Local conformational variations observed in B-DNA crystals do not improve base stacking: computational analysis of base stacking in a d(CATGGGCCCATG)(2) B<-->A intermediate crystal structure
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
PubMed
11121480
PubMed Central
PMC115231
DOI
10.1093/nar/28.24.4893
Knihovny.cz E-zdroje
- MeSH
- DNA chemie genetika metabolismus MeSH
- krystalizace MeSH
- molekulární modely MeSH
- ohebnost (fyzika) MeSH
- párování bází * MeSH
- počítačová simulace * MeSH
- rozpouštědla MeSH
- sekvence nukleotidů MeSH
- statická elektřina MeSH
- termodynamika MeSH
- voda chemie metabolismus MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
- rozpouštědla MeSH
- voda MeSH
The crystal structure of d(CATGGGCCCATG)(2) shows unique stacking patterns of a stable B<-->A-DNA intermediate. We evaluated intrinsic base stacking energies in this crystal structure using an ab initio quantum mechanical method. We found that all crystal base pair steps have stacking energies close to their values in the standard and crystal B-DNA geometries. Thus, naturally occurring stacking geometries were essentially isoenergetic while individual base pair steps differed substantially in the balance of intra-strand and inter-strand stacking terms. Also, relative dispersion, electrostatic and polarization contributions to the stability of different base pair steps were very sensitive to base composition and sequence context. A large stacking flexibility is most apparent for the CpA step, while the GpG step is characterized by weak intra-strand stacking. Hydration effects were estimated using the Langevin dipoles solvation model. These calculations showed that an aqueous environment efficiently compensates for electrostatic stacking contributions. Finally, we have carried out explicit solvent molecular dynamics simulation of the d(CATGGGCCCATG)(2) duplex in water. Here the DNA conformation did not retain the initial crystal geometry, but moved from the B<-->A intermediate towards the B-DNA structure. The base stacking energy improved in the course of this simulation. Our findings indicate that intrinsic base stacking interactions are not sufficient to stabilize the local conformational variations in crystals.
Zobrazit více v PubMed
Ng H.-L., Kopka,M.L. and Dickerson,R.E. (2000) The structure of a stable intermediate in the A↔B DNA helix transition. Proc. Natl Acad. Sci. USA, 97, 2035–2039. PubMed PMC
Olson W.K., Gorin,A.A., Lu,X.-J., Hock,L.M. and Zhurkin,V.B. (1998) DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proc. Natl Acad. Sci. USA, 95, 11163–11168. PubMed PMC
Jones S., van Heyningen,P., Berman,H.M. and Thornton,J.M. (1998) Protein-DNA interactions: a structural analysis. J. Mol. Biol., 287, 877–896. PubMed
Goodsell D.S., Kopka,M.L., Cascio,D.C. and Dickerson,R.E. (1993) Crystal-structure of CATGGCCATG and its implications for A-tract bending models. Proc. Natl Acad. Sci. USA, 90, 2930–2934. PubMed PMC
Dornberger U., Flemming,J. and Fritzsche,H. (1998) Structure determination and analysis of helix parameters in the DNA decamer d(CATGGCCATG)(2)—comparison of results from NMR and crystallography. J. Mol. Biol., 284, 1453–1463. PubMed
Calladine C.R. (1982) Mechanics of sequence-dependent stacking of bases in B-DNA. J. Mol. Biol., 161, 343–363. PubMed
Ulyanov N.B. and Zhurkin,V.B. (1984) Sequence-dependent anisotropic flexibility of B-DNA—a conformational study. J. Biomol. Struct. Dyn., 2, 361–381. PubMed
Šponer J. and Kypr,J. (1990) Base pair buckling can eliminate the interstrand purine clash at the CpG steps in B-DNA caused by the base pair propeller twisting. J. Biomol. Struct. Dyn., 7, 1211–1220. PubMed
Šponer J. and Kypr,J. (1993) Relationships among rise, cup, roll and stagger in DNA suggested by empirical potential studies of base stacking. J. Biomol. Struct. Dyn., 11, 27–41. PubMed
Gorin A.A., Zhurkin,V.B. and Olson,W.K. (1995) B-DNA twisting correlates with base-pair morphology. J. Mol. Biol., 247, 34–48. PubMed
Suzuki M. and Yagi,N. (1995) Stereochemical basis of DNA bending by transcription factors. Nucleic Acids Res., 23, 2083–2091. PubMed PMC
Suzuki M., Amano,N., Kakinuma,J. and Tateno,M. (1997) Use of a 3D structure data base for understanding sequence-dependent conformational aspects of DNA. J. Mol. Biol., 274, 421–435. PubMed
El Hassan M.A. and Calladine,C.R. (1996) Propeller-twisting of base-pairs and the conformational mobility of dinucleotide steps in DNA. J. Mol. Biol., 259, 95–103. PubMed
Lu X.-J. and Olson,W.K. (1999) Resolving the discrepancies among nucleic acid conformational analyses. J. Mol. Biol., 285, 1563–1575. PubMed
Hunter C.A. and Lu,X.J. (1997) DNA base-stacking interactions: a comparison of theoretical calculations with oligonucleotide X-ray crystal structures. J. Mol. Biol., 265, 603–619. PubMed
Šponer J. and Kypr,J. (1993) Theoretical analysis of the base stacking in DNA—choice of the force-field and a comparison with the oligonucleotide crystal-structures. J. Biomol. Struct. Dyn., 11, 277–292. PubMed
Cieplak P. (1998) Nucleic acid force fields. In Schleyer,P.v.R. (ed.), Encyclopedia of Computational Chemistry. John Wiley & Sons, Chichester, UK, pp. 1922–1930.
Šponer J., Leszczynski,J. and Hobza,P. (1996) Nature of nucleic acid-base stacking: nonempirical ab initio and empirical potential characterization of 10 stacked base dimers. Comparison of stacked and H-bonded base pairs. J. Phys. Chem., 100, 5590–5596.
Šponer J., Gabb,H.A., Leszczynski,J. and Hobza,P. (1997) Base-base and deoxyribose-base stacking interactions in B-DNA and Z-DNA: a quantum-chemical study. Biophys. J., 73, 76–87. PubMed PMC
Dickerson R.E., Grzeskowiak,K., Grzeskowiak,M., Kopka,M.L., Larsen,T., Lipanov,A., Prive,G.G., Quintana,J., Schultze,P., Yanagi,K., Yuan,H. and Yoon,H.C. (1991) Polymorphism, packing, resolution and reliability in single-crystal DNA oligomer analyses. Nucl. Nucl., 10, 3–24.
Minasov G., Tereshko,V. and Egli,M. (1999) Atomic-resolution crystal structures of B-DNA reveal specific influences of divalent metal ions on conformation and packing. J. Mol. Biol., 291, 83–99. PubMed
Kielkopf C.L., Ding,S., Kuhn,P. and Rees,D.C. (2000) Conformational flexibility of B-DNA at 0.74 angstrom resolution: d(CCAGTACTGG)2. J. Mol. Biol., 296, 787–801. PubMed
Schuerman G.S. and Van Meervelt,L. (2000) Conformational flexibility of the DNA backbone. J. Am. Chem. Soc., 122, 232–240.
Cheatham T.E. and Brooks,B.R. (1998) Recent advances in molecular dynamics simulation towards the realistic representation of biomolecules in solution. Theor. Chem. Acc., 99, 279–288.
Hobza P. and Šponer,J. (1999) Structure, energetics and dynamics of the nucleic acid base pairs: nonempirical ab initio calculations. Chem. Rev., 99, 3247–3276. PubMed
Cornell W.D., Cieplak,P., Bayly,C.I., Gould,I.R., Merz,K.M.,Jr, Ferguson,D.M., Spellmeyer,D.C., Fox,T., Caldwell,J.W. and Kollman,P.A. (1995) A 2nd generation force-field for the simulation of proteins, nucleic-acids and organic-molecules. J. Am. Chem. Soc., 117, 5179–5197.
Cheatham T.E., Cieplak,P. and Kollman,P.A. (1999) A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat. J. Biomol. Struct. Dyn., 16, 845–862. PubMed
Foloppe N. and MacKerrel,A.D. (2000) All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem., 21, 86–104.
Langley D.R. (1998) Molecular dynamic simulations of environment and sequence dependent DNA conformations: the development of the BMS nucleic acid force field and comparison with experimental results. J. Biomol. Struct. Dyn., 16, 487–509. PubMed
Cheatham T.E., Srinivasan,J., Case,D.A. and Kollman,P.A. (1998) Molecular dynamics and continuum solvent studies of the stability of polyG-polyC and polyA-polyT DNA duplexes in solution. J. Biomol. Struct. Dyn., 16, 265–280. PubMed
Sprous D., Young,M.A. and Beveridge,D.L. (1999) Molecular dynamics studies of axis bending in d(G5-(GA4T4C)2-C5) and d(G5-(GT4A4C)2-C5): effects of sequence polarity on DNA curvature. J. Mol. Biol., 285, 1623–1632. PubMed
Špacková N., Berger,I. and Šponer,J. (1999) Nanosecond molecular dynamics simulations of parallel and antiparallel guanine quadruplex DNA molecules. J. Am. Chem. Soc., 121, 5519–5534.
Špacková N., Berger,I. and Šponer,J. (2000) Nanosecond molecular dynamics of zipper-like DNA duplex structures containing sheared G·A mismatch pairs. J. Am. Chem. Soc., 122, 7564–7572
Feig M. and Pettitt,B.M. (1998) Structural equilibrium of DNA represented with different force fields. Biophys. J., 75, 134–149. PubMed PMC
Bevan D.R., Li,L., Pedersen,L.G. and Darden,T.A. (2000) Molecular dynamics simulations of the d(CCAACGTTGG)2 decamer: influence of the crystal environment. Biophys. J., 78, 668–682. PubMed PMC
Warshel A. (1979) Calculation of chemical processes in solution. J. Phys. Chem., 83, 1640–1651.
Florián J. and Warshel,A. (1997) Langevin dipoles model for ab initio calculations of chemical processes in solution: parametrization and application to hydration free energies of neutral and ionic solutes and conformational analysis in aqueous solution. J. Phys. Chem., 101B, 5583–5595.
Florián J. and Warshel,A. (1999) Calculations of hydration entropies of hydrophobic, polar and ionic solutes in the framework of the Langevin dipoles solvation model. J. Phys. Chem., 103B, 10282–10288.
Warshel A. and Russell,S.T. (1984) Calculations of electrostatic interactions in biological systems and in solutions. Q. Rev. Biophys., 17, 283–422. PubMed
Cramer C.J. and Truhlar,D.G. (1999) Implicit solvation models: equilibria, structure, spectra and dynamics. Chem. Rev., 99, 2161–2200. PubMed
Luque F.J., LopezBes,J.M., Cemeli,J., Aroztegui,M. and Orozco,M. (1997) Solvent effects on tautomerism equilibria in heterocycles. Theor. Chem. Acc., 96, 105–113.
Kroon-Batenburg L.K.J. and van Duijneveldt,F.B. (1985) The use of a momentum optimized DZP basis set for describing the interaction in the water dimer. J. Mol. Struct., 121, 185–199.
Šponer J., Sabat,M., Burda,J.V., Doody A.M., Leszczynski,J. and Hobza,P. (1998) Stabilization of the purine·purine·pyrimidine DNA base triplets by divalent metal cations. J. Biomol. Struct. Dyn., 16, 139–143. PubMed
Frisch M.J., Trucks,G.W., Schlegel,H.B., Gill,P.M.W., Johnson,B.G., Robb,M.A., Cheeseman,J.R., Keith,T.A., Petersson,G.A., Montgomery,J.A., Raghavachari,K., Al-Laham,M.A., Zakrzewski,V.G., Ortiz,J.V., Foresman,J.B., Cioslowski,J., Stefanov,B.B., Nanayakkara,A., Challacombe,M., Peng,C.Y., Ayala,P.Y., Chen,W., Wong,M.W., Anfres,J.L., Replogle,E.S., Gomperts,R., Martin,R.L., Fox,D.J., Binkley,J.S., Defress,D.J., Baker,J., Stewart,J.J.P., Head-Gordon,M., Gonzalez,C. and Pople,J.A. (1995) GAUSSIAN 94 (Rev. A.1). Gaussian Inc., Pittsburgh, PA.
Šponer J., Leszczynski,J. and Hobza,P. (1996) Structures and energies of hydrogen-bonded DNA base pairs. A nonempirical study with inclusion of electron correlation. J. Phys. Chem., 100, 1965–1974.
Florián J. and Warshel,A. (1999) Chemsol 2.1. University of Southern California, Los Angeles, CA.
Šponer J., Leszczynski,J. and Hobza,P. (1996) Base stacking in cytosine dimer. A comparison of correlated ab initio calculations with three empirical potential models and density functional theory calculations. J. Comput. Chem., 17, 841–850.
Florián J., Baumruk,V. and Leszczynski,J. (1996) IR and Raman spectra, tautomeric stabilities and scaled quantum mechanical force fields of protonated cytosine. J. Phys. Chem., 100, 5578–5589.
Case D.A., Pearlman,D.A., Caldwell,J.W., Cheatham,T.E., Ross,W.S., Simmerling,C.L., Darden,T.A., Merz,K.M., Stanton,R.V., Cheng,A.L., Vincent,J.J., Crowley,M., Ferguson,D.M., Radmer,R.J., Seibel,G.L., Singh,U.C., Weiner,P.K. and Kollman,P.A. (1997) AMBER5. University of California at San Francisco, San Francisco, CA.
York D.M., Yang,W., Lee,H., Darden,T. and Pedersen,L.G. (1995) Toward the accurate modeling of DNA—the importance of long-range electrostatics. J. Am. Chem. Soc., 117, 5001–5002.
Harvey S.C., Tan,R.-K.Z. and Cheatham,T.E. (1998) The flying ice cube: velocity rescaling in molecular dynamics leads to violation of energy equipartition. J. Comput. Chem., 19, 726–740.
Privé G.G., Heinemann,U., Chandrasegaran,S., Kan,L.-S. Kopka,M.L. and Dickerson,R.E. (1987) Helix geometry, hydration and G.A mismatch in a B-DNA decamer. Science, 238, 498–504. PubMed
Privé G.G., Yanagi,K. and Dickerson,R.E. (1991) Structure of the B-DNA decamer C-C-A-A-C-G-T-T-G-G and comparison with isomorphous decamers C-C-A-A-G-A-T-T-G-G and C-C-A-G-G-C-C-T-G-G. J. Mol. Biol., 217, 177–199. PubMed
Heinemann U. and Alings,C. (1989) Crystallographic study of one turn of G-C-rich B-DNA. J. Mol. Biol., 210, 369–381. PubMed
Šponer J., Jursa,J. and Kypr,J. (1994) Interaction between the guanine amino group and the adenine 6-membered ring stabilizes the unusual conformation of the CpA step in B-DNA. Nucl. Nucl., 13, 1669–1677.
SantaLucia J. Jr, Allawi,H.T. and Senevirante,P.A. (1996) Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry, 35, 3555–3562. PubMed
Aboul-ela F., Koh,D., Tinoco,I.,Jr and Martin,H. (1985) Base–base mismatches—thermodynamics of double helix formation for DCA3XA3G + DCT3YT3G (X, Y = A,C,G,T). Nucleic Acids Res., 13, 4811–4824. PubMed PMC
Shih P., Pedersen,L.G., Gibbs,P.R. and Wolfenden,R. (1998) Hydrophobicities of the nucleic acid bases: distribution coefficients from water to cyclohexane. J. Mol. Biol., 280, 421–430. PubMed
Miller J.L. and Kollman,P.A. (1996) Solvation free energies of the nucleic acid bases. J. Phys. Chem., 100, 8587–8594.
Florián J., Šponer,J. and Warshel,A. (1999) Thermodynamic parameters for stacking and hydrogen bonding of nucleic acid bases in aqueous solution: ab initio/Langevin dipoles study. J. Phys. Chem., 103B, 884–892.
Friedman R.A. and Honig,B. (1995) A free energy analysis of nucleic acid base stacking in aqueous solution. Biophys. J., 69, 1528–1535. PubMed PMC
Dickerson R.E., Goodsell,D.S. and Neidle,S. (1994) …The tyranny of the lattice… Proc. Natl Acad. Sci. USA, 91, 3579–3583. PubMed PMC
Ramakrishnan B. and Sundaralingam,M. (1993) Crystal packing effects on A-DNA helix parameters—a comparative study of the isoforms of the tetragonal and hexagonal family of octamers with differing base sequences. J. Biomol. Struct. Dyn., 11, 11–26. PubMed
Tippin D.B. and Sundaralingam,M. (1997) Comparison of major groove hydration in isomorphous A-DNA octamers and dependence on base sequence and local helix geometry. Biochemistry, 36, 536–543. PubMed
Fernandez L.G., Subirana,J.A., Verdaguer,N., Pyshnyi,D., Campos,L. and Malinina,L. (1997) Structural variability of A-DNA in crystals of the octamer d(pCpCpCpGpCpGpGpG). J. Biomol. Struct. Dyn., 15, 151–163. PubMed
Lankaš F., Šponer,J., Hobza,P. and Langowski,J. (2000) Sequence-dependent elastic properties of DNA. J. Mol. Biol., 299, 695–709. PubMed
Dornberger U., Leijon,M. and Fritzsche,H. (1999) High base pair opening rates in tracts of GC base pairs. J. Biol. Chem., 274, 6957–6962. PubMed
Trantírek L., Štefl,R., Vorlícková,M., Koca,J., Sklenár,V. and Kypr,J. (2000) An A-type double helix of DNA having B-type puckering of the deoxyribose rings. J. Mol. Biol., 297, 907–922. PubMed
Dickerson R.E. (1999) Helix structure and molecular recognition by B-DNA. In Neidle,S. (ed.), Oxford Handbook of Nucleic Acid Structure. Oxford Scientific, Oxford, UK, pp. 145–197.
Guzikevich-Guerstein G. and Shakked,Z. (1996) A novel form of the DNA double helix imposed on the TATA-box by the TATA-binding protein. Nature Struct. Biol., 3, 32–37. PubMed
Dickerson R.E. (1998) DNA bending: the prevalence of kinkiness and the virtues of normality. Nucleic Acids Res., 26, 1906–1926. PubMed PMC
Lavery R. and Sklenar,H. (1989) Defining the structure of irregular nucleic acids—conventions and principles. J. Biomol. Struct. Dyn., 6, 655–667. PubMed