dickerson dodecamer (DDD) system was simulated using 100 independent MD simulations, each extended to at least 10 μs, and the independent MD simulations were concatenated into a single 1 ms long trajectory for each combination of force field and water model. This is significantly beyond the time scale needed to converge the conformational ensemble of the internal portions of a DNA helix absent internal base pair opening. Considering all of the simulations discussed in the current work, the MD simulations performed to assess and validate the current force fields and water models aggregate over 14 ms of simulation time. The results suggest that both the bsc1 and OL15 force fields render average structures that deviate significantly less than 1 Å from the average experimental structures. This can be compared to similar but less exhaustive simulations with the CHARMM 36 force field that aggregate to the ∼90 μs time scale and also perform well but do not produce structures as close to the DDD NMR average structures (with root-mean-square deviations of 1.3 Å) as the newer Amber force fields. On the basis of these analyses, any future research involving double-stranded DNA simulations using the Amber force fields should employ the bsc1 or OL15 modification.
Zobrazit více v PubMed
Dans P. D.; Faustino I.; Battistini F.; Zakrzewska K.; Lavery R.; Orozco M. Unraveling the Sequence-Dependent Polymorphic Behavior of d(CpG) Steps in B-DNA. Nucleic Acids Res. 2014, 42, 11304–11320. 10.1093/nar/gku809. PubMed DOI PMC
Drew H. R.; Wing R. M.; Takano T.; Broka C.; Tanaka S.; Itakura K.; Dickerson R. E. Structure of a B-DNA Dodecamer: Conformation and Dynamics. Proc. Natl. Acad. Sci. U. S. A. 1981, 78, 2179–2183. 10.1073/pnas.78.4.2179. PubMed DOI PMC
Galindo-Murillo R.; Roe D. R.; Cheatham T. E. III. On the Absence of Intra-Helical DNA Dynamics on the μs to ms Timescale. Nat. Commun. 2014, 5, 5152.10.1038/ncomms6152. PubMed DOI PMC
Robertson J. C.; Cheatham T. E. III. DNA Backbone BI/BII Distribution and Dynamics in E2 Protein-Bound Environment Determined by Molecular Dynamics Simulations. J. Phys. Chem. B 2015, 119, 14111–14119. 10.1021/acs.jpcb.5b08486. PubMed DOI
Pasi M.; Maddocks J. H.; Beveridge D. L.; Bishop T. C.; Case D. A.; Cheatham T. E. III; Dans P. D.; Jayaram B.; Lankas F.; Laughton C.; Mitchell J.; Osman R.; Orozco M.; Pérez A.; Petkevičiu̅tė D.; Spackova N.; Sponer J.; Zakrzewska K.; Lavery R. μABC: A Systematic Microsecond Molecular Dynamics Study of Tetranucleotide Sequence Effects in B-DNA. Nucleic Acids Res. 2014, 42, 12272–12283. 10.1093/nar/gku855. PubMed DOI PMC
Beveridge D. L.; Barreiro G.; Byun K. S.; Case D. A.; Cheatham T. E. III; Dixit S.; Giudice E.; Lankas F.; Lavery R.; Maddocks J. H.; Osman R.; Seibert E.; Sklenar H.; Stoll G.; Thayer K. M.; Varnai P.; Young M. A. Molecular Dynamics Simulations of the 136 Unique Tetranucleotide Sequences of DNA Oligonucleotides. I. Research Design and Results on d(CpG) Steps. Biophys. J. 2004, 87, 3799–3813. 10.1529/biophysj.104.045252. PubMed DOI PMC
Beveridge D. L.; Cheatham T. E. III; Mezei M. The ABCs of Molecular Dynamics Simulations on B-DNA, circa 2012. J. Biosci. 2012, 37, 379–397. 10.1007/s12038-012-9222-6. PubMed DOI PMC
Shaw D. E.; Chao J. C.; Eastwood M. P.; Gagliardo J.; Grossman J. P.; Ho C. R.; Lerardi D. J.; Kolossváry I.; Klepeis J. L.; Layman T.; McLeavey C.; Deneroff M. M.; Moraes M. A.; Mueller R.; Priest E. C.; Shan Y.; Spengler J.; Theobald M.; Towles B.; Wang S. C.; Dror R. O.; Kuskin J. S.; Larson R. H.; Salmon J. K.; Young C.; Batson B.; Bowers K. J. Anton, a Special-Purpose Machine for Molecular Dynamics Simulation. Commun. ACM 2008, 51, 91–97. 10.1145/1364782.1364802. DOI
Salomon-Ferrer R.; Götz A. W.; Poole D.; Le Grand S.; Walker R. C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. J. Chem. Theory Comput. 2013, 9, 3878–3888. 10.1021/ct400314y. PubMed DOI
Götz A. W.; Williamson M. J.; Xu D.; Poole D.; Le Grand S.; Walker R. C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. J. Chem. Theory Comput. 2012, 8, 1542–1555. 10.1021/ct200909j. PubMed DOI PMC
Sugita Y.; Okamoto Y. Replica-Exchange Molecular Dynamics Method for Protein Folding. Chem. Phys. Lett. 1999, 314, 141–151. 10.1016/S0009-2614(99)01123-9. DOI
Hamelberg D.; Mongan J.; McCammon J. A. Accelerated Molecular Dynamics: A Promising and Efficient Simulation Method for Biomolecules. J. Chem. Phys. 2004, 120, 11919–11929. 10.1063/1.1755656. PubMed DOI
Bergonzo C.; Henriksen N. M.; Roe D. R.; Swails J. M.; Roitberg A. E.; Cheatham T. E. III. Multidimensional Replica Exchange Molecular Dynamics Yields a Converged Ensemble of an RNA Tetranucleotide. J. Chem. Theory Comput. 2014, 10, 492–499. 10.1021/ct400862k. PubMed DOI PMC
Roe D. R.; Bergonzo C.; Cheatham T. E. III. Evaluation of Enhanced Sampling Provided by Accelerated Molecular Dynamics with Hamiltonian Replica Exchange Methods. J. Phys. Chem. B 2014, 118, 3543–3552. 10.1021/jp4125099. PubMed DOI PMC
Hart K.; Foloppe N.; Baker C. M.; Denning E. J.; Nilsson L.; Mackerell A. D. Optimization of the CHARMM Additive Force Field for DNA: Improved Treatment of the BI/BII Conformational Equilibrium. J. Chem. Theory Comput. 2012, 8, 348–362. 10.1021/ct200723y. PubMed DOI PMC
Ivani I.; Dans P. D.; Noy A.; Pérez A.; Faustino I.; Hospital A.; Walther J.; Andrio P.; Goñi R.; Balaceanu A.; Portella G.; Battistini F.; Gelpí J. L.; González C.; Vendruscolo M.; Laughton C. A.; Harris S. A.; Case D. A.; Orozco M. Parmbsc1: A Refined Force Field for DNA Simulations. Nat. Methods 2015, 13, 55–58. 10.1038/nmeth.3658. PubMed DOI PMC
Krepl M.; Zgarbová M.; Stadlbauer P.; Otyepka M.; Banáš P.; Koča J.; Cheatham T. E. III; Jurečka P.; Sponer J. Reference Simulations of Noncanonical Nucleic Acids with Different χ Variants of the AMBER Force Field: Quadruplex DNA, Quadruplex RNA and Z-DNA. J. Chem. Theory Comput. 2012, 8, 2506–2520. 10.1021/ct300275s. PubMed DOI PMC
Langley D. R. Molecular Dynamic Simulations of Environment and Sequence Dependent DNA Conformations: The Development of the BMS Nucleic Acid Force Field and Comparison with Experimental Results. J. Biomol. Struct. Dyn. 1998, 16, 487–509. 10.1080/07391102.1998.10508265. PubMed DOI
Lavery R.; Zakrzewska K.; Sklenar H. JUMNA (Junction Minimisation of Nucleic Acids). Comput. Phys. Commun. 1995, 91, 135–158. 10.1016/0010-4655(95)00046-I. DOI
Soares T. A.; Hünenberger P. H.; Kastenholz M. A.; Kräutler V.; Lenz T.; Lins R. D.; Oostenbrink C.; Van Gunsteren W. F. An Improved Nucleic Acid Parameter Set for the GROMOS Force Field. J. Comput. Chem. 2005, 26, 725–737. 10.1002/jcc.20193. PubMed DOI
Zgarbová M.; Otyepka M.; Šponer J.; Mládek A.; Banáš P.; Cheatham T. E. III; Jurečka P. Refinement of the Cornell et Al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. J. Chem. Theory Comput. 2011, 7, 2886–2902. 10.1021/ct200162x. PubMed DOI PMC
Zgarbová M.; Šponer J.; Otyepka M.; Cheatham T. E. III; Galindo-Murillo R.; Jurečka P. Refinement of the Sugar-Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA. J. Chem. Theory Comput. 2015, 11, 5723–5736. 10.1021/acs.jctc.5b00716. PubMed DOI
Zgarbová M.; Luque F. J.; Šponer J.; Cheatham T. E. III; Otyepka M.; Jurečka P. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters. J. Chem. Theory Comput. 2013, 9, 2339–2354. 10.1021/ct400154j. PubMed DOI PMC
Weiner S. J.; Kollman P. A.; Case D. A.; Singh U. C.; Ghio C.; Alagona G.; Profeta S.; Weiner P. A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins. J. Am. Chem. Soc. 1984, 106, 765–784. 10.1021/ja00315a051. DOI
Weiner S. J.; Kollman P. A.; Nguyen D. T.; Case D. A. An All Atom Force Field for Simulations of Proteins and Nucleic Acids. J. Comput. Chem. 1986, 7, 230–252. 10.1002/jcc.540070216. PubMed DOI
Šponer J.; Mládek A.; Šponer J. E.; Svozil D.; Zgarbová M.; Banáš P.; Jurečka P.; Otyepka M. The DNA and RNA Sugar-Phosphate Backbone Emerges as the Key Player. An Overview of Quantum-Chemical, Structural Biology and Simulation Studies. Phys. Chem. Chem. Phys. 2012, 14, 15257–15277. 10.1039/c2cp41987d. PubMed DOI
Šponer J.; Banáš P.; Jurečka P.; Zgarbová M.; Kührová P.; Havrila M.; Krepl M.; Stadlbauer P.; Otyepka M. Molecular Dynamics Simulations of Nucleic Acids. From Tetranucleotides to the Ribosome. J. Phys. Chem. Lett. 2014, 5, 1771–1782. 10.1021/jz500557y. PubMed DOI
Dans P. D.; Danila̅ne L.; Ivani I.; Dršata T.; Lankaš F.; Hospital A.; Walther J.; Pujagut R. I.; Battistini F.; Gelpí J. L.; Lavery R.; Orozco M. Long-Timescale Dynamics of the Drew-Dickerson Dodecamer. Nucleic Acids Res. 2016, 44, 4052–4066. 10.1093/nar/gkw264. PubMed DOI PMC
Galindo-Murillo R.; Roe D. R.; Cheatham T. E. III. Convergence and Reproducibility in Molecular Dynamics Simulations of the DNA Duplex d(GCACGAACGAACGAACGC). Biochim. Biophys. Acta, Gen. Subj. 2015, 1850, 1041–1058. 10.1016/j.bbagen.2014.09.007. PubMed DOI PMC
Cornell W. D.; Cieplak P.; Bayly C. I.; Gould I. R.; Merz K. M.; Ferguson D. M.; Spellmeyer D. C.; Fox T.; Caldwell J. W.; Kollman P. A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197. 10.1021/ja00124a002. DOI
Kollman P. A.; Dixon R.; Cornell W. D.; Fox T.; Chipot C.; Pohorille A.. The Development/Application of the “Minimalist” Organic/Biochemical Molecular Mechanic Force Field Using a Combination of ab Initio Calculations and Experimental Data. In Computer Simulations of Biomolecular Systems; Van Gunsteren W. F., Wilkinson A. J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997; pp 83–96.
Cheatham T. E. III; Cieplak P.; Kollman P. A. A Modified Version of the Cornell et Al. Force Field with Improved Sugar Pucker Phases and Helical Repeat. J. Biomol. Struct. Dyn. 1999, 16, 845–862. 10.1080/07391102.1999.10508297. PubMed DOI
Wang J.; Cieplak P.; Kollman P. A. How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules?. J. Comput. Chem. 2000, 21, 1049–1074. 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F. DOI
Pérez A.; Marchán I.; Svozil D.; Šponer J.; Cheatham T. E. III; Laughton C. A.; Orozco M. Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of Alpha/gamma Conformers. Biophys. J. 2007, 92, 3817–3829. 10.1529/biophysj.106.097782. PubMed DOI PMC
Wang A. H.; Quigley G. J.; Kolpak F. J.; Crawford J. L.; van Boom J. H.; van der Marel G.; Rich A. Molecular Structure of a Left-Handed Double Helical DNA Fragment at Atomic Resolution. Nature 1979, 282, 680–686. 10.1038/282680a0. PubMed DOI
Pohl F. M.; Jovin T. M. Salt-Induced Co-Operative Conformational Change of a Synthetic DNA: Equilibrium and Kinetic Studies with Poly (dG-dC). J. Mol. Biol. 1972, 67, 375–396. 10.1016/0022-2836(72)90457-3. PubMed DOI
Pohl F. M. Polymorphism of a Synthetic DNA in Solution. Nature 1976, 260, 365–366. 10.1038/260365a0. PubMed DOI
Pohl F. M.; Jovin T. M. Salt-Induced Co-Operative Conformational Change of a Synthetic DNA: Equilibrium and Kinetic Studies with poly(dG-dC). J. Mol. Biol. 1972, 67, 375–396. 10.1016/0022-2836(72)90457-3. PubMed DOI
Fuertes M. A.; Cepeda V.; Alonso C.; Pérez J. M. Molecular Mechanisms for the B-Z Transition in the Example of poly[d(G-C) X d(G-C)] Polymers. A Critical Review. Chem. Rev. 2006, 106, 2045–2064. 10.1021/cr050243f. PubMed DOI
Rich A.; Nordheim A.; Wang A. H. The Chemistry and Biology of Left-Handed Z-DNA. Annu. Rev. Biochem. 1984, 53, 791–846. 10.1146/annurev.bi.53.070184.004043. PubMed DOI
Rich A.; Zhang S. Timeline: Z-DNA: The Long Road to Biological Function. Nat. Rev. Genet. 2003, 4, 566–572. 10.1038/nrg1115. PubMed DOI
Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926.10.1063/1.445869. DOI
Berendsen H. J. C.; Grigera J. R.; Straatsma T. P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91, 6269–6271. 10.1021/j100308a038. DOI
Horn H. W.; Swope W. C.; Pitera J. W.; Madura J. D.; Dick T. J.; Hura G. L.; Head-Gordon T. Development of an Improved Four-Site Water Model for Biomolecular Simulations: TIP4P-Ew. J. Chem. Phys. 2004, 120, 9665–9678. 10.1063/1.1683075. PubMed DOI
Izadi S.; Anandakrishnan R.; Onufriev A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871. 10.1021/jz501780a. PubMed DOI PMC
Bergonzo C.; Cheatham T. E. III Improved Force Field Parameters Lead to a Better Description of RNA Structure. J. Chem. Theory Comput. 2015, 11, 3969–3972. 10.1021/acs.jctc.5b00444. PubMed DOI
Mukhopadhyay A.; Fenley A. T.; Tolokh I. S.; Onufriev A. V. Charge Hydration Asymmetry: The Basic Principle and How to Use It to Test and Improve Water Models. J. Phys. Chem. B 2012, 116, 9776–9783. 10.1021/jp305226j. PubMed DOI PMC
Wu Z.; Delaglio F.; Tjandra N.; Zhurkin V. B.; Bax A. Overall Structure and Sugar Dynamics of a DNA Dodecamer from Homo- and Heteronuclear Dipolar Couplings and 31P Chemical Shift Anisotropy. J. Biomol. NMR 2003, 26, 297–315. 10.1023/A:1024047103398. PubMed DOI
MacDonald D.; Herbert K.; Zhang X.; Polgruto T.; Lu P. Solution Structure of an A-Tract DNA Bend. J. Mol. Biol. 2001, 306, 1081–1098. 10.1006/jmbi.2001.4447. PubMed DOI
Han G. W.; Langs D.; Kopka M. L.; Dickerson R. E. The Ultra-High Resolution Structure of d(CTTTTAAAAG)2: Modulation of Bending by T-A Steps and Its Role in DNA Recognition (PDB entry 1SK5). http://www.rcsb.org/pdb/explore/explore.do?structureId=1sk5 (accessed June 13, 2016).
Maehigashi T.; Hsiao C.; Woods K. K.; Moulaei T.; Hud N. V.; Williams L. D. B-DNA Structure Is Intrinsically Polymorphic: Even at the Level of Base Pair Positions. Nucleic Acids Res. 2012, 40, 3714–3722. 10.1093/nar/gkr1168. PubMed DOI PMC
Tereshko V.; Wilds C. J.; Minasov G.; Prakash T. P.; Maier M. A.; Howard A.; Wawrzak Z.; Manoharan M.; Egli M. Detection of Alkali Metal Ions in DNA Crystals Using State-of-the-Art X-Ray Diffraction Experiments. Nucleic Acids Res. 2001, 29, 1208–1215. 10.1093/nar/29.5.1208. PubMed DOI PMC
Joung I. S.; Cheatham T. E. III. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B 2008, 112, 9020–9041. 10.1021/jp8001614. PubMed DOI PMC
Joung I. S.; Cheatham T. E. III. Molecular Dynamics Simulations of the Dynamic and Energetic Properties of Alkali and Halide Ions Using Water-Model-Specific Ion Parameters. J. Phys. Chem. B 2009, 113, 13279–13290. 10.1021/jp902584c. PubMed DOI PMC
Shih C. C.; Georghiou S. Large-Amplitude Fast Motions in Double-Stranded DNA Driven by Solvent Thermal Fluctuations. Biopolymers 2006, 81, 450–463. 10.1002/bip.20444. PubMed DOI
Pastor R. W.; Brooks B. R.; Szabo A. An Analysis of the Accuracy of Langevin and Molecular Dynamics Algorithms. Mol. Phys. 1988, 65, 1409–1419. 10.1080/00268978800101881. DOI
Ryckaert J.-P. J.-P.; Ciccotti G.; Berendsen H. J. C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of N-Alkanes. J. Comput. Phys. 1977, 23, 327–341. 10.1016/0021-9991(77)90098-5. DOI
Hopkins C. W.; Le Grand S.; Walker R. C.; Roitberg A. E. Long Time Step Molecular Dynamics through Hydrogen Mass Repartitioning. J. Chem. Theory Comput. 2015, 11, 1864–1874. 10.1021/ct5010406. PubMed DOI
Darden T. A.; York D.; Pedersen L. Particle Mesh Ewald: An N log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. 10.1063/1.464397. DOI
Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577–8593. 10.1063/1.470117. DOI
Case D. A.; Cheatham T. E. III; Darden T.; Gohlke H.; Luo R.; Merz K. M.; Onufriev A.; Simmerling C.; Wang B.; Woods R. J. The Amber Biomolecular Simulation Programs. J. Comput. Chem. 2005, 26, 1668–1688. 10.1002/jcc.20290. PubMed DOI PMC
Case D. A.; Darden T. A.; Cheatham T. E. III; Simmerling C. L.; Wang J.; Duke R. E.; Luo R.; Walker R. C.; Zhang W.; Merz K. M.; Roberts B.; Hayik S.; Roitberg A.; Seabra G.; Swails J.; Goetz A. W.; Kolossváry I.; Wong K. F.; Paesani F.; Vanicek J.; Wolf R. M.; Liu J.; Wu X.; Brozell S. R.; Steinbrecher T.; Gohlke H.; Cai Q.; Ye X.; Hsieh M.-J.; Cui G.; Roe D. R.; Mathews D. H.; Seetin M. G.; Salomon-Ferrer R.; Sagui C.; Babin V.; Luchko T.; Gusarov S.; Kovalenko A.; Kollman P. A.. AMBER14; University of California: San Francisco, 2014.
Cheatham T. E. III; Case D. A.. Using AMBER to Simulate DNA and DNA. In Computational Studies of DNA and RNA; Sponer J., Lankaš F., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp 45–72.
Roe D. R.; Cheatham T. E. III. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084–3095. 10.1021/ct400341p. PubMed DOI
Humphrey W.; Dalke A.; Schulten K. VMD: Visual Molecular Dynamics. J. Mol. Graphics 1996, 14, 33–38. 10.1016/0263-7855(96)00018-5. PubMed DOI
Bakan A.; Meireles L. M.; Bahar I. ProDy: Protein Dynamics Inferred from Theory and Experiments. Bioinformatics 2011, 27, 1575–1577. 10.1093/bioinformatics/btr168. PubMed DOI PMC
Dršata T.; Pérez A.; Orozco M.; Morozov A. V.; Šponer J.; Lankaš F. Structure, Stiffness and Substates of the Dickerson-Drew Dodecamer. J. Chem. Theory Comput. 2013, 9, 707–721. 10.1021/ct300671y. PubMed DOI PMC
Guéron M.; Kochoyan M.; Leroy J. L. A Single Mode of DNA Base-Pair Opening Drives Imino Proton Exchange. Nature 1987, 328, 89–92. 10.1038/328089a0. PubMed DOI
Leijon M.; Gräslund A. Effects of Sequence and Length on Imino Proton Exchange and Base Pair Opening Kinetics in DNA Oligonucleotide Duplexes. Nucleic Acids Res. 1992, 20, 5339–5343. 10.1093/nar/20.20.5339. PubMed DOI PMC
Moe J. G.; Russu I. M. Proton Exchange and Base-Pair Opening Kinetics in 5′-d(CGCGAATTCGCG)-3′ and Related Dodecamers. Nucleic Acids Res. 1990, 18, 821–827. 10.1093/nar/18.4.821. PubMed DOI PMC
Zgarbová M.; Otyepka M.; Šponer J.; Lankaš F.; Jurečka P. Base Pair Fraying in Molecular Dynamics Simulations of DNA and RNA. J. Chem. Theory Comput. 2014, 10, 3177–3189. 10.1021/ct500120v. PubMed DOI
Pérez A.; Lankas F.; Luque F. J.; Orozco M. Towards a Molecular Dynamics Consensus View of B-DNA Flexibility. Nucleic Acids Res. 2008, 36, 2379–2394. 10.1093/nar/gkn082. PubMed DOI PMC
Harris S. A.; Sands Z. A.; Laughton C. A. Molecular Dynamics Simulations of Duplex Stretching Reveal the Importance of Entropy in Determining the Biomechanical Properties of DNA. Biophys. J. 2005, 88, 1684–1691. 10.1529/biophysj.104.046912. PubMed DOI PMC
Harris S. A.; Laughton C. A.; Liverpool T. B. Mapping the Phase Diagram of the Writhe of DNA Nanocircles Using Atomistic Molecular Dynamics Simulations. Nucleic Acids Res. 2008, 36, 21–29. 10.1093/nar/gkm891. PubMed DOI PMC
Lankas F.; Lavery R.; Maddocks J. H. Kinking Occurs during Molecular Dynamics Simulations of Small DNA Minicircles. Structure 2006, 14, 1527–1534. 10.1016/j.str.2006.08.004. PubMed DOI
Čech P.; Kukal J.; Černý J.; Schneider B.; Svozil D. Automatic Workflow for the Classification of Local DNA Conformations. BMC Bioinf. 2013, 14, 205.10.1186/1471-2105-14-205. PubMed DOI PMC
Dickerson R. E.; Goodsell D. S.; Kopka M. L.; Pjura P. E. The Effect of Crystal Packing on Oligonucleotide Double Helix Structure. J. Biomol. Struct. Dyn. 1987, 5, 557–579. 10.1080/07391102.1987.10506413. PubMed DOI
Moradi M.; Babin V.; Roland C.; Sagui C. Reaction Path Ensemble of the B-Z-DNA Transition: A Comprehensive Atomistic Study. Nucleic Acids Res. 2013, 41, 33–43. 10.1093/nar/gks1003. PubMed DOI PMC
Kastenholz M. A.; Schwartz T. U.; Hünenberger P. H. The Transition between the B and Z Conformations of DNA Investigated by Targeted Molecular Dynamics Simulations with Explicit Solvation. Biophys. J. 2006, 91, 2976–2990. 10.1529/biophysj.106.083667. PubMed DOI PMC
Savelyev A.; MacKerell A. D. All-Atom Polarizable Force Field for DNA Based on the Classical Drude Oscillator Model. J. Comput. Chem. 2014, 35, 1219–1239. 10.1002/jcc.23611. PubMed DOI PMC
Lu X.-J. 3DNA: A Software Package for the Analysis, Rebuilding and Visualization of Three-Dimensional Nucleic Acid Structures. Nucleic Acids Res. 2003, 31, 5108–5121. 10.1093/nar/gkg680. PubMed DOI PMC
Tian Y.; Kayatta M.; Shultis K.; Gonzalez A.; Mueller L. J.; Hatcher M. E. 31P NMR Investigation of Backbone Dynamics in DNA Binding Sites. J. Phys. Chem. B 2009, 113, 2596–2603. 10.1021/jp711203m. PubMed DOI PMC
Schwieters C. D.; Clore G. M. A Physical Picture of Atomic Motions within the Dickerson DNA Dodecamer in Solution Derived from Joint Ensemble Refinement against NMR and Large-Angle X-Ray Scattering Data. Biochemistry 2007, 46, 1152–1166. 10.1021/bi061943x. PubMed DOI
Refinement of the Sugar Puckering Torsion Potential in the AMBER DNA Force Field
Complex Biophysical and Computational Analyses of G-Quadruplex Ligands: The Porphyrin Stacks Back
Temperature-dependent elasticity of DNA, RNA, and hybrid double helices
Assessing the Current State of Amber Force Field Modifications for DNA─2023 Edition
Importance of base-pair opening for mismatch recognition
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview
A DNA structural alphabet provides new insight into DNA flexibility