Overcoming Dormancy of Black Locust (Robinia pseudoacacia L.) Seeds Using Various Non-Thermal Plasma Sources
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
40094683
PubMed Central
PMC11902018
DOI
10.3390/plants14050728
PII: plants14050728
Knihovny.cz E-resources
- Keywords
- Robinia pseudoacacia, black locust, non-thermal plasma, seed dormancy, seed germination, seed treatment,
- Publication type
- Journal Article MeSH
Black locust (Fabaceae family) seeds are known for their strong dormant state and are an excellent candidate for studying and developing methods to break dormancy. We investigated overcoming the dormancy using several different sources of non-thermal plasma, which, by modifying, etching, or disrupting the waxy seed coat, allowed water to penetrate the seeds and initiate germination. All plasma sources tested enhanced seed germination to varying degrees, with over 80% germination observed when using a dielectric barrier discharge, while control seeds showed no germination. Non-thermal plasma treatment significantly decreased the water contact angle of the seed surface from an initial 120° (for untreated seeds) to complete wetting when using a dielectric barrier discharge or atmospheric-pressure plasma jet. The experiments indicate two mechanisms for the modification of the waxy seed coat by a non-thermal plasma: hydrophilization of the wax surface through the binding of oxygen particles and etching of narrow channels in the wax layer, allowing water to penetrate the seed.
See more in PubMed
Huntley B. European Vegetation History: Palaeovegetation Maps from Pollen Data—13,000 Yr BP to Present. J. Quat. Sci. 1990;5:103–122. doi: 10.1002/jqs.3390050203. DOI
Martin G.D. Addressing Geographical Bias: A Review of Robinia pseudoacacia (Black Locust) in the Southern Hemisphere. S. Afr. J. Bot. 2019;125:481–492. doi: 10.1016/j.sajb.2019.08.014. DOI
Vítková M., Müllerová J., Sádlo J., Pergl J., Pyšek P. Black Locust (Robinia pseudoacacia) Beloved and Despised: A Story of an Invasive Tree in Central Europe. For. Ecol. Manag. 2017;384:287–302. doi: 10.1016/j.foreco.2016.10.057. PubMed DOI PMC
Rédei K., Csiha I., Keserű Z., Végh Á.K., Győri J. The Silviculture of Black Locust (Robinia pseudoacacia L.) in Hungary: A Review. South-East Eur. For. 2011;2:101–107. doi: 10.15177/seefor.11-11. DOI
San-Miguel-Ayanz J., De Rigo D., Caudullo G., Houston Durrant T., Mauri A., European Commission, editors. European Atlas of Forest Tree Species. Publications Office; Luxembourg: 2016.
Nicolescu V.-N., Hernea C., Bakti B., Keserű Z., Antal B., Rédei K. Black Locust (Robinia pseudoacacia L.) as a Multi-Purpose Tree Species in Hungary and Romania: A Review. J. For. Res. 2018;29:1449–1463. doi: 10.1007/s11676-018-0626-5. DOI
Strode D.D. Woody Plants as Wildlife Food Species. U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station; Atlanta, GA, USA: 1977. Black Locust/Robinia pseudoacacia L; pp. 215–216.
Peterson A.W., Grubb T.C. Artificial Trees as a Cavity Substrate for Woodpeckers. J. Wildl. Manag. 1983;47:790. doi: 10.2307/3808614. DOI
Powell A.M. Trees & Shrubs of Trans-Pecos Texas: Including Big Bend and Guadalupe Mountain National Parks. Big Bend Natural History Association; Big Bend National Park, TX, USA: 1988.
Savic Gajic I.M., Boskov I.A., Savic I.M. Black Locust Flowers as a Natural Source of Antioxidants: Sustainable Production of High-Quality Oil from Plum by-Product and Its Incorporation in the Moisturizing Cream. Clean. Eng. Technol. 2021;3:100135. doi: 10.1016/j.clet.2021.100135. DOI
Boskov I.A., Savic Gajic I.M., Savic I.M., Spalovic B.R., Strbac N.D. Black Locust Flowers: Antioxidant Extraction Kinetics, Reducing Capacity, Mineral Composition, and Antioxidant Activity. Chem. Eng. Commun. 2022;209:1182–1190. doi: 10.1080/00986445.2021.1949304. DOI
Uzelac M., Sladonja B., Šola I., Dudaš S., Bilić J., Famuyide I.M., McGaw L.J., Eloff J.N., Mikulic-Petkovsek M., Poljuha D. Invasive Alien Species as a Potential Source of Phytopharmaceuticals: Phenolic Composition and Antimicrobial and Cytotoxic Activity of Robinia pseudoacacia L. Leaf and Flower Extracts. Plants. 2023;12:2715. doi: 10.3390/plants12142715. PubMed DOI PMC
Singh D.P., Hooda M.S., Bonner F.T. An Evaluation of Scarification Methods for Seeds of Two Leguminous Trees. New For. 1991;5:139–145. doi: 10.1007/BF00029304. DOI
Baskin C.C., Baskin J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2014.
Peloquin R.L., Hiebert R.D. The Effects of Black Locust (Robinia pseudoacacia L.) on Species Diversity and Composition of Black Oak Savanna/Woodland Communities. Nat. Areas J. 1999;19:121–131.
Roman A.M., Truta A.M., Morar I.M., Viman O., Dan C., Sestras A.F., Holonec L., Boscaiu M., Sestras R.E. From Seed to Seedling: Influence of Seed Geographic Provenance and Germination Treatments on Reproductive Material Represented by Seedlings of Robinia pseudoacacia. Sustainability. 2022;14:5654. doi: 10.3390/su14095654. DOI
Baskin J.M., Baskin C.C., Li X. Taxonomy, Anatomy and Evolution of Physical Dormancy in Seeds. Plant Species Biol. 2000;15:139–152. doi: 10.1046/j.1442-1984.2000.00034.x. DOI
Liu B., Honnorat B., Yang H., Arancibia J., Rajjou L., Rousseau A. Non-Thermal DBD Plasma Array on Seed Germination of Different Plant Species. J. Phys. Appl. Phys. 2019;52:025401. doi: 10.1088/1361-6463/aae771. DOI
Scholtz V., Šerá B., Khun J., Šerý M., Julák J. Effects of Nonthermal Plasma on Wheat Grains and Products. J. Food Qual. 2019;2019:1–10. doi: 10.1155/2019/7917825. DOI
Šerá B., Scholtz V., Jirešová J., Khun J., Julák J., Šerý M. Effects of Non-Thermal Plasma Treatment on Seed Germination and Early Growth of Leguminous Plants—A Review. Plants. 2021;10:1616. doi: 10.3390/plants10081616. PubMed DOI PMC
Graves D.B. The Emerging Role of Reactive Oxygen and Nitrogen Species in Redox Biology and Some Implications for Plasma Applications to Medicine and Biology. J. Phys. Appl. Phys. 2012;45:263001. doi: 10.1088/0022-3727/45/26/263001. DOI
Kelly S., Turner M.M. Atomic Oxygen Patterning from a Biomedical Needle-Plasma Source. J. Appl. Phys. 2013;114:123301. doi: 10.1063/1.4821241. DOI
Sysolyatina E., Mukhachev A., Yurova M., Grushin M., Karalnik V., Petryakov A., Trushkin N., Ermolaeva S., Akishev Y. Role of the Charged Particles in Bacteria Inactivation by Plasma of a Positive and Negative Corona in Ambient Air. Plasma Process. Polym. 2014;11:315–334. doi: 10.1002/ppap.201300041. DOI
Khun J., Scholtz V., Hozák P., Fitl P., Julák J. Various DC-Driven Point-to-Plain Discharges as Non-Thermal Plasma Sources and Their Bactericidal Effects. Plasma Sources Sci. Technol. 2018;27:065002. doi: 10.1088/1361-6595/aabdd0. DOI
Conrads H., Schmidt M. Plasma Generation and Plasma Sources. Plasma Sources Sci. Technol. 2000;9:441–454. doi: 10.1088/0963-0252/9/4/301. DOI
Tendero C., Tixier C., Tristant P., Desmaison J., Leprince P. Atmospheric Pressure Plasmas: A Review. Spectrochim. Acta Part B At. Spectrosc. 2006;61:2–30. doi: 10.1016/j.sab.2005.10.003. DOI
Pankaj S.K., Keener K.M. Cold Plasma: Background, Applications and Current Trends. Curr. Opin. Food Sci. 2017;16:49–52. doi: 10.1016/j.cofs.2017.07.008. DOI
Divya Deepak G. Review on Recent Advances in Cold Plasma Technology. Eur. Phys. J. Appl. Phys. 2022;97:39. doi: 10.1051/epjap/2022210275. DOI
Julák J., Scholtz V. Decontamination of Human Skin by Low-Temperature Plasma Produced by Cometary Discharge. Clin. Plasma Med. 2013;1:31–34. doi: 10.1016/j.cpme.2013.09.002. DOI
Scholtz V., Pazlarova J., Souskova H., Khun J., Julak J. Nonthermal Plasma—A Tool for Decontamination and Disinfection. Biotechnol. Adv. 2015;33:1108–1119. doi: 10.1016/j.biotechadv.2015.01.002. PubMed DOI
Shintani H., Sakudō A. Gas Plasma Sterilization in Microbiology: Theory, Applications, Pitfalls and New Perspectives. Caister Academic Press; Norfolk, UK: 2016.
Tipa R.S., Kroesen G.M.W. Plasma-Stimulated Wound Healing. IEEE Trans. Plasma Sci. 2011;39:2978–2979. doi: 10.1109/TPS.2011.2159868. DOI
Nastuta A.V., Topala I., Grigoras C., Pohoata V., Popa G. Stimulation of Wound Healing by Helium Atmospheric Pressure Plasma Treatment. J. Phys. Appl. Phys. 2011;44:105204. doi: 10.1088/0022-3727/44/10/105204. DOI
Xiong Z. Cold Atmospheric Pressure Plasmas (CAPs) for Skin Wound Healing. In: Tutar Y., Tutar L., editors. Plasma Medicine—Concepts and Clinical Applications. InTech; London, UK: 2018.
Faramarzi F., Zafari P., Alimohammadi M., Moonesi M., Rafiei A., Bekeschus S. Cold Physical Plasma in Cancer Therapy: Mechanisms, Signaling, and Immunity. Oxid. Med. Cell. Longev. 2021;2021:9916796. doi: 10.1155/2021/9916796. PubMed DOI PMC
Yan D., Malyavko A., Wang Q., Lin L., Sherman J.H., Keidar M. Cold Atmospheric Plasma Cancer Treatment, a Critical Review. Appl. Sci. 2021;11:7757. doi: 10.3390/app11167757. DOI
Chupradit S., Widjaja G., Radhi Majeed B., Kuznetsova M., Ansari M.J., Suksatan W., Turki Jalil A., Ghazi Esfahani B. Recent Advances in Cold Atmospheric Plasma (CAP) for Breast Cancer Therapy. Cell Biol. Int. 2023;47:327–340. doi: 10.1002/cbin.11939. PubMed DOI
Sladek R.E.J., Stoffels E., Walraven R., Tielbeek P.J.A., Koolhoven R.A. Plasma Treatment of Dental Cavities: A Feasibility Study. IEEE Trans. Plasma Sci. 2004;32:1540–1543. doi: 10.1109/TPS.2004.832636. DOI
Azad A. Dental Applications of Cold Atmospheric Plasma. Int. J. Contemp. Med. Res. 2017;4:1304–1305.
Heinlin J., Isbary G., Stolz W., Morfill G., Landthaler M., Shimizu T., Steffes B., Nosenko T., Zimmermann J., Karrer S. Plasma Applications in Medicine with a Special Focus on Dermatology: Plasma Medicine. J. Eur. Acad. Dermatol. Venereol. 2011;25:1–11. doi: 10.1111/j.1468-3083.2010.03702.x. PubMed DOI
Friedman P.C. From Precancers to Skin Rejuvenation-A Review of the Wide Spectrum of Current Applications and Future Possibilities for Plasma Dermatology. Plasma Med. 2020;10:217–232. doi: 10.1615/PlasmaMed.2020036898. DOI
Chacha J.S., Zhang L., Ofoedu C.E., Suleiman R.A., Dotto J.M., Roobab U., Agunbiade A.O., Duguma H.T., Mkojera B.T., Hossaini S.M., et al. Revisiting Non-Thermal Food Processing and Preservation Methods—Action Mechanisms, Pros and Cons: A Technological Update (2016–2021) Foods. 2021;10:1430. doi: 10.3390/foods10061430. PubMed DOI PMC
Oliveira M., Fernández-Gómez P., Álvarez-Ordóñez A., Prieto M., López M. Plasma-Activated Water: A Cutting-Edge Technology Driving Innovation in the Food Industry. Food Res. Int. 2022;156:111368. doi: 10.1016/j.foodres.2022.111368. PubMed DOI
Khan M.J., Jovicic V., Zbogar-Rasic A., Zettel V., Delgado A., Hitzmann B. Influence of Non-Thermal Plasma Treatment on Structural Network Attributes of Wheat Flour and Respective Dough. Foods. 2023;12:2056. doi: 10.3390/foods12102056. PubMed DOI PMC
Ikmal Misnal M.F., Redzuan N., Firdaus Zainal M.N., Raja Ibrahim R.K., Ahmad N., Agun L. Emerging Cold Plasma Treatment on Rice Grains: A Mini Review. Chemosphere. 2021;274:129972. doi: 10.1016/j.chemosphere.2021.129972. PubMed DOI
Laroussi M. Cold Plasma in Medicine and Healthcare: The New Frontier in Low Temperature Plasma Applications. Front. Phys. 2020;8:74. doi: 10.3389/fphy.2020.00074. DOI
Laroussi M., Bekeschus S., Keidar M., Bogaerts A., Fridman A., Lu X., Ostrikov K., Hori M., Stapelmann K., Miller V., et al. Low-Temperature Plasma for Biology, Hygiene, and Medicine: Perspective and Roadmap. IEEE Trans. Radiat. Plasma Med. Sci. 2022;6:127–157. doi: 10.1109/TRPMS.2021.3135118. DOI
Pankaj S., Wan Z., Keener K. Effects of Cold Plasma on Food Quality: A Review. Foods. 2018;7:4. doi: 10.3390/foods7010004. PubMed DOI PMC
Scholtz V., Jirešová J., Fišer L., Obrová K., Sláma M., Klenivskyi M., Khun J., Vaňková E. Non-Thermal Plasma Disinfecting Procedure Is Harmless to Delicate Items of Everyday Use. Sci. Rep. 2023;13:15479. doi: 10.1038/s41598-023-42405-6. PubMed DOI PMC
Waskow A., Howling A., Furno I. Mechanisms of Plasma-Seed Treatments as a Potential Seed Processing Technology. Front. Phys. 2021;9:617345. doi: 10.3389/fphy.2021.617345. DOI
Leti L.-I., Gerber I.C., Mihaila I., Galan P.-M., Strajeru S., Petrescu D.-E., Cimpeanu M.-M., Topala I., Gorgan D.-L. The Modulatory Effects of Non-Thermal Plasma on Seed’s Morphology, Germination and Genetics—A Review. Plants. 2022;11:2181. doi: 10.3390/plants11162181. PubMed DOI PMC
Mildaziene V., Ivankov A., Sera B., Baniulis D. Biochemical and Physiological Plant Processes Affected by Seed Treatment with Non-Thermal Plasma. Plants. 2022;11:856. doi: 10.3390/plants11070856. PubMed DOI PMC
Doshi P., Šerá B. Role of Non-Thermal Plasma in Fusarium Inactivation and Mycotoxin Decontamination. Plants. 2023;12:627. doi: 10.3390/plants12030627. PubMed DOI PMC
Tunklová B., Šerá B., Šrámková P., Ďurčányová S., Šerý M., Kováčik D., Zahoranová A., Hnilička F. Growth Stimulation of Durum Wheat and Common Buckwheat by Non-Thermal Atmospheric Pressure Plasma. Plants. 2023;12:4172. doi: 10.3390/plants12244172. PubMed DOI PMC
Iqbal T., Farooq M., Afsheen S., Abrar M., Yousaf M., Ijaz M. Cold Plasma Treatment and Laser Irradiation of Triticum Spp. Seeds for Sterilization and Germination. J. Laser Appl. 2019;31:042013. doi: 10.2351/1.5109764. DOI
Wong K.S., Hung Y.M., Tan M.K. Hybrid Treatment via MHz Acoustic Waves and Plasma to Enhance Seed Germination in Mung Bean. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2021;68:3438–3445. doi: 10.1109/TUFFC.2021.3091155. PubMed DOI
Florescu I., Radu I., Teodoru A., Gurau L., Chireceanu C., Bilea F., Magureanu M. Positive Effect Induced by Plasma Treatment of Seeds on the Agricultural Performance of Sunflower. Plants. 2023;12:794. doi: 10.3390/plants12040794. PubMed DOI PMC
Motrescu I., Ciolan M.A., Calistru A.E., Jitareanu G. Germination and Growth Improvement of Some Micro-Greens under the Influence of Reactive Species Produced in a Non-Thermal Plasma (NTP) Agronomy. 2023;13:150. doi: 10.3390/agronomy13010150. DOI
Ten Bosch L., Pfohl K., Avramidis G., Wieneke S., Viöl W., Karlovsky P. Plasma-Based Degradation of Mycotoxins Produced by Fusarium, Aspergillus and Alternaria Species. Toxins. 2017;9:97. doi: 10.3390/toxins9030097. PubMed DOI PMC
Čolović R., Puvača N., Cheli F., Avantaggiato G., Greco D., Đuragić O., Kos J., Pinotti L. Decontamination of Mycotoxin-Contaminated Feedstuffs and Compound Feed. Toxins. 2019;11:617. doi: 10.3390/toxins11110617. PubMed DOI PMC
Adhikari B., Pangomm K., Veerana M., Mitra S., Park G. Plant Disease Control by Non-Thermal Atmospheric-Pressure Plasma. Front. Plant Sci. 2020;11:77. doi: 10.3389/fpls.2020.00077. PubMed DOI PMC
Sutar S.A., Thirumdas R., Chaudhari B.B., Deshmukh R.R., Annapure U.S. Effect of Cold Plasma on Insect Infestation and Keeping Quality of Stored Wheat Flour. J. Stored Prod. Res. 2021;92:101774. doi: 10.1016/j.jspr.2021.101774. DOI
Mucko J., Dobosz R., Strzelecki R. Dielectric Barrier Discharge Systems with HV Generators and Discharge Chambers for Surface Treatment and Decontamination of Organic Products. Energies. 2020;13:5181. doi: 10.3390/en13195181. DOI
Filatova I., Lyushkevich V., Goncharik S., Zhukovsky A., Krupenko N., Kalatskaja J. The Effect of Low-Pressure Plasma Treatment of Seeds on the Plant Resistance to Pathogens and Crop Yields. J. Phys. Appl. Phys. 2020;53:244001. doi: 10.1088/1361-6463/ab7960. DOI
Attri P., Ishikawa K., Okumura T., Koga K., Shiratani M. Plasma Agriculture from Laboratory to Farm: A Review. Processes. 2020;8:1002. doi: 10.3390/pr8081002. DOI
Pańka D., Jeske M., Łukanowski A., Baturo-Cieśniewska A., Prus P., Maitah M., Maitah K., Malec K., Rymarz D., Muhire J.D.D., et al. Can Cold Plasma Be Used for Boosting Plant Growth and Plant Protection in Sustainable Plant Production? Agronomy. 2022;12:841. doi: 10.3390/agronomy12040841. DOI
Selvamuthukumaran M., editor. Non-Thermal Processing Technologies for the Grain Industry. 1st ed. CRC Press; Boca Raton, FL, USA: 2021.
Šerá B., Šerý M., Štrañák V., Špatenka P., Tichý M. Does Cold Plasma Affect Breaking Dormancy and Seed Germination? A Study on Seeds of Lamb’s Quarters (Chenopodium album Agg.) Plasma Sci. Technol. 2009;11:750–754. doi: 10.1088/1009-0630/11/6/22. DOI
Alves Junior C., De Oliveira Vitoriano J., Da Silva D.L.S., De Lima Farias M., De Lima Dantas N.B. Water Uptake Mechanism and Germination of Erythrina Velutina Seeds Treated with Atmospheric Plasma. Sci. Rep. 2016;6:33722. doi: 10.1038/srep33722. PubMed DOI PMC
Da Silva A.R.M., Farias M.L., Da Silva D.L.S., Vitoriano J.O., De Sousa R.C., Alves-Junior C. Using Atmospheric Plasma to Increase Wettability, Imbibition and Germination of Physically Dormant Seeds of Mimosa Caesalpiniafolia. Colloids Surf. B Biointerfaces. 2017;157:280–285. doi: 10.1016/j.colsurfb.2017.05.063. PubMed DOI
Cui D., Yin Y., Wang J., Wang Z., Ding H., Ma R., Jiao Z. Research on the Physio-Biochemical Mechanism of Non-Thermal Plasma-Regulated Seed Germination and Early Seedling Development in Arabidopsis. Front. Plant Sci. 2019;10:1322. doi: 10.3389/fpls.2019.01322. PubMed DOI PMC
Degutytė-Fomins L., Paužaitė G., Žūkienė R., Mildažienė V., Koga K., Shiratani M. Relationship between Cold Plasma Treatment-Induced Changes in Radish Seed Germination and Phytohormone Balance. Jpn. J. Appl. Phys. 2020;59:SH1001. doi: 10.7567/1347-4065/ab656c. DOI
Alves-Junior C., Da Silva D.L.S., Vitoriano J.O., Barbalho A.P.C.B., De Sousa R.C. The Water Path in Plasma-Treated Leucaena Seeds. Seed Sci. Res. 2020;30:13–20. doi: 10.1017/S0960258520000045. DOI
Jirešová J., Šerá B., Scholtz V., Khun J., Šerý M. The Dormancy Overcoming and Affection of Early Growth of Alfalfa (Medicago Sativa l.) Seeds by Non-Thermal Plasma and Plasma Activated Water. Rom. Rep. Phys. 2021;73:711.
Grainge G., Nakabayashi K., Steinbrecher T., Kennedy S., Ren J., Iza F., Leubner-Metzger G. Molecular Mechanisms of Seed Dormancy Release by Gas Plasma-Activated Water Technology. J. Exp. Bot. 2022;73:4065–4078. doi: 10.1093/jxb/erac150. PubMed DOI PMC
Nicolau J.P.B., Pereira M.D., Silva F.E.D., Souza D.L.D.S., Medeiros A.D.D., Alves C.Z. Atmospheric Plasma Overcomes Dormancy of Pityrocarpa Moniliformis (Benth.) Luckow & R. W. Jobson Seeds. J. Seed Sci. 2022;44:e202244040. doi: 10.1590/2317-1545v44261872. DOI
Šerá B., Jirešová J., Scholtz V., Julák J., Khun J. Non-Thermal Plasma Treatment Improves Properties of Dormant Seeds of Black Locust (Robinia pseudoacacia L.) Forests. 2023;14:471. doi: 10.3390/f14030471. DOI
Hendry G.A.F., Grime J.P. Methods in Comparative Plant Ecology: A Laboratory Manual. Springer; Dordrecht, The Netherlands: 2012.
Mráz I., Beran P., Šerá B., Gavril B., Hnatiuc E. Effect of low-temperature plasma treatment on the growth and reproduction rate of some plant pathogenic bacteria. J. Plant Pathol. 2014;96:63–67. doi: 10.4454/JPP.V96I1.027. DOI
Šerá B., Zahoranová A., Bujdakova H., Šerý M. Disinfection from Pine Seeds Contaminated with Fusarium Circinatum Nirenberg & O’Donnell Using Non-Thermal Plasma Treatment. Rom. Rep. Phys. 2019;71:701.
Świecimska M., Tulik M., Šerá B., Golińska P., Tomeková J., Medvecká V., Bujdáková H., Oszako T., Zahoranová A., Šerý M. Non-Thermal Plasma Can Be Used in Disinfection of Scots Pine (Pinus sylvestris L.) Seeds Infected with Fusarium Oxysporum. Forests. 2020;11:837. doi: 10.3390/f11080837. DOI
Cross J.A. Back Ionisation in a Negative Point-to-Plane Corona Discharge. J. Electrost. 1986;18:327–344. doi: 10.1016/0304-3886(86)90026-4. DOI
Mizuno A. Electrostatic Precipitation. IEEE Trans. Dielectr. Electr. Insul. 2000;7:615–624. doi: 10.1109/94.879357. DOI
Ni M., Wang X., Xiao G., Qiu K., Yang G., Gao X., Cen K. Development of Back Corona Discharge in a Wire-Cylinder Electrostatic Precipitator at High Temperatures. Powder Technol. 2015;286:789–797. doi: 10.1016/j.powtec.2015.08.053. DOI
Khun J., Machková A., Kašparová P., Klenivskyi M., Vaňková E., Galář P., Julák J., Scholtz V. Non-Thermal Plasma Sources Based on Cometary and Point-to-Ring Discharges. Molecules. 2021;27:238. doi: 10.3390/molecules27010238. PubMed DOI PMC
Friedl R., Fantz U. Spectral Intensity of the N2 Emission in Argon Low-Pressure Arc Discharges for Lighting Purposes. New J. Phys. 2012;14:43016. doi: 10.1088/1367-2630/14/4/043016. DOI
Greig A., Charles C., Boswell R.W. Neutral Gas Temperature Estimates and Metastable Resonance Energy Transfer for Argon-Nitrogen Discharges. Phys. Plasmas. 2016;23:13508. doi: 10.1063/1.4939028. DOI
Fishburne E.S. Transfer of Electronic Energy between a Metastable Argon Atom and a Nitrogen Molecule. J. Chem. Phys. 1967;47:58–63. doi: 10.1063/1.1711891. DOI
Nguyen T.D., Sadeghi N. Rotational and Vibrational Distributions of N2(C 3Πu) Excited by State-Selected Ar(3P2) and Ar(3P0) Metastable Atoms. Chem. Phys. 1983;79:41–55. doi: 10.1016/0301-0104(83)85137-4. DOI
Tyndall G.W., De Vries M.S., Cobb C.L., Martin R.M. Product Rotational Alignment in the Excitation Transfer Reaction Ar(3 P 2)+N2→Ar+N2(C 3Π u) J. Chem. Phys. 1987;87:5830–5839. doi: 10.1063/1.453506. DOI
Korbut A.N., Kelman V.A., Zhmenyak Y.V., Klenovskii M.S. Emission Properties of an Atmospheric-Pressure Helium Plasma Jet Generated by a Barrier Discharge. Opt. Spectrosc. 2014;116:919–925. doi: 10.1134/S0030400X14040146. DOI
Korbut O.M., Kelman V.A., Zhmenyak Y.V., Klenivskyi M.S. Emission Properties of an Atmospheric Pressure Argon Plasma Jet Excited by Barrier Discharge. Ukr. J. Phys. 2015;60:1189–1195. doi: 10.15407/ujpe60.12.1189. DOI
Jaiswal S., Aguirre E.M., Prakash G.V. A KHz Frequency Cold Atmospheric Pressure Argon Plasma Jet for the Emission of O(1S) Auroral Lines in Ambient Air. Sci. Rep. 2021;11:1893. doi: 10.1038/s41598-021-81488-x. PubMed DOI PMC
Park Y., Oh K.S., Oh J., Seok D.C., Kim S.B., Yoo S.J., Lee M. The Biological Effects of Surface Dielectric Barrier Discharge on Seed Germination and Plant Growth with Barley. Plasma Process. Polym. 2018;15:1600056. doi: 10.1002/ppap.201600056. DOI
Bormashenko E., Grynyov R., Bormashenko Y., Drori E. Cold Radiofrequency Plasma Treatment Modifies Wettability and Germination Speed of Plant Seeds. Sci. Rep. 2012;2:741. doi: 10.1038/srep00741. PubMed DOI PMC
Holubová Ľ., Švubová R., Slováková Ľ., Bokor B., Chobotová Kročková V., Renčko J., Uhrin F., Medvecká V., Zahoranová A., Gálová E. Cold Atmospheric Pressure Plasma Treatment of Maize Grains—Induction of Growth, Enzyme Activities and Heat Shock Proteins. Int. J. Mol. Sci. 2021;22:8509. doi: 10.3390/ijms22168509. PubMed DOI PMC
Guo Q., Wang Y., Zhang H., Qu G., Wang T., Sun Q., Liang D. Alleviation of Adverse Effects of Drought Stress on Wheat Seed Germination Using Atmospheric Dielectric Barrier Discharge Plasma Treatment. Sci. Rep. 2017;7:16680. doi: 10.1038/s41598-017-16944-8. PubMed DOI PMC
Geneve R.L., Baskin C.C., Baskin J.M., Gehan Jayasuriya K.M.G., Gama-Arachchige N.S. Functional Morpho-Anatomy of Water-Gap Complexes in Physically Dormant Seed. Seed Sci. Res. 2018;28:186–191. doi: 10.1017/S0960258518000089. DOI
Karaki T., Watanabe Y., Kondo T., Koike T. Strophiole of Seeds of the Black Locust Acts as a Water Gap. Plant Species Biol. 2012;27:226–232. doi: 10.1111/j.1442-1984.2011.00343.x. DOI