• This record comes from PubMed

Overcoming Dormancy of Black Locust (Robinia pseudoacacia L.) Seeds Using Various Non-Thermal Plasma Sources

. 2025 Feb 27 ; 14 (5) : . [epub] 20250227

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Black locust (Fabaceae family) seeds are known for their strong dormant state and are an excellent candidate for studying and developing methods to break dormancy. We investigated overcoming the dormancy using several different sources of non-thermal plasma, which, by modifying, etching, or disrupting the waxy seed coat, allowed water to penetrate the seeds and initiate germination. All plasma sources tested enhanced seed germination to varying degrees, with over 80% germination observed when using a dielectric barrier discharge, while control seeds showed no germination. Non-thermal plasma treatment significantly decreased the water contact angle of the seed surface from an initial 120° (for untreated seeds) to complete wetting when using a dielectric barrier discharge or atmospheric-pressure plasma jet. The experiments indicate two mechanisms for the modification of the waxy seed coat by a non-thermal plasma: hydrophilization of the wax surface through the binding of oxygen particles and etching of narrow channels in the wax layer, allowing water to penetrate the seed.

See more in PubMed

Huntley B. European Vegetation History: Palaeovegetation Maps from Pollen Data—13,000 Yr BP to Present. J. Quat. Sci. 1990;5:103–122. doi: 10.1002/jqs.3390050203. DOI

Martin G.D. Addressing Geographical Bias: A Review of Robinia pseudoacacia (Black Locust) in the Southern Hemisphere. S. Afr. J. Bot. 2019;125:481–492. doi: 10.1016/j.sajb.2019.08.014. DOI

Vítková M., Müllerová J., Sádlo J., Pergl J., Pyšek P. Black Locust (Robinia pseudoacacia) Beloved and Despised: A Story of an Invasive Tree in Central Europe. For. Ecol. Manag. 2017;384:287–302. doi: 10.1016/j.foreco.2016.10.057. PubMed DOI PMC

Rédei K., Csiha I., Keserű Z., Végh Á.K., Győri J. The Silviculture of Black Locust (Robinia pseudoacacia L.) in Hungary: A Review. South-East Eur. For. 2011;2:101–107. doi: 10.15177/seefor.11-11. DOI

San-Miguel-Ayanz J., De Rigo D., Caudullo G., Houston Durrant T., Mauri A., European Commission, editors. European Atlas of Forest Tree Species. Publications Office; Luxembourg: 2016.

Nicolescu V.-N., Hernea C., Bakti B., Keserű Z., Antal B., Rédei K. Black Locust (Robinia pseudoacacia L.) as a Multi-Purpose Tree Species in Hungary and Romania: A Review. J. For. Res. 2018;29:1449–1463. doi: 10.1007/s11676-018-0626-5. DOI

Strode D.D. Woody Plants as Wildlife Food Species. U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station; Atlanta, GA, USA: 1977. Black Locust/Robinia pseudoacacia L; pp. 215–216.

Peterson A.W., Grubb T.C. Artificial Trees as a Cavity Substrate for Woodpeckers. J. Wildl. Manag. 1983;47:790. doi: 10.2307/3808614. DOI

Powell A.M. Trees & Shrubs of Trans-Pecos Texas: Including Big Bend and Guadalupe Mountain National Parks. Big Bend Natural History Association; Big Bend National Park, TX, USA: 1988.

Savic Gajic I.M., Boskov I.A., Savic I.M. Black Locust Flowers as a Natural Source of Antioxidants: Sustainable Production of High-Quality Oil from Plum by-Product and Its Incorporation in the Moisturizing Cream. Clean. Eng. Technol. 2021;3:100135. doi: 10.1016/j.clet.2021.100135. DOI

Boskov I.A., Savic Gajic I.M., Savic I.M., Spalovic B.R., Strbac N.D. Black Locust Flowers: Antioxidant Extraction Kinetics, Reducing Capacity, Mineral Composition, and Antioxidant Activity. Chem. Eng. Commun. 2022;209:1182–1190. doi: 10.1080/00986445.2021.1949304. DOI

Uzelac M., Sladonja B., Šola I., Dudaš S., Bilić J., Famuyide I.M., McGaw L.J., Eloff J.N., Mikulic-Petkovsek M., Poljuha D. Invasive Alien Species as a Potential Source of Phytopharmaceuticals: Phenolic Composition and Antimicrobial and Cytotoxic Activity of Robinia pseudoacacia L. Leaf and Flower Extracts. Plants. 2023;12:2715. doi: 10.3390/plants12142715. PubMed DOI PMC

Singh D.P., Hooda M.S., Bonner F.T. An Evaluation of Scarification Methods for Seeds of Two Leguminous Trees. New For. 1991;5:139–145. doi: 10.1007/BF00029304. DOI

Baskin C.C., Baskin J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2014.

Peloquin R.L., Hiebert R.D. The Effects of Black Locust (Robinia pseudoacacia L.) on Species Diversity and Composition of Black Oak Savanna/Woodland Communities. Nat. Areas J. 1999;19:121–131.

Roman A.M., Truta A.M., Morar I.M., Viman O., Dan C., Sestras A.F., Holonec L., Boscaiu M., Sestras R.E. From Seed to Seedling: Influence of Seed Geographic Provenance and Germination Treatments on Reproductive Material Represented by Seedlings of Robinia pseudoacacia. Sustainability. 2022;14:5654. doi: 10.3390/su14095654. DOI

Baskin J.M., Baskin C.C., Li X. Taxonomy, Anatomy and Evolution of Physical Dormancy in Seeds. Plant Species Biol. 2000;15:139–152. doi: 10.1046/j.1442-1984.2000.00034.x. DOI

Liu B., Honnorat B., Yang H., Arancibia J., Rajjou L., Rousseau A. Non-Thermal DBD Plasma Array on Seed Germination of Different Plant Species. J. Phys. Appl. Phys. 2019;52:025401. doi: 10.1088/1361-6463/aae771. DOI

Scholtz V., Šerá B., Khun J., Šerý M., Julák J. Effects of Nonthermal Plasma on Wheat Grains and Products. J. Food Qual. 2019;2019:1–10. doi: 10.1155/2019/7917825. DOI

Šerá B., Scholtz V., Jirešová J., Khun J., Julák J., Šerý M. Effects of Non-Thermal Plasma Treatment on Seed Germination and Early Growth of Leguminous Plants—A Review. Plants. 2021;10:1616. doi: 10.3390/plants10081616. PubMed DOI PMC

Graves D.B. The Emerging Role of Reactive Oxygen and Nitrogen Species in Redox Biology and Some Implications for Plasma Applications to Medicine and Biology. J. Phys. Appl. Phys. 2012;45:263001. doi: 10.1088/0022-3727/45/26/263001. DOI

Kelly S., Turner M.M. Atomic Oxygen Patterning from a Biomedical Needle-Plasma Source. J. Appl. Phys. 2013;114:123301. doi: 10.1063/1.4821241. DOI

Sysolyatina E., Mukhachev A., Yurova M., Grushin M., Karalnik V., Petryakov A., Trushkin N., Ermolaeva S., Akishev Y. Role of the Charged Particles in Bacteria Inactivation by Plasma of a Positive and Negative Corona in Ambient Air. Plasma Process. Polym. 2014;11:315–334. doi: 10.1002/ppap.201300041. DOI

Khun J., Scholtz V., Hozák P., Fitl P., Julák J. Various DC-Driven Point-to-Plain Discharges as Non-Thermal Plasma Sources and Their Bactericidal Effects. Plasma Sources Sci. Technol. 2018;27:065002. doi: 10.1088/1361-6595/aabdd0. DOI

Conrads H., Schmidt M. Plasma Generation and Plasma Sources. Plasma Sources Sci. Technol. 2000;9:441–454. doi: 10.1088/0963-0252/9/4/301. DOI

Tendero C., Tixier C., Tristant P., Desmaison J., Leprince P. Atmospheric Pressure Plasmas: A Review. Spectrochim. Acta Part B At. Spectrosc. 2006;61:2–30. doi: 10.1016/j.sab.2005.10.003. DOI

Pankaj S.K., Keener K.M. Cold Plasma: Background, Applications and Current Trends. Curr. Opin. Food Sci. 2017;16:49–52. doi: 10.1016/j.cofs.2017.07.008. DOI

Divya Deepak G. Review on Recent Advances in Cold Plasma Technology. Eur. Phys. J. Appl. Phys. 2022;97:39. doi: 10.1051/epjap/2022210275. DOI

Julák J., Scholtz V. Decontamination of Human Skin by Low-Temperature Plasma Produced by Cometary Discharge. Clin. Plasma Med. 2013;1:31–34. doi: 10.1016/j.cpme.2013.09.002. DOI

Scholtz V., Pazlarova J., Souskova H., Khun J., Julak J. Nonthermal Plasma—A Tool for Decontamination and Disinfection. Biotechnol. Adv. 2015;33:1108–1119. doi: 10.1016/j.biotechadv.2015.01.002. PubMed DOI

Shintani H., Sakudō A. Gas Plasma Sterilization in Microbiology: Theory, Applications, Pitfalls and New Perspectives. Caister Academic Press; Norfolk, UK: 2016.

Tipa R.S., Kroesen G.M.W. Plasma-Stimulated Wound Healing. IEEE Trans. Plasma Sci. 2011;39:2978–2979. doi: 10.1109/TPS.2011.2159868. DOI

Nastuta A.V., Topala I., Grigoras C., Pohoata V., Popa G. Stimulation of Wound Healing by Helium Atmospheric Pressure Plasma Treatment. J. Phys. Appl. Phys. 2011;44:105204. doi: 10.1088/0022-3727/44/10/105204. DOI

Xiong Z. Cold Atmospheric Pressure Plasmas (CAPs) for Skin Wound Healing. In: Tutar Y., Tutar L., editors. Plasma Medicine—Concepts and Clinical Applications. InTech; London, UK: 2018.

Faramarzi F., Zafari P., Alimohammadi M., Moonesi M., Rafiei A., Bekeschus S. Cold Physical Plasma in Cancer Therapy: Mechanisms, Signaling, and Immunity. Oxid. Med. Cell. Longev. 2021;2021:9916796. doi: 10.1155/2021/9916796. PubMed DOI PMC

Yan D., Malyavko A., Wang Q., Lin L., Sherman J.H., Keidar M. Cold Atmospheric Plasma Cancer Treatment, a Critical Review. Appl. Sci. 2021;11:7757. doi: 10.3390/app11167757. DOI

Chupradit S., Widjaja G., Radhi Majeed B., Kuznetsova M., Ansari M.J., Suksatan W., Turki Jalil A., Ghazi Esfahani B. Recent Advances in Cold Atmospheric Plasma (CAP) for Breast Cancer Therapy. Cell Biol. Int. 2023;47:327–340. doi: 10.1002/cbin.11939. PubMed DOI

Sladek R.E.J., Stoffels E., Walraven R., Tielbeek P.J.A., Koolhoven R.A. Plasma Treatment of Dental Cavities: A Feasibility Study. IEEE Trans. Plasma Sci. 2004;32:1540–1543. doi: 10.1109/TPS.2004.832636. DOI

Azad A. Dental Applications of Cold Atmospheric Plasma. Int. J. Contemp. Med. Res. 2017;4:1304–1305.

Heinlin J., Isbary G., Stolz W., Morfill G., Landthaler M., Shimizu T., Steffes B., Nosenko T., Zimmermann J., Karrer S. Plasma Applications in Medicine with a Special Focus on Dermatology: Plasma Medicine. J. Eur. Acad. Dermatol. Venereol. 2011;25:1–11. doi: 10.1111/j.1468-3083.2010.03702.x. PubMed DOI

Friedman P.C. From Precancers to Skin Rejuvenation-A Review of the Wide Spectrum of Current Applications and Future Possibilities for Plasma Dermatology. Plasma Med. 2020;10:217–232. doi: 10.1615/PlasmaMed.2020036898. DOI

Chacha J.S., Zhang L., Ofoedu C.E., Suleiman R.A., Dotto J.M., Roobab U., Agunbiade A.O., Duguma H.T., Mkojera B.T., Hossaini S.M., et al. Revisiting Non-Thermal Food Processing and Preservation Methods—Action Mechanisms, Pros and Cons: A Technological Update (2016–2021) Foods. 2021;10:1430. doi: 10.3390/foods10061430. PubMed DOI PMC

Oliveira M., Fernández-Gómez P., Álvarez-Ordóñez A., Prieto M., López M. Plasma-Activated Water: A Cutting-Edge Technology Driving Innovation in the Food Industry. Food Res. Int. 2022;156:111368. doi: 10.1016/j.foodres.2022.111368. PubMed DOI

Khan M.J., Jovicic V., Zbogar-Rasic A., Zettel V., Delgado A., Hitzmann B. Influence of Non-Thermal Plasma Treatment on Structural Network Attributes of Wheat Flour and Respective Dough. Foods. 2023;12:2056. doi: 10.3390/foods12102056. PubMed DOI PMC

Ikmal Misnal M.F., Redzuan N., Firdaus Zainal M.N., Raja Ibrahim R.K., Ahmad N., Agun L. Emerging Cold Plasma Treatment on Rice Grains: A Mini Review. Chemosphere. 2021;274:129972. doi: 10.1016/j.chemosphere.2021.129972. PubMed DOI

Laroussi M. Cold Plasma in Medicine and Healthcare: The New Frontier in Low Temperature Plasma Applications. Front. Phys. 2020;8:74. doi: 10.3389/fphy.2020.00074. DOI

Laroussi M., Bekeschus S., Keidar M., Bogaerts A., Fridman A., Lu X., Ostrikov K., Hori M., Stapelmann K., Miller V., et al. Low-Temperature Plasma for Biology, Hygiene, and Medicine: Perspective and Roadmap. IEEE Trans. Radiat. Plasma Med. Sci. 2022;6:127–157. doi: 10.1109/TRPMS.2021.3135118. DOI

Pankaj S., Wan Z., Keener K. Effects of Cold Plasma on Food Quality: A Review. Foods. 2018;7:4. doi: 10.3390/foods7010004. PubMed DOI PMC

Scholtz V., Jirešová J., Fišer L., Obrová K., Sláma M., Klenivskyi M., Khun J., Vaňková E. Non-Thermal Plasma Disinfecting Procedure Is Harmless to Delicate Items of Everyday Use. Sci. Rep. 2023;13:15479. doi: 10.1038/s41598-023-42405-6. PubMed DOI PMC

Waskow A., Howling A., Furno I. Mechanisms of Plasma-Seed Treatments as a Potential Seed Processing Technology. Front. Phys. 2021;9:617345. doi: 10.3389/fphy.2021.617345. DOI

Leti L.-I., Gerber I.C., Mihaila I., Galan P.-M., Strajeru S., Petrescu D.-E., Cimpeanu M.-M., Topala I., Gorgan D.-L. The Modulatory Effects of Non-Thermal Plasma on Seed’s Morphology, Germination and Genetics—A Review. Plants. 2022;11:2181. doi: 10.3390/plants11162181. PubMed DOI PMC

Mildaziene V., Ivankov A., Sera B., Baniulis D. Biochemical and Physiological Plant Processes Affected by Seed Treatment with Non-Thermal Plasma. Plants. 2022;11:856. doi: 10.3390/plants11070856. PubMed DOI PMC

Doshi P., Šerá B. Role of Non-Thermal Plasma in Fusarium Inactivation and Mycotoxin Decontamination. Plants. 2023;12:627. doi: 10.3390/plants12030627. PubMed DOI PMC

Tunklová B., Šerá B., Šrámková P., Ďurčányová S., Šerý M., Kováčik D., Zahoranová A., Hnilička F. Growth Stimulation of Durum Wheat and Common Buckwheat by Non-Thermal Atmospheric Pressure Plasma. Plants. 2023;12:4172. doi: 10.3390/plants12244172. PubMed DOI PMC

Iqbal T., Farooq M., Afsheen S., Abrar M., Yousaf M., Ijaz M. Cold Plasma Treatment and Laser Irradiation of Triticum Spp. Seeds for Sterilization and Germination. J. Laser Appl. 2019;31:042013. doi: 10.2351/1.5109764. DOI

Wong K.S., Hung Y.M., Tan M.K. Hybrid Treatment via MHz Acoustic Waves and Plasma to Enhance Seed Germination in Mung Bean. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2021;68:3438–3445. doi: 10.1109/TUFFC.2021.3091155. PubMed DOI

Florescu I., Radu I., Teodoru A., Gurau L., Chireceanu C., Bilea F., Magureanu M. Positive Effect Induced by Plasma Treatment of Seeds on the Agricultural Performance of Sunflower. Plants. 2023;12:794. doi: 10.3390/plants12040794. PubMed DOI PMC

Motrescu I., Ciolan M.A., Calistru A.E., Jitareanu G. Germination and Growth Improvement of Some Micro-Greens under the Influence of Reactive Species Produced in a Non-Thermal Plasma (NTP) Agronomy. 2023;13:150. doi: 10.3390/agronomy13010150. DOI

Ten Bosch L., Pfohl K., Avramidis G., Wieneke S., Viöl W., Karlovsky P. Plasma-Based Degradation of Mycotoxins Produced by Fusarium, Aspergillus and Alternaria Species. Toxins. 2017;9:97. doi: 10.3390/toxins9030097. PubMed DOI PMC

Čolović R., Puvača N., Cheli F., Avantaggiato G., Greco D., Đuragić O., Kos J., Pinotti L. Decontamination of Mycotoxin-Contaminated Feedstuffs and Compound Feed. Toxins. 2019;11:617. doi: 10.3390/toxins11110617. PubMed DOI PMC

Adhikari B., Pangomm K., Veerana M., Mitra S., Park G. Plant Disease Control by Non-Thermal Atmospheric-Pressure Plasma. Front. Plant Sci. 2020;11:77. doi: 10.3389/fpls.2020.00077. PubMed DOI PMC

Sutar S.A., Thirumdas R., Chaudhari B.B., Deshmukh R.R., Annapure U.S. Effect of Cold Plasma on Insect Infestation and Keeping Quality of Stored Wheat Flour. J. Stored Prod. Res. 2021;92:101774. doi: 10.1016/j.jspr.2021.101774. DOI

Mucko J., Dobosz R., Strzelecki R. Dielectric Barrier Discharge Systems with HV Generators and Discharge Chambers for Surface Treatment and Decontamination of Organic Products. Energies. 2020;13:5181. doi: 10.3390/en13195181. DOI

Filatova I., Lyushkevich V., Goncharik S., Zhukovsky A., Krupenko N., Kalatskaja J. The Effect of Low-Pressure Plasma Treatment of Seeds on the Plant Resistance to Pathogens and Crop Yields. J. Phys. Appl. Phys. 2020;53:244001. doi: 10.1088/1361-6463/ab7960. DOI

Attri P., Ishikawa K., Okumura T., Koga K., Shiratani M. Plasma Agriculture from Laboratory to Farm: A Review. Processes. 2020;8:1002. doi: 10.3390/pr8081002. DOI

Pańka D., Jeske M., Łukanowski A., Baturo-Cieśniewska A., Prus P., Maitah M., Maitah K., Malec K., Rymarz D., Muhire J.D.D., et al. Can Cold Plasma Be Used for Boosting Plant Growth and Plant Protection in Sustainable Plant Production? Agronomy. 2022;12:841. doi: 10.3390/agronomy12040841. DOI

Selvamuthukumaran M., editor. Non-Thermal Processing Technologies for the Grain Industry. 1st ed. CRC Press; Boca Raton, FL, USA: 2021.

Šerá B., Šerý M., Štrañák V., Špatenka P., Tichý M. Does Cold Plasma Affect Breaking Dormancy and Seed Germination? A Study on Seeds of Lamb’s Quarters (Chenopodium album Agg.) Plasma Sci. Technol. 2009;11:750–754. doi: 10.1088/1009-0630/11/6/22. DOI

Alves Junior C., De Oliveira Vitoriano J., Da Silva D.L.S., De Lima Farias M., De Lima Dantas N.B. Water Uptake Mechanism and Germination of Erythrina Velutina Seeds Treated with Atmospheric Plasma. Sci. Rep. 2016;6:33722. doi: 10.1038/srep33722. PubMed DOI PMC

Da Silva A.R.M., Farias M.L., Da Silva D.L.S., Vitoriano J.O., De Sousa R.C., Alves-Junior C. Using Atmospheric Plasma to Increase Wettability, Imbibition and Germination of Physically Dormant Seeds of Mimosa Caesalpiniafolia. Colloids Surf. B Biointerfaces. 2017;157:280–285. doi: 10.1016/j.colsurfb.2017.05.063. PubMed DOI

Cui D., Yin Y., Wang J., Wang Z., Ding H., Ma R., Jiao Z. Research on the Physio-Biochemical Mechanism of Non-Thermal Plasma-Regulated Seed Germination and Early Seedling Development in Arabidopsis. Front. Plant Sci. 2019;10:1322. doi: 10.3389/fpls.2019.01322. PubMed DOI PMC

Degutytė-Fomins L., Paužaitė G., Žūkienė R., Mildažienė V., Koga K., Shiratani M. Relationship between Cold Plasma Treatment-Induced Changes in Radish Seed Germination and Phytohormone Balance. Jpn. J. Appl. Phys. 2020;59:SH1001. doi: 10.7567/1347-4065/ab656c. DOI

Alves-Junior C., Da Silva D.L.S., Vitoriano J.O., Barbalho A.P.C.B., De Sousa R.C. The Water Path in Plasma-Treated Leucaena Seeds. Seed Sci. Res. 2020;30:13–20. doi: 10.1017/S0960258520000045. DOI

Jirešová J., Šerá B., Scholtz V., Khun J., Šerý M. The Dormancy Overcoming and Affection of Early Growth of Alfalfa (Medicago Sativa l.) Seeds by Non-Thermal Plasma and Plasma Activated Water. Rom. Rep. Phys. 2021;73:711.

Grainge G., Nakabayashi K., Steinbrecher T., Kennedy S., Ren J., Iza F., Leubner-Metzger G. Molecular Mechanisms of Seed Dormancy Release by Gas Plasma-Activated Water Technology. J. Exp. Bot. 2022;73:4065–4078. doi: 10.1093/jxb/erac150. PubMed DOI PMC

Nicolau J.P.B., Pereira M.D., Silva F.E.D., Souza D.L.D.S., Medeiros A.D.D., Alves C.Z. Atmospheric Plasma Overcomes Dormancy of Pityrocarpa Moniliformis (Benth.) Luckow & R. W. Jobson Seeds. J. Seed Sci. 2022;44:e202244040. doi: 10.1590/2317-1545v44261872. DOI

Šerá B., Jirešová J., Scholtz V., Julák J., Khun J. Non-Thermal Plasma Treatment Improves Properties of Dormant Seeds of Black Locust (Robinia pseudoacacia L.) Forests. 2023;14:471. doi: 10.3390/f14030471. DOI

Hendry G.A.F., Grime J.P. Methods in Comparative Plant Ecology: A Laboratory Manual. Springer; Dordrecht, The Netherlands: 2012.

Mráz I., Beran P., Šerá B., Gavril B., Hnatiuc E. Effect of low-temperature plasma treatment on the growth and reproduction rate of some plant pathogenic bacteria. J. Plant Pathol. 2014;96:63–67. doi: 10.4454/JPP.V96I1.027. DOI

Šerá B., Zahoranová A., Bujdakova H., Šerý M. Disinfection from Pine Seeds Contaminated with Fusarium Circinatum Nirenberg & O’Donnell Using Non-Thermal Plasma Treatment. Rom. Rep. Phys. 2019;71:701.

Świecimska M., Tulik M., Šerá B., Golińska P., Tomeková J., Medvecká V., Bujdáková H., Oszako T., Zahoranová A., Šerý M. Non-Thermal Plasma Can Be Used in Disinfection of Scots Pine (Pinus sylvestris L.) Seeds Infected with Fusarium Oxysporum. Forests. 2020;11:837. doi: 10.3390/f11080837. DOI

Cross J.A. Back Ionisation in a Negative Point-to-Plane Corona Discharge. J. Electrost. 1986;18:327–344. doi: 10.1016/0304-3886(86)90026-4. DOI

Mizuno A. Electrostatic Precipitation. IEEE Trans. Dielectr. Electr. Insul. 2000;7:615–624. doi: 10.1109/94.879357. DOI

Ni M., Wang X., Xiao G., Qiu K., Yang G., Gao X., Cen K. Development of Back Corona Discharge in a Wire-Cylinder Electrostatic Precipitator at High Temperatures. Powder Technol. 2015;286:789–797. doi: 10.1016/j.powtec.2015.08.053. DOI

Khun J., Machková A., Kašparová P., Klenivskyi M., Vaňková E., Galář P., Julák J., Scholtz V. Non-Thermal Plasma Sources Based on Cometary and Point-to-Ring Discharges. Molecules. 2021;27:238. doi: 10.3390/molecules27010238. PubMed DOI PMC

Friedl R., Fantz U. Spectral Intensity of the N2 Emission in Argon Low-Pressure Arc Discharges for Lighting Purposes. New J. Phys. 2012;14:43016. doi: 10.1088/1367-2630/14/4/043016. DOI

Greig A., Charles C., Boswell R.W. Neutral Gas Temperature Estimates and Metastable Resonance Energy Transfer for Argon-Nitrogen Discharges. Phys. Plasmas. 2016;23:13508. doi: 10.1063/1.4939028. DOI

Fishburne E.S. Transfer of Electronic Energy between a Metastable Argon Atom and a Nitrogen Molecule. J. Chem. Phys. 1967;47:58–63. doi: 10.1063/1.1711891. DOI

Nguyen T.D., Sadeghi N. Rotational and Vibrational Distributions of N2(C 3Πu) Excited by State-Selected Ar(3P2) and Ar(3P0) Metastable Atoms. Chem. Phys. 1983;79:41–55. doi: 10.1016/0301-0104(83)85137-4. DOI

Tyndall G.W., De Vries M.S., Cobb C.L., Martin R.M. Product Rotational Alignment in the Excitation Transfer Reaction Ar(3 P 2)+N2→Ar+N2(C 3Π u) J. Chem. Phys. 1987;87:5830–5839. doi: 10.1063/1.453506. DOI

Korbut A.N., Kelman V.A., Zhmenyak Y.V., Klenovskii M.S. Emission Properties of an Atmospheric-Pressure Helium Plasma Jet Generated by a Barrier Discharge. Opt. Spectrosc. 2014;116:919–925. doi: 10.1134/S0030400X14040146. DOI

Korbut O.M., Kelman V.A., Zhmenyak Y.V., Klenivskyi M.S. Emission Properties of an Atmospheric Pressure Argon Plasma Jet Excited by Barrier Discharge. Ukr. J. Phys. 2015;60:1189–1195. doi: 10.15407/ujpe60.12.1189. DOI

Jaiswal S., Aguirre E.M., Prakash G.V. A KHz Frequency Cold Atmospheric Pressure Argon Plasma Jet for the Emission of O(1S) Auroral Lines in Ambient Air. Sci. Rep. 2021;11:1893. doi: 10.1038/s41598-021-81488-x. PubMed DOI PMC

Park Y., Oh K.S., Oh J., Seok D.C., Kim S.B., Yoo S.J., Lee M. The Biological Effects of Surface Dielectric Barrier Discharge on Seed Germination and Plant Growth with Barley. Plasma Process. Polym. 2018;15:1600056. doi: 10.1002/ppap.201600056. DOI

Bormashenko E., Grynyov R., Bormashenko Y., Drori E. Cold Radiofrequency Plasma Treatment Modifies Wettability and Germination Speed of Plant Seeds. Sci. Rep. 2012;2:741. doi: 10.1038/srep00741. PubMed DOI PMC

Holubová Ľ., Švubová R., Slováková Ľ., Bokor B., Chobotová Kročková V., Renčko J., Uhrin F., Medvecká V., Zahoranová A., Gálová E. Cold Atmospheric Pressure Plasma Treatment of Maize Grains—Induction of Growth, Enzyme Activities and Heat Shock Proteins. Int. J. Mol. Sci. 2021;22:8509. doi: 10.3390/ijms22168509. PubMed DOI PMC

Guo Q., Wang Y., Zhang H., Qu G., Wang T., Sun Q., Liang D. Alleviation of Adverse Effects of Drought Stress on Wheat Seed Germination Using Atmospheric Dielectric Barrier Discharge Plasma Treatment. Sci. Rep. 2017;7:16680. doi: 10.1038/s41598-017-16944-8. PubMed DOI PMC

Geneve R.L., Baskin C.C., Baskin J.M., Gehan Jayasuriya K.M.G., Gama-Arachchige N.S. Functional Morpho-Anatomy of Water-Gap Complexes in Physically Dormant Seed. Seed Sci. Res. 2018;28:186–191. doi: 10.1017/S0960258518000089. DOI

Karaki T., Watanabe Y., Kondo T., Koike T. Strophiole of Seeds of the Black Locust Acts as a Water Gap. Plant Species Biol. 2012;27:226–232. doi: 10.1111/j.1442-1984.2011.00343.x. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...