Expert-independent classification of mature B-cell neoplasms using standardized flow cytometry: a multicentric study
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem
PubMed
34814179
PubMed Central
PMC8945320
DOI
10.1182/bloodadvances.2021005725
PII: 482774
Knihovny.cz E-zdroje
- MeSH
- difúzní velkobuněčný B-lymfom * MeSH
- dospělí MeSH
- folikulární lymfom * diagnóza MeSH
- imunofenotypizace MeSH
- lidé MeSH
- průtoková cytometrie metody MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
Reproducible expert-independent flow-cytometric criteria for the differential diagnoses between mature B-cell neoplasms are lacking. We developed an algorithm-driven classification for these lymphomas by flow cytometry and compared it to the WHO gold standard diagnosis. Overall, 662 samples from 662 patients representing 9 disease categories were analyzed at 9 laboratories using the previously published EuroFlow 5-tube-8-color B-cell chronic lymphoproliferative disease antibody panel. Expression levels of all 26 markers from the panel were plotted by B-cell entity to construct a univariate, fully standardized diagnostic reference library. For multivariate data analysis, we subsequently used canonical correlation analysis of 176 training cases to project the multidimensional space of all 26 immunophenotypic parameters into 36 2-dimensional plots for each possible pairwise differential diagnosis. Diagnostic boundaries were fitted according to the distribution of the immunophenotypes of a given differential diagnosis. A diagnostic algorithm based on these projections was developed and subsequently validated using 486 independent cases. Negative predictive values exceeding 92.1% were observed for all disease categories except for follicular lymphoma. Particularly high positive predictive values were returned in chronic lymphocytic leukemia (99.1%), hairy cell leukemia (97.2%), follicular lymphoma (97.2%), and mantle cell lymphoma (95.4%). Burkitt and CD10+ diffuse large B-cell lymphomas were difficult to distinguish by the algorithm. A similar ambiguity was observed between marginal zone, lymphoplasmacytic, and CD10- diffuse large B-cell lymphomas. The specificity of the approach exceeded 98% for all entities. The univariate immunophenotypic library and the multivariate expert-independent diagnostic algorithm might contribute to increased reproducibility of future diagnostics in mature B-cell neoplasms.
Centro de Investigación Biomédica en Red de Cáncer Instituto de Salud Carlos 3 Madrid Spain
Clinic 3 Special Hematology Laboratory Rostock University Medical School Rostock Germany
Department of Diagnostic Sciences Ghent University Ghent Belgium
Department of Immunology Erasmus MC University Medical Center Rotterdam Rotterdam Netherlands
Department of Immunology Leiden University Medical Center Leiden Netherlands; and
Department of Internal Medicine 2 University of Schleswig Holstein Kiel Germany
Department of Medicine and Cytometry Service University of Salamanca Salamanca Spain
FACS Stem Cell Laboratory Kantonsspital Aarau AG Aarau Switzerland
Systems and Computing Department Federal University of Rio de Janeiro Rio de Janeiro Brazil
Zobrazit více v PubMed
Swerdlow SH, Campo E, Pileri SA, et al. . The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375-2390. PubMed PMC
Fowler NH, Nastoupil L, De Vos S, et al. . The combination of ibrutinib and rituximab demonstrates activity in first-line follicular lymphoma. Br J Haematol. 2020;189(4):650-660. PubMed PMC
Younes A, Sehn LH, Johnson P, et al. ; PHOENIX investigators . Randomized phase III trial of ibrutinib and rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in non-germinal center B-cell diffuse large B-cell lymphoma. J Clin Oncol. 2019;37(15):1285-1295. PubMed PMC
Shanafelt TD, Wang XV, Kay NE, et al. . Ibrutinib-rituximab or chemoimmunotherapy for chronic lymphocytic leukemia. N Engl J Med. 2019;381(5):432-443. PubMed PMC
Moreno C, Greil R, Demirkan F, et al. . Ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab in first-line treatment of chronic lymphocytic leukaemia (iLLUMINATE): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20(1):43-56. PubMed
Byrd JC, Hillmen P, O’Brien S, et al. . Long-term follow-up of the RESONATE phase 3 trial of ibrutinib vs ofatumumab. Blood. 2019;133(19):2031-2042. PubMed PMC
Woyach JA, Ruppert AS, Heerema NA, et al. . Ibrutinib regimens versus chemoimmunotherapy in older patients with untreated CLL. N Engl J Med. 2018;379(26):2517-2528. PubMed PMC
Dimopoulos MA, Tedeschi A, Trotman J, et al. ; iNNOVATE Study Group and the European Consortium for Waldenström’s Macroglobulinemia . Phase 3 trial of ibrutinib plus rituximab in Waldenström’s macroglobulinemia. N Engl J Med. 2018;378(25):2399-2410. PubMed
van Dongen JJ, Lhermitte L, Böttcher S, et al. ; EuroFlow Consortium (EU-FP6, LSHB-CT-2006-018708) . EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia. 2012;26(9):1908-1975. PubMed PMC
Craig FE, Foon KA. Flow cytometric immunophenotyping for hematologic neoplasms. Blood. 2008;111(8):3941-3967. PubMed
Glynn E, Soma L, Wu D, Wood BL, Fromm JR. Flow cytometry for non-Hodgkin and Hodgkin lymphomas. Methods Mol Biol. 2019;1956:35-60. PubMed
Böttcher S, van der Velden VHJ, Villamor N, et al. . Lot-to-lot stability of antibody reagents for flow cytometry. J Immunol Methods. 2019;475:112294. PubMed
Glier H, Novakova M, Te Marvelde J, et al. . Comments on EuroFlow standard operating procedures for instrument setup and compensation for BD FACS Canto II, Navios and BD FACS Lyric instruments. J Immunol Methods. 2019;475:112680. PubMed
Kalina T, Flores-Montero J, Lecrevisse Q, et al. . Quality assessment program for EuroFlow protocols: summary results of four-year (2010-2013) quality assurance rounds. Cytometry A. 2015;87(2):145-156. PubMed
Kalina T, Flores-Montero J, van der Velden VH, et al. ; EuroFlow Consortium (EU-FP6, LSHB-CT-2006-018708) . EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 2012;26(9):1986-2010. PubMed PMC
Rawstron AC, Kreuzer KA, Soosapilla A, et al. . Reproducible diagnosis of chronic lymphocytic leukemia by flow cytometry: an European Research Initiative on CLL (ERIC) & European Society for Clinical Cell Analysis (ESCCA) Harmonisation project. Cytometry B Clin Cytom. 2018;94(1):121-128. PubMed PMC
Zhao M, Mallesh N, Höllein A, et al. . Hematologist-level classification of mature B-cell neoplasm using deep learning on multiparameter flow cytometry data. Cytometry A. 2020;97(10):1073-1080. PubMed
Pedreira CE, Costa ES, Barrena S, et al. ; EuroFlow Consortium . Generation of flow cytometry data files with a potentially infinite number of dimensions. Cytometry A. 2008;73(9):834-846. PubMed
Hans CP, Weisenburger DD, Greiner TC, et al. . Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275-282. PubMed
Hardoon DR, Szedmak S, Shawe-Taylor J. Canonical correlation analysis: an overview with application to learning methods. Neural Computation. 2004;16(12):2639-2664. PubMed
Gaidano V, Tenace V, Santoro N, et al. . A clinically applicable approach to the classification of B-cell non-Hodgkin lymphomas with flow cytometry and machine learning. Cancers (Basel). 2020;12(6):1684. PubMed PMC
Hallek M, Cheson BD, Catovsky D, et al. . iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018;131(25):2745-2760. PubMed
Proctor IE, McNamara C, Rodriguez-Justo M, Isaacson PG, Ramsay A. Importance of expert central review in the diagnosis of lymphoid malignancies in a regional cancer network. J Clin Oncol. 2011;29(11):1431-1435. PubMed
Flores-Montero J, Grigore G, Fluxa R, et al. . EuroFlow Lymphoid Screening Tube (LST) data base for automated identification of blood lymphocyte subsets. J Immunol Methods. 2019;475:112662. PubMed
Kalina T. Reproducibility of flow cytometry through standardization: opportunities and challenges. Cytometry A. 2020;97(2):137-147. PubMed
Hoffmann J, Rother M, Kaiser U, et al. . Determination of CD43 and CD200 surface expression improves accuracy of B-cell lymphoma immunophenotyping. Cytometry B Clin Cytom. 2020;98(6):476-482. PubMed
Cross M, Dearden C. Hairy cell leukaemia. Curr Oncol Rep. 2020;22(5):42. PubMed