Sequence-dependent elastic properties of DNA
Jazyk angličtina Země Nizozemsko Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
10835278
DOI
10.1006/jmbi.2000.3781
PII: S0022-2836(00)93781-1
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- anizotropie MeSH
- DNA chemie genetika metabolismus MeSH
- konformace nukleové kyseliny * MeSH
- oligodeoxyribonukleotidy chemie genetika metabolismus MeSH
- párování bází MeSH
- počítačová simulace MeSH
- pohyb těles MeSH
- pružnost MeSH
- rozpouštědla MeSH
- sekvence nukleotidů MeSH
- statická elektřina MeSH
- termodynamika MeSH
- voda metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- oligodeoxyribonukleotidy MeSH
- rozpouštědla MeSH
- voda MeSH
Harmonic elastic constants of 3-11 bp duplex DNA fragments were evaluated using four 5 ns unrestrained molecular dynamics simulation trajectories of 17 bp duplexes with explicit inclusion of solvent and counterions. All simulations were carried out with the Cornell et al. force-field and particle mesh Ewald method for long-range electrostatic interactions. The elastic constants including anisotropic bending and all coupling terms were derived by analyzing the correlations of fluctuations of structural properties along the trajectories. The following sequences have been considered: homopolymer d(ApA)(n) and d(GpG)(n), and alternating d(GPC)(n) and d(APT)(n). The calculated values of elastic constants are in very good overall agreement with experimental values for random sequences. The atomic-resolution molecular dynamics approach, however, reveals a pronounced sequence-dependence of the stretching and torsional rigidity of DNA, while sequence-dependence of the bending rigidity is smaller for the sequences considered. The earlier predicted twist-bend coupling emerged as the most important cross-term for fragments shorter than one helical turn. The calculated hydrodynamic relaxation times suggest that damping of bending motions may play a role in molecular dynamics simulations of long DNA fragments. A comparison of elasticity calculations using global and local helicoidal analyses is reported. The calculations reveal the importance of the fragment length definition. The present work shows that large-scale molecular dynamics simulations represent a unique source of data to study various aspects of DNA elasticity including its sequence-dependence.
Citace poskytuje Crossref.org
Temperature-dependent elasticity of DNA, RNA, and hybrid double helices
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview
Long-timescale dynamics of the Drew-Dickerson dodecamer
Structure and mechanical properties of the ribosomal L1 stalk three-way junction
A measure of bending in nucleic acids structures applied to A-tract DNA