Temperature-dependent elasticity of DNA, RNA, and hybrid double helices

. 2024 Mar 05 ; 123 (5) : 572-583. [epub] 20240202

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38340722
Odkazy

PubMed 38340722
PubMed Central PMC10938081
DOI 10.1016/j.bpj.2024.01.032
PII: S0006-3495(24)00073-0
Knihovny.cz E-zdroje

Nucleic acid double helices in their DNA, RNA, and DNA-RNA hybrid form play a fundamental role in biology and are main building blocks of artificial nanostructures, but how their properties depend on temperature remains poorly understood. Here, we report thermal dependence of dynamic bending persistence length, twist rigidity, stretch modulus, and twist-stretch coupling for DNA, RNA, and hybrid duplexes between 7°C and 47°C. The results are based on all-atom molecular dynamics simulations using different force field parameterizations. We first demonstrate that unrestrained molecular dynamics can reproduce experimentally known mechanical properties of the duplexes at room temperature. Beyond experimentally known features, we also infer the twist rigidity and twist-stretch coupling of the hybrid duplex. As for the temperature dependence, we found that increasing temperature softens all the duplexes with respect to bending, twisting, and stretching. The relative decrease of the stretch moduli is 0.003-0.004/°C, similar for all the duplex variants despite their very different stretching stiffness, whereas RNA twist stiffness decreases by 0.003/°C, and smaller values are found for the other elastic moduli. The twist-stretch couplings are nearly unaffected by temperature. The stretching, bending, and twisting stiffness all include an important entropic component. Relation of our results to the two-state model of DNA flexibility is discussed. Our work provides temperature-dependent elasticity of nucleic acid duplexes at the microsecond scale relevant for initial stages of protein binding.

Zobrazit více v PubMed

Holbrook S.R. Structural principles from large RNAs. Annu. Rev. Biophys. 2008;37:445–464. PubMed

Aguilera A., García-Muse T. R Loops: From transcription byproducts to threats for genome stability. Mol. Cell. 2012;46:115–124. PubMed

Nakashima H., Fukuchi S., Nishikawa K. Compositional changes in RNA, DNA and proteins for bacterial adaptation to higher and lower temperatures. J. Biochem. 2003;133:507–513. PubMed

Bisht K., te Velthuis A.J.W. Decoding the role of temperature in RNA virus infections. mBio. 2022;13 e02021–22. PubMed PMC

Kortmann J., Narberhaus F. Bacterial RNA thermometers: molecular zippers and switches. Nat. Rev. Microbiol. 2012;10:255–265. PubMed

Knapp B.D., Huang K.C. The effects of temperature on cellular physiology. Annu. Rev. Biophys. 2022;51:499–526. PubMed

Becskei A., Rahaman S. The life and death of RNA across temperatures. Comput. Struct. Biotechnol. J. 2022;20:4325–4336. PubMed PMC

Seeman N.C. DNA in a material world. Nature. 2003;421:427–431. PubMed

Grabow W.W., Jaeger L. RNA self-assembly and RNA nanotechnology. Acc. Chem. Res. 2014;47:1871–1880. PubMed

Ko S.H., Su M., et al. Mao C. Synergistic self-assembly of RNA and DNA molecules. Nat. Chem. 2010;2:1050–1055. PubMed PMC

Geggier S., Kotlyar A., Vologodskii A. Temperature dependence of DNA persistence length. Nucleic Acids Res. 2011;39:1419–1426. PubMed PMC

Driessen R.P.C., Sitters G., et al. Dame R.T. Effect of temperature on the intrinsic flexibility of DNA and its interaction with architectural proteins. Biochemistry. 2014;53:6430–6438. PubMed PMC

Brunet A., Salomé L., et al. Tardin C. How does temperature impact the conformation of single DNA molecules below melting temperature? Nucleic Acids Res. 2018;46:2074–2081. PubMed PMC

Schurr J.M. A quantitative model of cooperative two-state equilibrium in DNA: experimental tests, insights, and predictions. Q. Rev. Biophys. 2021;54:e5. PubMed

Meyer S., Jost D., et al. Everaers R. Temperature dependence of the DNA double helix at the nanoscale: Structure, elasticity, and fluctuations. Biophys. J. 2013;105:1904–1914. PubMed PMC

Kriegel F., Matek C., et al. Lipfert J. The temperature dependence of the helical twist of DNA. Nucleic Acids Res. 2018;46:7998–8009. PubMed PMC

Dohnalová H., Dršata T., et al. Lankaš F. Compensatory Mechanisms in Temperature Dependence of DNA Double Helical Structure: Bending and Elongation. J. Chem. Theor. Comput. 2020;16:2857–2863. PubMed

Tian F.-J., Zhang C., et al. Dai L. Universality in RNA and DNA deformations induced by salt, temperature change, stretching force, and protein binding. Proc. Natl. Acad. Sci. USA. 2023;120 PubMed PMC

Zhang C., Fu H., et al. Zhang X. The mechanical properties of RNA-DNA hybrid duplex stretched by magnetic tweezers. Biophys. J. 2019;116:196–204. PubMed PMC

Olson W.K., Gorin A.A., et al. Zhurkin V.B. DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proc. Natl. Acad. Sci. USA. 1998;95:11163–11168. PubMed PMC

Lankas F., Sponer J., et al. Cheatham T.E., III DNA basepair step deformability inferred from molecular dynamics simulations. Biophys. J. 2003;85:2872–2883. PubMed PMC

Lankas F., Sponer J., et al. Cheatham T.E., III DNA deformability at the base pair level. J. Am. Chem. Soc. 2004;126:4124–4125. PubMed

Lankas F., Gonzalez O., et al. Maddocks J.H. On the parameterization of rigid base and basepair models of DNA from molecular dynamics simulations. Phys. Chem. Chem. Phys. 2009;11:10565–10588. PubMed

Gonzalez O., Petkevičiūtė D., Maddocks J.H. A sequence-dependent rigid-base model of DNA. J. Chem. Phys. 2013;138 PubMed

Petkevičiūtė D., Pasi M., et al. Maddocks J.H. cgDNA: a software package for the prediction of sequence-dependent coarse-grain free energies of B-form DNA. Nucleic Acids Res. 2014;42:e153. PubMed PMC

Gonzalez O., Pasi M., et al. Maddocks J.H. Absolute versus relative entropy parameter estimation in a coarse-grain model of DNA. Multiscale Model. Simul. 2017;15:1073–1107.

Liebl K., Zacharias M. Accurate modeling of DNA conformational flexibility by a multivariate Ising model. Proc. Natl. Acad. Sci. USA. 2021;118 PubMed PMC

López-Güell K., Battistini F., Orozco M. Correlated motions in DNA: Beyond base-pair step models of DNA flexibility. Nucleic Acids Res. 2023;51:2633–2640. PubMed PMC

Sharma R., Patelli A.S., et al. Maddocks J.H. cgNA+web: A visual interface to the cgna+ sequence-dependent statistical mechanics model of double-stranded nucleic acids. J. Mol. Biol. 2023;435 PubMed

Pérez A., Noy A., et al. Orozco M. The relative flexibility of B-DNA and A-RNA duplexes: database analysis. Nucleic Acids Res. 2004;32:6144–6151. doi: 10.1093/nar/gkh954. PubMed DOI PMC

Noy A., Pérez A., et al. Orozco M. Relative flexibility of DNA and RNA: a molecular dynamics study. J. Mol. Biol. 2004;343:627–638. doi: 10.1016/j.jmb.2004.07.048. PubMed DOI

Battistini F., Sala A., et al. Orozco M. Sequence-dependent properties of the RNA duplex. J. Chem. Inf. Model. 2023;63:5259–5271. PubMed

Noy A., Pérez A., et al. Orozco M. Structure, recognition properties, and flexibility of the DNA.RNA hybrid. J. Am. Chem. Soc. 2005;127:4910–4920. PubMed

Lankas F., Sponer J., et al. Langowski J. Sequence-dependent elastic properties of DNA. J. Mol. Biol. 2000;299:695–709. PubMed

Lankas F., Cheatham T.E., III, et al. Sponer J. Critical effect of the N2 amino group on structure, dynamics and elasticity of polypurine tracts. Biophys. J. 2002;82:2592–2609. PubMed PMC

Noy A., Golestanian R. Length scale dependence of DNA mechanical properties. Phys. Rev. Lett. 2012;109 PubMed

Velasco-Berrelleza V., Burman M., et al. Noy A. SerraNA: a program to determine nucleic acids elasticity from simulation data. Phys. Chem. Chem. Phys. 2020;22:19254–19266. PubMed

Nomidis S.K., Kriegel F., et al. Carlon E. Twist-bend coupling and the torsional response of double-stranded DNA. Phys. Rev. Lett. 2017;118 PubMed

Skoruppa E., Voorspoels A., et al. Carlon E. Length-scale-dependent elasticity in DNA from coarse-grained and all-atom models. Phys. Rev. E. 2021;103 PubMed

Liebl K., Drsata T., et al. Zacharias M. Explaining the striking difference in twist-stretch coupling between DNA and RNA: A comparative molecular dynamics analysis. Nucleic Acids Res. 2015;43:10143–10156. PubMed PMC

Liu J.-H., Xi K., et al. Tan Z.-J. Structural flexibility of DNA-RNA hybrid duplex: Stretching and twist-stretch coupling. Biophys. J. 2019;117:74–86. PubMed PMC

Mitchell J.S., Glowacki J., et al. Maddocks J.H. Sequence-dependent persistence lengths of DNA. J. Chem. Theor. Comput. 2017;13:1539–1555. PubMed

Matsumoto A., Olson W.K. Sequence-dependent motions of DNA: A normal mode analysis at the base-pair level. Biophys. J. 2002;83:22–41. PubMed PMC

Becker N.B., Everaers R. From rigid base pairs to semiflexible polymers: Coarse-graining DNA. Phys. Rev. E. 2007;76 PubMed

Gutiérrez Fosado Y.A., Landuzzi F., Sakaue T. Coarse graining DNA: Symmetry, nolocal elasticity, and persistence length. Phys. Rev. Lett. 2023;130 PubMed

Marin-Gonzalez A., Vilhena J.G., et al. Moreno-Herrero F. Understanding the mechanical response of double-stranded DNA and RNA under constant stretching force using all-atom molecular dynamics. Proc. Natl. Acad. Sci. USA. 2017;114:7049–7054. PubMed PMC

Marin-Gonzalez A., Vilhena J.G., et al. Perez R. Sequence-dependent mechanical properties of double-stranded RNA. Nanoscale. 2019;11:21471–21478. PubMed

Marin-Gonzalez A., Pastrana C.L., et al. Moreno-Herrero F. Understanding the paradoxical mechanical response of in-phase A-tracts at different force regimes. Nucleic Acids Res. 2020;48:5024–5036. PubMed PMC

Luengo-Márquez J., Zalvide-Pombo J., et al. Assenza S. Force-dependent elasticity of nucleic acids. Nanoscale. 2023;15:6738–6744. PubMed

Aggarwal A., Naskar S., et al. Maiti P.K. What do we know about DNA mechanics so far? Curr. Opin. Struct. Biol. 2020;64:42–50. PubMed

da Rosa G., Grille L., et al. Dans P.D. Sequence-dependent structural properties of B-DNA: what have we learned in 40 years? Biophys. Rev. 2021;13:995–1005. PubMed PMC

Marin-Gonzalez A., Vilhena J.G., et al. Moreno-Herrero F. A molecular view of DNA flexibility. Q. Rev. Biophys. 2021;54:e8. PubMed

Dohnalová H., Lankaš F. Deciphering the mechanical properties of B-DNA duplex. WIREs Comput. Mol. Sci. 2022;12:e1575.

Cruz-Leon S., Assenza S., et al. Guzman H.V. In: Physical Virology. Comas-Garcia M., Rosales-Mendoza S., editors. Vol. 24. Springer; Cham: 2023. RNA multiscale simulations as an interplay of electrostatic, mechanical properties, and structures inside viruses. (Springer Series in Biophysics).

Cruz-León S., Vanderlinden W., et al. Schwierz N. Twisting DNA by salt. Nucleic Acids Res. 2022;50:5726–5738. PubMed PMC

Zgarbová M., Šponer J., et al. Jurečka P. Refinement of the sugar-phosphate backbone torsion beta for Amber force fields improves the description of Z- and B-DNA. J. Chem. Theor. Comput. 2015;11:5723–5736. PubMed

Ivani I., Dans P.D., et al. Orozco M. Parmbsc1: a refined force field for DNA simulations. Nat. Methods. 2016;13:55–58. PubMed PMC

Banáš P., Hollas D., et al. Otyepka M. Performance of molecular mechanics force fields for RNA simulations: stability of UUCG and GNRA hairpins. J. Chem. Theor. Comput. 2010;6:3836–3849. PubMed PMC

Zgarbová M., Otyepka M., et al. Jurečka P. Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theor. Comput. 2011;7:2886–2902. PubMed PMC

Tan D., Piana S., et al. Shaw D.E. RNA force field with accuracy comparable to state-of-the-art protein force fields. Proc. Natl. Acad. Sci. USA. 2018;115:E1346–E1355. PubMed PMC

Dang L.X. Mechanism and thermodynamics of ion selectivity in aqueous solutions of 18-crown-6 ether: a molecular dynamics study. J. Am. Chem. Soc. 1995;117:6954–6960.

Joung I.S., Cheatham T.E., III Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008;112:9020–9041. PubMed PMC

Berendsen H.J.C., Grigera J.R., Straatsma T.P. The missing term in effective pair potentials. J. Phys. Chem. 1987;91:6269–6271.

Horn H.W., Swope W.C., et al. Head-Gordon T. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys. 2004;120:9665–9678. PubMed

MacKerell A.D., Bashford D., et al. Karplus M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 1998;102:3586–3616. PubMed

Piana S., Donchev A.G., et al. Shaw D.E. Water dispersion interactions strongly influence simulated structural properties of disordered protein states. J. Phys. Chem. B. 2015;119:5113–5123. PubMed

Patro L.P.P., Kumar A., et al. Rathinavelan T. 3D-NuS: A web server for automated modeling and visualization of non-canonical 3-dimensional nucleic acid structures. J. Mol. Biol. 2017;429:2438–2448. PubMed

Lu X.-J., Olson W.K. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 2003;31:5108–5121. doi: 10.1093/nar/gkg680. PubMed DOI PMC

Lipfert J., Skinner G.M., et al. Dekker N.H. Double-stranded RNA under force and torque: Similarities to and striking differences from double-stranded DNA. Proc. Natl. Acad. Sci. USA. 2014;111:15408–15413. PubMed PMC

Fathizadeh A., Eslami-Mossallam B., Ejtehadi M.R. Definition of the persistence length in the coarse-grained models of DNA elasticity. Phys. Rev. E. 2012;86 PubMed

Elmenreich W. Fusion of continuous-valued sensor measurements using confidence-weighted averaging. J. Vib. Control. 2007;13:1303–1312.

Herrero-Galán E., Fuentes-Perez M.E., et al. Arias-Gonzalez J.R. Mechanical identities of RNA and DNA double helices unveiled at the single-molecule level. J. Am. Chem. Soc. 2013;135:122–131. PubMed

Furrer P., Bednar J., et al. Dubochet J. Opposite effect of counterions on the persistence length of nicked and non-nicked DNA. J. Mol. Biol. 1997;266:711–721. PubMed

Abels J.A., Moreno-Herrero F., et al. Dekker N.H. Single-molecule measurements of the persistence length of double-stranded RNA. Biophys. J. 2005;88:2737–2744. PubMed PMC

Sharma R. EPFL; 2023. cgNA+: A Sequence-dependent Coarse-Grain Model of Double-Stranded Nucleic Acids.

Schurr J.M. Temperature-dependence of the bending elastic constant of DNA and extension of the two-state model. Tests and new insights. Biophys. Chem. 2019;251 PubMed

Galindo-Murillo R., Robertson J.C., et al. Cheatham T.E., III Assessing the current state of Amber force field modifications for DNA. J. Chem. Theor. Comput. 2016;12:4114–4127. PubMed PMC

Dans P.D., Ivani I., et al. Orozco M. How accurate are accurate force-fields for B-DNA? Nucleic Acids Res. 2017;45:4217–4230. PubMed PMC

Kührová P., Mlýnský V., et al. Banáš P. Sensitivity of the RNA structure to ion conditions as probed by molecular dynamics simulations of common canonical RNA duplexes. J. Chem. Inf. Model. 2023;63:2133–2146. PubMed PMC

Jorgensen W.L., Chandrasekhar J., et al. Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935.

González M.A., Abascal J.L.F. The shear viscosity of rigid water models. J. Chem. Phys. 2010;132 PubMed

Zarzycki P., Gilbert B. Temperature-dependence of the dielectric relaxation of water using non-polarizable water models. Phys. Chem. Chem. Phys. 2020;22:1011–1018. PubMed

Guillot B. A reappraisal of what we have learnt during three decades of computer simulations on water. J. Mol. Liq. 2002;101:219–260.

Vega C., Abascal J.L.F. Simulating water with rigid non-polarizable models: a general perspective. Phys. Chem. Chem. Phys. 2011;13:19663–19688. PubMed

Rami Reddy M., Berkowitz M. The dielectric constant of SPC/E water. Chem. Phys. Lett. 1989;155:173–176.

Markesteijn A.P., Hartkamp R., et al. Westerweel J. A comparison of the value of viscosity for several water models using Poiseuille flow in a nano-channel. J. Chem. Phys. 2012;136 PubMed

Morozova T.I., García N.A., Barrat J.-L. Temperature dependence of thermodynamic, dynamical, and dielectric properties of water models. J. Chem. Phys. 2022;156 PubMed

Mester Z., Panagiotopoulos A.Z. Temperature-dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations. J. Chem. Phys. 2015;143 PubMed

Schurr J.M. Effects of sequence changes on the torsion elastic constant and persistence length of DNA. Applications of the two-state model. J. Phys. Chem. B. 2019;123:7343–7353. PubMed

Bednar J., Furrer P., et al. Stasiak A. Determination of DNA persistence length by cryo-electron microscopy. Separation of the static and dynamic contributions to the apparent persistence length of DNA. J. Mol. Biol. 1995;254:579–594. PubMed

Vologodskaia M., Vologodskii A. Contribution of the intrinsic curvature to measured DNA persistence length. J. Mol. Biol. 2002;317:205–213. PubMed

Várnai P., Zakrzewska K. DNA and its counterions: a molecular dynamics study. Nucleic Acids Res. 2004;32:4269–4280. doi: 10.1093/nar/gkh765. PubMed DOI PMC

Dršata T., Lankaš F. Multiscale modelling of DNA mechanics. J. Phys. Condens. Matter. 2015;27 PubMed

Snodin B.E.K., Randisi F., et al. Doye J.P.K. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. J. Chem. Phys. 2015;142 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...