Immunophenotypic Analysis of Acute Megakaryoblastic Leukemia: A EuroFlow Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
E26/200.840/2021-CNE
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
306258/2019-6
National Council for Scientific and Technological Development
NU20J-07-00028
Ministry of Health of the Czech Republic
PubMed
35326734
PubMed Central
PMC8946548
DOI
10.3390/cancers14061583
PII: cancers14061583
Knihovny.cz E-zdroje
- Klíčová slova
- AMKL, Down syndrome, EuroFlow, immunophenotyping, transient abnormal myelopoiesis,
- Publikační typ
- časopisecké články MeSH
Acute megakaryoblastic leukemia (AMKL) is a rare and heterogeneous subtype of acute myeloid leukemia (AML). We evaluated the immunophenotypic profile of 72 AMKL and 114 non-AMKL AML patients using the EuroFlow AML panel. Univariate and multivariate/multidimensional analyses were performed to identify most relevant markers contributing to the diagnosis of AMKL. AMKL patients were subdivided into transient abnormal myelopoiesis (TAM), myeloid leukemia associated with Down syndrome (ML-DS), AML-not otherwise specified with megakaryocytic differentiation (NOS-AMKL), and AMKL-other patients (AML patients with other WHO classification but with flowcytometric features of megakaryocytic differentiation). Flowcytometric analysis showed good discrimination between AMKL and non-AMKL patients based on differential expression of, in particular, CD42a.CD61, CD41, CD42b, HLADR, CD15 and CD13. Combining CD42a.CD61 (positive) and CD13 (negative) resulted in a sensitivity of 71% and a specificity of 99%. Within AMKL patients, TAM and ML-DS patients showed higher frequencies of immature CD34+/CD117+ leukemic cells as compared to NOS-AMKL and AMKL-Other patients. In addition, ML-DS patients showed a significantly higher expression of CD33, CD11b, CD38 and CD7 as compared to the other three subgroups, allowing for good distinction of these patients. Overall, our data show that the EuroFlow AML panel allows for straightforward diagnosis of AMKL and that ML-DS is associated with a unique immunophenotypic profile.
Cytognos SL Carretera de Madrid Km 0 Nave 9 Pol La Serna 37900 Salamanca Spain
Department of Diagnostic Sciences Ghent University C Heymanslaan 10 9000 Ghent Belgium
Institute for Laboratory Medicine Kantonsspital Aarau AG Tellstrasse 25 5001 Aarau Switzerland
Institute of Pediatrics R Bruno Lobo 50 Cidade Universitária Rio de Janeiro RJ 21941 912 Brazil
Princess Máxima Center for Pediatric Oncology Heidelberglaan 25 3584 CS Utrecht The Netherlands
Zobrazit více v PubMed
Arber D.A., Baumann I., Niemeyer C., Brunning R.D., Porwit A. WHO Classification of Tumours Iof Haematopoietic and Lymphoid Tissue. International Agency for Research on Cancer; Lyon, France: 2017. Myeloid proliferations associated with Down Syndrome; pp. 169–171.
Arber D.A., Brunning R.D., Le Beau M.M., Falini B., Vardiman J.W., Porwit A., Thiele J., Foucar K., Dohner H., Bloomfield C.D. WHO Classification of Tumours Iof Haematopoietic and Lymphoid Tissue. International Agency for Research on Cancer; Lyon, France: 2017. Acute myeloid leukemia with recurrent genetic abnormalities; pp. 130–149.
Arber D.A., Brunning R.D., Orazi A., Bain B.J., Porwit A., Le Beau M.M., Greenberg P. WHO Classification of Tumours Iof Haematopoietic and Lymphoid Tissue. International Agency for Research on Cancer; Lyon, France: 2017. Acute myeloid leukemia with myelodysplasia-related changes; pp. 150–152.
Arber D.A., Brunning R.D., Orazi A., Porwit A., Peterson L.C., Thiele J., Le Beau M.M., Hasserjian R.P. WHO Classification of Tumours Iof Haematopoietic and Lymphoid Tissue. International Agency for Research on Cancer; Lyon, France: 2017. Acute myeloid leukemia, NOS; pp. 156–166.
Oki Y., Kantarjian H.M., Zhou X., Cortes J., Faderl S., Verstovsek S., O’Brien S., Koller C., Beran M., Bekele B.N., et al. Adult acute megakaryocytic leukemia: An analysis of 37 patients treated at M.D. Anderson Cancer Center. Blood. 2006;107:880–884. doi: 10.1182/blood-2005-06-2450. PubMed DOI
de Rooij J.D., Branstetter C., Ma J., Li Y., Walsh M.P., Cheng J., Obulkasim A., Dang J., Easton J., Verboon L.J., et al. Pediatric non-Down syndrome acute megakaryoblastic leukemia is characterized by distinct genomic subsets with varying outcomes. Nat. Genet. 2017;49:451–456. doi: 10.1038/ng.3772. PubMed DOI PMC
Zhao G., Wu W., Wang X., Gu J. Clinical diagnosis of adult patients with acute megakaryocytic leukemia. Oncol. Lett. 2018;16:6988–6997. doi: 10.3892/ol.2018.9501. PubMed DOI PMC
Hahn A.W., Li B., Prouet P., Giri S., Pathak R., Martin M.G. Acute megakaryocytic leukemia: What have we learned. Blood Rev. 2016;30:49–53. doi: 10.1016/j.blre.2015.07.005. PubMed DOI
Hitzler J.K., Zipursky A. Origins of leukaemia in children with Down syndrome. Nat. Rev. Cancer. 2005;5:11–20. doi: 10.1038/nrc1525. PubMed DOI
Gamis A.S., Smith F.O. Transient myeloproliferative disorder in children with Down syndrome: Clarity to this enigmatic disorder. Br. J. Haematol. 2012;159:277–287. doi: 10.1111/bjh.12041. PubMed DOI
Bernstein J., Dastugue N., Haas O.A., Harbott J., Heerema N.A., Huret J.L., Landman-Parker J., LeBeau M.M., Leonard C., Mann G., et al. Nineteen cases of the t(1;22)(p13;q13) acute megakaryblastic leukaemia of infants/children and a review of 39 cases: Report from a t(1;22) study group. Leukemia. 2000;14:216–218. doi: 10.1038/sj.leu.2401639. PubMed DOI
McElwaine S., Mulligan C., Groet J., Spinelli M., Rinaldi A., Denyer G., Mensah A., Cavani S., Baldo C., Dagna-Bricarelli F., et al. Microarray transcript profiling distinguishes the transient from the acute type of megakaryoblastic leukaemia (M7) in Down’s syndrome, revealing PRAME as a specific discriminating marker. Br. J. Haematol. 2004;125:729–742. doi: 10.1111/j.1365-2141.2004.04982.x. PubMed DOI
Yamato G., Park M.J., Sotomatsu M., Kaburagi T., Maruyama K., Kobayashi T., Nishi A., Sameshima K., Ohki K., Hayashi Y. Clinical features of 35 Down syndrome patients with transient abnormal myelopoiesis at a single institution. Int. J. Hematol. 2021;113:662–667. doi: 10.1007/s12185-020-03066-7. PubMed DOI
Athale U.H., Razzouk B.I., Raimondi S.C., Tong X., Behm F.G., Head D.R., Srivastava D.K., Rubnitz J.E., Bowman L., Pui C.H., et al. Biology and outcome of childhood acute megakaryoblastic leukemia: A single institution’s experience. Blood. 2001;97:3727–3732. doi: 10.1182/blood.V97.12.3727. PubMed DOI
Helleberg C., Knudsen H., Hansen P.B., Nikolajsen K., Kjaersgaard E., Ralfkiaer E., Johnsen H.E. CD34+ megakaryoblastic leukaemic cells are CD38-, but CD61+ and glycophorin A+: Improved criteria for diagnosis of AML-M7? Leukemia. 1997;11:830–834. doi: 10.1038/sj.leu.2400648. PubMed DOI
Klairmont M.M., Hoskoppal D., Yadak N., Choi J.K. The Comparative Sensitivity of Immunohistochemical Markers of Megakaryocytic Differentiation in Acute Megakaryoblastic Leukemia. Am. J. Clin. Pathol. 2018;150:461–467. doi: 10.1093/ajcp/aqy074. PubMed DOI
Langebrake C., Creutzig U., Reinhardt D. Immunophenotype of Down syndrome acute myeloid leukemia and transient myeloproliferative disease differs significantly from other diseases with morphologically identical or similar blasts. Klin. Padiatr. 2005;217:126–134. doi: 10.1055/s-2005-836510. PubMed DOI
Lorsbach R.B. Megakaryoblastic disorders in children. Am. J. Clin. Pathol. 2004;122:S33–S46. doi: 10.1309/Y57UGTE36PGQ2NV6. PubMed DOI
van Dongen J.J., Lhermitte L., Bottcher S., Almeida J., van der Velden V.H., Flores-Montero J., Rawstron A., Asnafi V., Lecrevisse Q., Lucio P., et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia. 2012;26:1908–1975. doi: 10.1038/leu.2012.120. PubMed DOI PMC
Kalina T., Flores-Montero J., Lecrevisse Q., Pedreira C.E., van der Velden V.H., Novakova M., Mejstrikova E., Hrusak O., Bottcher S., Karsch D., et al. Quality assessment program for EuroFlow protocols: Summary results of four-year (2010–2013) quality assurance rounds. Cytom. A. 2015;87:145–156. doi: 10.1002/cyto.a.22581. PubMed DOI
Kalina T., Flores-Montero J., van der Velden V.H., Martin-Ayuso M., Bottcher S., Ritgen M., Almeida J., Lhermitte L., Asnafi V., Mendonca A., et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 2012;26:1986–2010. doi: 10.1038/leu.2012.122. PubMed DOI PMC
Glier H., Novakova M., Te Marvelde J., Bijkerk A., Morf D., Thurner D., Rejlova K., Lange S., Finke J., van der Sluijs-Gelling A., et al. Comments on EuroFlow standard operating procedures for instrument setup and compensation for BD FACS Canto, II., Navios and BD FACS Lyric instruments. J. Immunol. Methods. 2019;475:112680. doi: 10.1016/j.jim.2019.112680. PubMed DOI
Bras A.E., Beishuizen A., Langerak A.W., Jongen-Lavrencic M., Te Marvelde J.G., van den Heuvel-Eibrink M.M., Zwaan C.M., van Dongen J.J.M., van der Velden V.H.J. CD38 expression in paediatric leukaemia and lymphoma: Implications for antibody targeted therapy. Br. J. Haematol. 2018;180:292–296. doi: 10.1111/bjh.14310. PubMed DOI
Bras A.E., de Haas V., van Stigt A., Jongen-Lavrencic M., Beverloo H.B., Te Marvelde J.G., Zwaan C.M., van Dongen J.J.M., Leusen J.H.W., van der Velden V.H.J. CD123 expression levels in 846 acute leukemia patients based on standardized immunophenotyping. Cytom. B Clin. Cytom. 2019;96:134–142. doi: 10.1002/cyto.b.21745. PubMed DOI PMC
Bras A.E., Osmani Z., de Haas V., Jongen-Lavrencic M., Te Marvelde J.G., Zwaan C.M., Mejstrikova E., Fernandez P., Szczepanski T., Orfao A., et al. Standardised immunophenotypic analysis of myeloperoxidase in acute leukaemia. Br. J. Haematol. 2021;193:922–927. doi: 10.1111/bjh.17210. PubMed DOI PMC
Bottcher S., Engelmann R., Grigore G., Fernandez P.C., Caetano J., Flores-Montero J., van der Velden V.H.J., Novakova M., Philippe J., Ritgen M., et al. Expert-independent classification of mature B-cell neoplasms using standardized flow cytometry: A multicentric study. Blood Adv. 2021;6:976–992. doi: 10.1182/bloodadvances.2021005725. PubMed DOI PMC
Yang W., Wang K., Zuo W. Neighborhood Component Feature Selection for High-Dimensional Data. J. Comput. 2012;7:161–168. doi: 10.4304/jcp.7.1.161-168. DOI
Salakhutdinov R., Hinton G. Learning a Nonlinear Embedding by Preserving Class Neighbourhood Structure; Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics; San Juan, PR, USA. 21–24 March 2007; pp. 409–412.
Della Porta M.G., Travaglino E., Boveri E., Ponzoni M., Malcovati L., Papaemmanuil E., Rigolin G.M., Pascutto C., Croci G., Gianelli U., et al. Minimal morphological criteria for defining bone marrow dysplasia: A basis for clinical implementation of WHO classification of myelodysplastic syndromes. Leukemia. 2015;29:66–75. doi: 10.1038/leu.2014.161. PubMed DOI
Matsuo S., Nishinaka-Arai Y., Kazuki Y., Oshimura M., Nakahata T., Niwa A., Saito M.K. Pluripotent stem cell model of early hematopoiesis in Down syndrome reveals quantitative effects of short-form GATA1 protein on lineage specification. PLoS ONE. 2021;16:e0247595. doi: 10.1371/journal.pone.0247595. PubMed DOI PMC
Boztug H., Schumich A., Potschger U., Muhlegger N., Kolenova A., Reinhardt K., Dworzak M. Blast cell deficiency of CD11a as a marker of acute megakaryoblastic leukemia and transient myeloproliferative disease in children with and without Down syndrome. Cytom. B Clin. Cytom. 2013;84:370–378. doi: 10.1002/cyto.b.21082. PubMed DOI
Savasan S., Buck S., Raimondi S.C., Becton D.L., Weinstein H., Chang M., Ravindranath Y. CD36 (thrombospondin receptor) expression in childhood acute megakaryoblastic leukemia: In vitro drug sensitivity and outcome. Leuk Lymphoma. 2006;47:2076–2083. doi: 10.1080/10428190600773180. PubMed DOI