CXCR3 Identifies Human Naive CD8+ T Cells with Enhanced Effector Differentiation Potential
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem
Grantová podpora
100326
Wellcome Trust - United Kingdom
149475
Swiss National Science Foundation - Switzerland
100326/Z/12/Z
Wellcome Trust - United Kingdom
640511
European Research Council - International
725038
European Research Council - International
Wellcome Trust - United Kingdom
PubMed
31740485
PubMed Central
PMC6900484
DOI
10.4049/jimmunol.1901072
PII: jimmunol.1901072
Knihovny.cz E-zdroje
- MeSH
- aktivace lymfocytů imunologie MeSH
- biologické markery MeSH
- buněčná diferenciace imunologie MeSH
- CD8-pozitivní T-lymfocyty imunologie metabolismus MeSH
- dospělí MeSH
- imunofenotypizace MeSH
- imunologická paměť MeSH
- kultivované buňky MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- myši MeSH
- receptory CXCR3 metabolismus MeSH
- senioři MeSH
- T-lymfocyty - podskupiny imunologie metabolismus MeSH
- věkové faktory MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- myši MeSH
- senioři MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- biologické markery MeSH
- CXCR3 protein, human MeSH Prohlížeč
- receptory CXCR3 MeSH
In mice, the ability of naive T (TN) cells to mount an effector response correlates with TCR sensitivity for self-derived Ags, which can be quantified indirectly by measuring surface expression levels of CD5. Equivalent findings have not been reported previously in humans. We identified two discrete subsets of human CD8+ TN cells, defined by the absence or presence of the chemokine receptor CXCR3. The more abundant CXCR3+ TN cell subset displayed an effector-like transcriptional profile and expressed TCRs with physicochemical characteristics indicative of enhanced interactions with peptide-HLA class I Ags. Moreover, CXCR3+ TN cells frequently produced IL-2 and TNF in response to nonspecific activation directly ex vivo and differentiated readily into Ag-specific effector cells in vitro. Comparative analyses further revealed that human CXCR3+ TN cells were transcriptionally equivalent to murine CXCR3+ TN cells, which expressed high levels of CD5. These findings provide support for the notion that effector differentiation is shaped by heterogeneity in the preimmune repertoire of human CD8+ T cells.
Center for Cancer Research National Cancer Institute Bethesda MD 20892
Central European Institute of Technology 621 00 Brno Czech Republic
Department of Life Sciences University of Modena and Reggio Emilia 41125 Modena Italy
Genomic Unit Humanitas Clinical and Research Center 20089 Rozzano Milan Italy
Humanitas Flow Cytometry Core Humanitas Clinical and Research Center 20089 Rozzano Milan Italy
IFOM FIRC Institute of Molecular Oncology 20139 Milan Italy
Institute for Research in Biomedicine Faculty of Biomedical Sciences USI 6500 Bellinzona Switzerland
Institute of Microbiology ETH Zurich 8093 Zurich Switzerland
IRGB National Research Council 09042 Monserrato Italy
Pirogov Russian National Research Medical University 117997 Moscow Russia
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry 117997 Moscow Russia; and
Zobrazit více v PubMed
Qi Q., Liu Y., Cheng Y., Glanville J., Zhang D., Lee J. Y., Olshen R. A., Weyand C. M., Boyd S. D., Goronzy J. J. 2014. Diversity and clonal selection in the human T-cell repertoire. Proc. Natl. Acad. Sci. USA 111: 13139–13144. PubMed PMC
Britanova O. V., Shugay M., Merzlyak E. M., Staroverov D. B., Putintseva E. V., Turchaninova M. A., Mamedov I. Z., Pogorelyy M. V., Bolotin D. A., Izraelson M., et al. 2016. Dynamics of individual T cell repertoires: from cord blood to centenarians. J. Immunol. 196: 5005–5013. PubMed
Wooldridge L., Ekeruche-Makinde J., van den Berg H. A., Skowera A., Miles J. J., Tan M. P., Dolton G., Clement M., Llewellyn-Lacey S., Price D. A., et al. 2012. A single autoimmune T cell receptor recognizes more than a million different peptides. J. Biol. Chem. 287: 1168–1177. PubMed PMC
Hogquist K. A., Jameson S. C. 2014. The self-obsession of T cells: how TCR signaling thresholds affect fate ‘decisions’ and effector function. Nat. Immunol. 15: 815–823. PubMed PMC
Murali-Krishna K., Lau L. L., Sambhara S., Lemonnier F., Altman J., Ahmed R. 1999. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 286: 1377–1381. PubMed
Sprent J., Cho J. H., Boyman O., Surh C. D. 2008. T cell homeostasis. Immunol. Cell Biol. 86: 312–319. PubMed
Kaech S. M., Tan J. T., Wherry E. J., Konieczny B. T., Surh C. D., Ahmed R. 2003. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol. 4: 1191–1198. PubMed
Sallusto F., Geginat J., Lanzavecchia A. 2004. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22: 745–763. PubMed
Gattinoni L., Lugli E., Ji Y., Pos Z., Paulos C. M., Quigley M. F., Almeida J. R., Gostick E., Yu Z., Carpenito C., et al. 2011. A human memory T cell subset with stem cell-like properties. Nat. Med. 17: 1290–1297. PubMed PMC
Henning A. N., Roychoudhuri R., Restifo N. P. 2018. Epigenetic control of CD8+ T cell differentiation. Nat. Rev. Immunol. 18: 340–356. PubMed PMC
Mahnke Y. D., Brodie T. M., Sallusto F., Roederer M., Lugli E. 2013. The who’s who of T-cell differentiation: human memory T-cell subsets. Eur. J. Immunol. 43: 2797–2809. PubMed
Henson S. M., Lanna A., Riddell N. E., Franzese O., Macaulay R., Griffiths S. J., Puleston D. J., Watson A. S., Simon A. K., Tooze S. A., Akbar A. N. 2014. p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8+ T cells. J. Clin. Invest. 124: 4004–4016. PubMed PMC
Bantug G. R., Galluzzi L., Kroemer G., Hess C. 2018. The spectrum of T cell metabolism in health and disease. Nat. Rev. Immunol. 18: 19–34. PubMed
Kaech S. M., Ahmed R. 2001. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naïve cells. Nat. Immunol. 2: 415–422. PubMed PMC
Stemberger C., Huster K. M., Koffler M., Anderl F., Schiemann M., Wagner H., Busch D. H. 2007. A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity 27: 985–997. PubMed
van den Broek T., Borghans J. A. M., van Wijk F. 2018. The full spectrum of human naive T cells. Nat. Rev. Immunol. 18: 363–373. PubMed
Buchholz V. R., Flossdorf M., Hensel I., Kretschmer L., Weissbrich B., Gräf P., Verschoor A., Schiemann M., Höfer T., Busch D. H. 2013. Disparate individual fates compose robust CD8+ T cell immunity. Science 340: 630–635. PubMed
Gerlach C., Rohr J. C., Perié L., van Rooij N., van Heijst J. W., Velds A., Urbanus J., Naik S. H., Jacobs H., Beltman J. B., et al. 2013. Heterogeneous differentiation patterns of individual CD8+ T cells. Science 340: 635–639. PubMed
Tubo N. J., Pagán A. J., Taylor J. J., Nelson R. W., Linehan J. L., Ertelt J. M., Huseby E. S., Way S. S., Jenkins M. K. 2013. Single naive CD4+ T cells from a diverse repertoire produce different effector cell types during infection. Cell 153: 785–796. PubMed PMC
Mandl J. N., Monteiro J. P., Vrisekoop N., Germain R. N. 2013. T cell-positive selection uses self-ligand binding strength to optimize repertoire recognition of foreign antigens. Immunity 38: 263–274. PubMed PMC
Persaud S. P., Parker C. R., Lo W. L., Weber K. S., Allen P. M. 2014. Intrinsic CD4+ T cell sensitivity and response to a pathogen are set and sustained by avidity for thymic and peripheral complexes of self peptide and MHC. Nat. Immunol. 15: 266–274. PubMed PMC
Fulton R. B., Hamilton S. E., Xing Y., Best J. A., Goldrath A. W., Hogquist K. A., Jameson S. C. 2015. The TCR’s sensitivity to self peptide-MHC dictates the ability of naive CD8(+) T cells to respond to foreign antigens. Nat. Immunol. 16: 107–117. PubMed PMC
Cho J. H., Kim H. O., Surh C. D., Sprent J. 2010. T cell receptor-dependent regulation of lipid rafts controls naive CD8+ T cell homeostasis. Immunity 32: 214–226. PubMed PMC
Alanio C., Nicoli F., Sultanik P., Flecken T., Perot B., Duffy D., Bianchi E., Lim A., Clave E., van Buuren M. M., et al. 2015. Bystander hyperactivation of preimmune CD8+ T cells in chronic HCV patients. eLife. DOI: 10.7554/eLife.07916. PubMed DOI PMC
Yu W., Jiang N., Ebert P. J., Kidd B. A., Müller S., Lund P. J., Juang J., Adachi K., Tse T., Birnbaum M. E., et al. 2015. Clonal deletion prunes but does not eliminate self-specific αβ CD8+ T lymphocytes. Immunity 42: 929–941. PubMed PMC
Lugli E., Mueller Y. M., Lewis M. G., Villinger F., Katsikis P. D., Roederer M. 2011. IL-15 delays suppression and fails to promote immune reconstitution in virally suppressed chronically SIV-infected macaques. Blood 118: 2520–2529. PubMed PMC
Wong M. T., Ong D. E., Lim F. S., Teng K. W., McGovern N., Narayanan S., Ho W. Q., Cerny D., Tan H. K., Anicete R., et al. 2016. A high-dimensional atlas of human T cell diversity reveals tissue-specific trafficking and cytokine signatures. Immunity 45: 442–456. PubMed
Cossarizza A., Chang H. D., Radbruch A., Akdis M., Andrä I., Annunziato F., Bacher P., Barnaba V., Battistini L., Bauer W. M., et al. 2017. Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur. J. Immunol. 47: 1584–1797. PubMed PMC
Brummelman J., Haftmann C., Núñez N. G., Alvisi G., Mazza E. M. C., Becher B., Lugli E. 2019. Development, application and computational analysis of high-dimensional fluorescent antibody panels for single-cell flow cytometry. Nat. Protoc. 14: 1946–1969. PubMed
Brummelman J., Mazza E. M. C., Alvisi G., Colombo F. S., Grilli A., Mikulak J., Mavilio D., Alloisio M., Ferrari F., Lopci E., et al. 2018. High-dimensional single cell analysis identifies stem-like cytotoxic CD8+ T cells infiltrating human tumors. J. Exp. Med. 215: 2520–2535. PubMed PMC
Pilia G., Chen W. M., Scuteri A., Orrú M., Albai G., Dei M., Lai S., Usala G., Lai M., Loi P., et al. 2006. Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genet. 2: e132. PubMed PMC
Orrù V., Steri M., Sole G., Sidore C., Virdis F., Dei M., Lai S., Zoledziewska M., Busonero F., Mulas A., et al. 2013. Genetic variants regulating immune cell levels in health and disease. Cell 155: 242–256. PubMed PMC
Douek D. C., McFarland R. D., Keiser P. H., Gage E. A., Massey J. M., Haynes B. F., Polis M. A., Haase A. T., Feinberg M. B., Sullivan J. L., et al. 1998. Changes in thymic function with age and during the treatment of HIV infection. Nature 396: 690–695. PubMed
Price D. A., Brenchley J. M., Ruff L. E., Betts M. R., Hill B. J., Roederer M., Koup R. A., Migueles S. A., Gostick E., Wooldridge L., et al. 2005. Avidity for antigen shapes clonal dominance in CD8+ T cell populations specific for persistent DNA viruses. J. Exp. Med. 202: 1349–1361. PubMed PMC
Roberto A., Castagna L., Zanon V., Bramanti S., Crocchiolo R., McLaren J. E., Gandolfi S., Tentorio P., Sarina B., Timofeeva I., et al. 2015. Role of naive-derived T memory stem cells in T-cell reconstitution following allogeneic transplantation. Blood 125: 2855–2864. PubMed PMC
Geiger R., Duhen T., Lanzavecchia A., Sallusto F. 2009. Human naive and memory CD4+ T cell repertoires specific for naturally processed antigens analyzed using libraries of amplified T cells. J. Exp. Med. 206: 1525–1534. PubMed PMC
Shugay M., Britanova O. V., Merzlyak E. M., Turchaninova M. A., Mamedov I. Z., Tuganbaev T. R., Bolotin D. A., Staroverov D. B., Putintseva E. V., Plevova K., et al. 2014. Towards error-free profiling of immune repertoires. Nat. Methods 11: 653–655. PubMed
Bolotin D. A., Poslavsky S., Mitrophanov I., Shugay M., Mamedov I. Z., Putintseva E. V., Chudakov D. M. 2015. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 12: 380–381. PubMed
Shugay M., Bagaev D. V., Turchaninova M. A., Bolotin D. A., Britanova O. V., Putintseva E. V., Pogorelyy M. V., Nazarov V. I., Zvyagin I. V., Kirgizova V. I., et al. 2015. VDJtools: unifying post-analysis of T cell receptor repertoires. PLoS Comput. Biol. 11: e1004503. PubMed PMC
Miyazawa S., Jernigan R. L. 1996. Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J. Mol. Biol. 256: 623–644. PubMed
Kidera A., Konishi Y., Oka M., Ooi T., Scheraga H. A. 1985. Statistical analysis of the physical properties of the 20 naturally occurring amino acids. J. Protein Chem. 4: 23–55.
Rackovsky S. 2010. Global characteristics of protein sequences and their implications. Proc. Natl. Acad. Sci. USA 107: 8623–8626. PubMed PMC
Roberto A., Di Vito C., Zaghi E., Mazza E. M. C., Capucetti A., Calvi M., Tentorio P., Zanon V., Sarina B., Mariotti J., et al. 2018. The early expansion of anergic NKG2Apos/CD56dim/CD16neg natural killer represents a therapeutic target in haploidentical hematopoietic stem cell transplantation. Haematologica 103: 1390–1402. PubMed PMC
Irizarry R. A., Hobbs B., Collin F., Beazer-Barclay Y. D., Antonellis K. J., Scherf U., Speed T. P. 2003. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249–264. PubMed
Ritchie M. E., Phipson B., Wu D., Hu Y., Law C. W., Shi W., Smyth G. K. 2015. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43: e47. PubMed PMC
Dobin A., Davis C. A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T. R. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29: 15–21. PubMed PMC
Robinson M. D., McCarthy D. J., Smyth G. K. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140. PubMed PMC
De Rosa S. C., Herzenberg L. A., Herzenberg L. A., Roederer M. 2001. 11-color, 13-parameter flow cytometry: identification of human naive T cells by phenotype, function, and T-cell receptor diversity. Nat. Med. 7: 245–248. PubMed
Lugli E., Gattinoni L., Roberto A., Mavilio D., Price D. A., Restifo N. P., Roederer M. 2013. Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells. Nat. Protoc. 8: 33–42. PubMed PMC
Brodie T., Brenna E., Sallusto F. 2013. OMIP-018: chemokine receptor expression on human T helper cells. [Published erratum appears in 2013 Cytometry A 83: 1041–1045.] Cytometry A 83: 530–532. PubMed
Lugli E., Dominguez M. H., Gattinoni L., Chattopadhyay P. K., Bolton D. L., Song K., Klatt N. R., Brenchley J. M., Vaccari M., Gostick E., et al. 2013. Superior T memory stem cell persistence supports long-lived T cell memory. J. Clin. Invest. 123: 594–599. PubMed PMC
Thome J. J., Yudanin N., Ohmura Y., Kubota M., Grinshpun B., Sathaliyawala T., Kato T., Lerner H., Shen Y., Farber D. L. 2014. Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell 159: 814–828. PubMed PMC
Cossarizza A., Ortolani C., Paganelli R., Barbieri D., Monti D., Sansoni P., Fagiolo U., Castellani G., Bersani F., Londei M., Franceschi C. 1996. CD45 isoforms expression on CD4+ and CD8+ T cells throughout life, from newborns to centenarians: implications for T cell memory. Mech. Ageing Dev. 86: 173–195. PubMed
Song K., Rabin R. L., Hill B. J., De Rosa S. C., Perfetto S. P., Zhang H. H., Foley J. F., Reiner J. S., Liu J., Mattapallil J. J., et al. 2005. Characterization of subsets of CD4+ memory T cells reveals early branched pathways of T cell differentiation in humans. Proc. Natl. Acad. Sci. USA 102: 7916–7921. PubMed PMC
Murata K., Tsukahara T., Emori M., Shibayama Y., Mizushima E., Matsumiya H., Yamashita K., Kaya M., Hirohashi Y., Kanaseki T., et al. 2016. Identification of a novel human memory T-cell population with the characteristics of stem-like chemo-resistance. OncoImmunology 5: e1165376. PubMed PMC
McFarland R. D., Douek D. C., Koup R. A., Picker L. J. 2000. Identification of a human recent thymic emigrant phenotype. Proc. Natl. Acad. Sci. USA 97: 4215–4220. PubMed PMC
Pittet M. J., Valmori D., Dunbar P. R., Speiser D. E., Liénard D., Lejeune F., Fleischhauer K., Cerundolo V., Cerottini J. C., Romero P. 1999. High frequencies of naive Melan-A/MART-1-specific CD8(+) T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals. J. Exp. Med. 190: 705–715. PubMed PMC
Pulko V., Davies J. S., Martinez C., Lanteri M. C., Busch M. P., Diamond M. S., Knox K., Bush E. C., Sims P. A., Sinari S., et al. 2016. Human memory T cells with a naive phenotype accumulate with aging and respond to persistent viruses. Nat. Immunol. 17: 966–975. PubMed PMC
Campion S. L., Brodie T. M., Fischer W., Korber B. T., Rossetti A., Goonetilleke N., McMichael A. J., Sallusto F. 2014. Proteome-wide analysis of HIV-specific naive and memory CD4(+) T cells in unexposed blood donors. J. Exp. Med. 211: 1273–1280. PubMed PMC
Pilipow K., Scamardella E., Puccio S., Gautam S., De Paoli F., Mazza E. M., De Simone G., Polletti S., Buccilli M., Zanon V., et al. 2018. Antioxidant metabolism regulates CD8+ T memory stem cell formation and antitumor immunity. JCI Insight 3: e122299. PubMed PMC
O’Brien S., Thomas R. M., Wertheim G. B., Zhang F., Shen H., Wells A. D. 2014. Ikaros imposes a barrier to CD8+ T cell differentiation by restricting autocrine IL-2 production. J. Immunol. 192: 5118–5129. PubMed PMC
Egorov E. S., Kasatskaya S. A., Zubov V. N., Izraelson M., Nakonechnaya T. O., Staroverov D. B., Angius A., Cucca F., Mamedov I. Z., Rosati E., et al. 2018. The changing landscape of naive T cell receptor repertoire with human aging. Front. Immunol. 9: 1618. PubMed PMC
Kosmrlj A., Jha A. K., Huseby E. S., Kardar M., Chakraborty A. K. 2008. How the thymus designs antigen-specific and self-tolerant T cell receptor sequences. Proc. Natl. Acad. Sci. USA 105: 16671–16676. PubMed PMC
Feng Y., van der Veeken J., Shugay M., Putintseva E. V., Osmanbeyoglu H. U., Dikiy S., Hoyos B. E., Moltedo B., Hemmers S., Treuting P., et al. 2015. A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance. Nature 528: 132–136. PubMed PMC
Bolotin D. A., Poslavsky S., Davydov A. N., Frenkel F. E., Fanchi L., Zolotareva O. I., Hemmers S., Putintseva E. V., Obraztsova A. S., Shugay M., et al. 2017. Antigen receptor repertoire profiling from RNA-seq data. Nat. Biotechnol. 35: 908–911. PubMed PMC
Izraelson M., Nakonechnaya T. O., Moltedo B., Egorov E. S., Kasatskaya S. A., Putintseva E. V., Mamedov I. Z., Staroverov D. B., Shemiakina I. I., Zakharova M. Y., et al. 2018. Comparative analysis of murine T-cell receptor repertoires. Immunology 153: 133–144. PubMed PMC
Stadinski B. D., Shekhar K., Gómez-Touriño I., Jung J., Sasaki K., Sewell A. K., Peakman M., Chakraborty A. K., Huseby E. S. 2016. Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat. Immunol. 17: 946–955. PubMed PMC
Oghumu S., Dong R., Varikuti S., Shawler T., Kampfrath T., Terrazas C. A., Lezama-Davila C., Ahmer B. M., Whitacre C. C., Rajagopalan S., et al. 2013. Distinct populations of innate CD8+ T cells revealed in a CXCR3 reporter mouse. J. Immunol. 190: 2229–2240. PubMed PMC
Oghumu S., Terrazas C. A., Varikuti S., Kimble J., Vadia S., Yu L., Seveau S., Satoskar A. R. 2015. CXCR3 expression defines a novel subset of innate CD8+ T cells that enhance immunity against bacterial infection and cancer upon stimulation with IL-15. FASEB J. 29: 1019–1028. PubMed PMC
Alanio C., Barreira da Silva R., Michonneau D., Bousso P., Ingersoll M. A., Albert M. L. 2018. CXCR3/CXCL10 axis shapes tissue distribution of memory phenotype CD8+ T cells in nonimmunized mice. J. Immunol. 200: 139–146. PubMed
Rabin R. L., Park M. K., Liao F., Swofford R., Stephany D., Farber J. M. 1999. Chemokine receptor responses on T cells are achieved through regulation of both receptor expression and signaling. J. Immunol. 162: 3840–3850. PubMed
Groom J. R., Luster A. D. 2011. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol. Cell Biol. 89: 207–215. PubMed PMC
Sung J. H., Zhang H., Moseman E. A., Alvarez D., Iannacone M., Henrickson S. E., de la Torre J. C., Groom J. R., Luster A. D., von Andrian U. H. 2012. Chemokine guidance of central memory T cells is critical for antiviral recall responses in lymph nodes. Cell 150: 1249–1263. PubMed PMC
Kato A., Takaori-Kondo A., Minato N., Hamazaki Y. 2018. CXCR3high CD8+ T cells with naïve phenotype and high capacity for IFN-γ production are generated during homeostatic T-cell proliferation. Eur. J. Immunol. 48: 1663–1678. PubMed
Smith N. L., Patel R. K., Reynaldi A., Grenier J. K., Wang J., Watson N. B., Nzingha K., Yee Mon K. J., Peng S. A., Grimson A., et al. 2018. Developmental origin governs CD8+ T cell fate decisions during infection. Cell 174: 117–130.e14. PubMed
Ogasawara K., Maloy W. L., Schwartz R. H. 1987. Failure to find holes in the T-cell repertoire. Nature 325: 450–452. PubMed