Effects of Non-Thermal Plasma Treatment on Seed Germination and Early Growth of Leguminous Plants-A Review

. 2021 Aug 06 ; 10 (8) : . [epub] 20210806

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34451662

Grantová podpora
Progress Q25 Charles University research program Progress

The legumes (Fabaceae family) are the second most important agricultural crop, both in terms of harvested area and total production. They are an important source of vegetable proteins and oils for human consumption. Non-thermal plasma (NTP) treatment is a new and effective method in surface microbial inactivation and seed stimulation useable in the agricultural and food industries. This review summarizes current information about characteristics of legume seeds and adult plants after NTP treatment in relation to the seed germination and seedling initial growth, surface microbial decontamination, seed wettability and metabolic activity in different plant growth stages. The information about 19 plant species in relation to the NTP treatment is summarized. Some important plant species as soybean (Glycine max), bean (Phaseolus vulgaris), mung bean (Vigna radiata), black gram (V. mungo), pea (Pisum sativum), lentil (Lens culinaris), peanut (Arachis hypogaea), alfalfa (Medicago sativa), and chickpea (Cicer aruetinum) are discussed. Likevise, some less common plant species i.g. blue lupine (Lupinus angustifolius), Egyptian clover (Trifolium alexandrinum), fenugreek (Trigonella foenum-graecum), and mimosa (Mimosa pudica, M. caesalpiniafolia) are mentioned too. Possible promising trends in the use of plasma as a seed pre-packaging technique, a reduction in phytotoxic diseases transmitted by seeds and the effect on reducing dormancy of hard seeds are also pointed out.

Zobrazit více v PubMed

Tendero C., Tixier C., Tristant P., Desmaison J., Leprince P. Atmospheric Pressure Plasmas: A Review. Spectrochim. Acta B. 2006;61:2–30. doi: 10.1016/j.sab.2005.10.003. DOI

Bourke P., Ziuzina D., Boehm D., Cullen P.J., Keener K. The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends Biotechnol. 2018;36:615–626. doi: 10.1016/j.tibtech.2017.11.001. PubMed DOI

Julák J., Scholtz V. The Potential for use of Non-thermal Plasma in Microbiology and Medicine. Epidemiol. Microbiol. Imunol. 2020;69:28–36. PubMed

Scholtz V., Pazlarova J., Souskova H., Khun J., Julák J. Non-thermal Plasma—A Tool for Decontamination and Disinfection. Biotechnol. Adv. 2015;33:1108–1119. doi: 10.1016/j.biotechadv.2015.01.002. PubMed DOI

Zhu Y.L., Li C.Z., Cui H.Y., Lin L. Feasibility of Cold Plasma for the Control of Biofilms in Food Industry. Trends Food Sci. Technol. 2020;99:142–151. doi: 10.1016/j.tifs.2020.03.001. DOI

von Woedtke T., Schmidt A., Bekeschus S., Wende K., Weltmann K.D. Plasma Medicine: A Field of Applied Redox Biology. In Vivo. 2019;33:1011–1026. doi: 10.21873/invivo.11570. PubMed DOI PMC

Shintani H., Sakudo A. Gas Plasma Sterilization in Microbiology: Theory, Applications, Pitfalls and New Perspectives. Caister Academic Press; Poole, UK: 2016. DOI

Metelmann H.R., von Woedtke T., Weltmann K.D. Comprehensive Clinical Plasma Medicine: Cold Physical Plasma for Medical Application. Springer; Cham, Switzerland: 2018.

Holubová L., Kyzek S., Ďurovcová I., Fabová J., Horváthová E., Ševčovičová A., Gálová E. Non-Thermal Plasma—A New Green Priming Agent for Plants? Int. J. Mol. Sci. 2020;21:9466. doi: 10.3390/ijms21249466. PubMed DOI PMC

Scholtz V., Šerá B., Khun J., Šerý M., Julák J. Effects of Nonthermal Plasma on Wheat Grains and Products. J. Food Qual. 2019:1–10. doi: 10.1155/2019/7917825. DOI

Magallanes Lopez A.M., Simsek S. Pathogens Control on Wheat and Wheat Flour: A Review. Cereal Chem. 2021;98:17–30. doi: 10.1002/cche.10345. DOI

Siddique S.S., Hardy G.S.J., Bayliss K.L. Cold Plasma: A Potential New Method to Manage Postharvest Diseases Caused by Fungal Plant Pathogens. Plant Pathol. 2018;67:1011–1021. doi: 10.1111/ppa.12825. DOI

Han Y., Cheng J.H., Sun D.W. Activities and Conformation Changes of Food Enzymes Induced by Cold Plasma: A Review. Crit. Rev. Food Sci. Nutr. 2019;59:794–811. doi: 10.1080/10408398.2018.1555131. PubMed DOI

Ekezie E.F.G., Chizoba F.G., Sun D.W., Cheng J.H. A Review on Recent Advances in Cold Plasma Technology for the Food Industry: Current Applications and Future Trends. Trends Food Sci. Technol. 2017;69:46–58. doi: 10.1016/j.tifs.2017.08.007. DOI

Pankaj S.K., Wan Z., Keener K.M. Effects of Cold Plasma on Food Quality: A Review. Foods. 2018;7:4. doi: 10.3390/foods7010004. PubMed DOI PMC

Attri P., Ishikawa K., Okumura T., Koga K., Masaharu S.M. Plasma Agriculture from Laboratory to Farm: A Review. Processes. 2020;8:1002. doi: 10.3390/pr8081002. DOI

Adhikari B., Pangomm K., Veerana M., Mitra S., Park G. Plant Disease Control by Non-Thermal Atmospheric-Pressure Plasma. Front. Plant Sci. 2020;11:77. doi: 10.3389/fpls.2020.00077. PubMed DOI PMC

Ten Bosch L., Pfohl K., Avramidis G., Wieneke S., Viöl W., Karlovsky P. Plasma-Based Degradation of Mycotoxins Produced by Fusarium, Aspergillus and Alternaria Species. Toxins. 2017;9:97. doi: 10.3390/toxins9030097. PubMed DOI PMC

Čolović R., Puvača N., Cheli F., Avantaggiato G., Greco D., Duragič O., Kos J., Pinotti L. Decontamination of Mycotoxin-Contaminated Feedstuffs and Compound Feed. Toxins. 2019;11:617. doi: 10.3390/toxins11110617. PubMed DOI PMC

Graves D.B. The Emerging Role of Reactive Oxygen and Nitrogen Species in Redox Biology and Some Implications for Plasma Applications to Medicine and Biology. J. Phys. D Appl. Phys. 2012;45:263001. doi: 10.1088/0022-3727/45/26/263001. DOI

Kelly S., Turner M. Atomic oxygen patterning from a biomedical needle-plasma source. J. Appl. Phys. 2013;114:123301. doi: 10.1063/1.4821241. DOI

Sysolyatina E., Mukhachev A., Yurova M., Grushin M., Karalnik V., Petryakov A., Trushkin N., Ermolaeva S., Akishev Y. Role of the Charged Particles in Bacteria Inactivation by Plasma of a Positive and Negative Corona in Ambient Air. Plasma Process. Polym. 2014;11:315–334. doi: 10.1002/ppap.201300041. DOI

Liao X.Y., Cullen P.J., Muhammad A.I., Jiang Z.M., Ye X.Q., Liu D.H., Ding T. Cold Plasma-Based Hurdle Interventions: New Strategies for Improving Food Safety. Food Eng. Rev. 2020;12:321. doi: 10.1007/s12393-020-09222-3. DOI

Yousfi M., Merbahi N., Sarrette J.P., Eichwald O., Ricard A., Gardou J.P., Ducasse O., Benhenni M. Non Thermal Plasma Sources of Production of Active Species for Biomedical Uses: Analyses, Optimization and Prospect. In: Reza F.R., editor. Biomedical Engineering Frontiers and Challenges. Intech Europe; Rijeka, Croatia: 2011. pp. 99–124. DOI

Ehlbeck J., Schnabel U., Polak M., Winter J., von Woedtke T., Brandenburg R., von dem Hagen T., Weltmann K.D. Low Temperature Atmospheric Pressure Plasma Sources for Microbial Decontamination. J. Phys. D Appl. Phys. 2011;44:013002. doi: 10.1088/0022-3727/44/1/013002. DOI

Simoncicova J., Krystofova S., Medvecka V., Durisova K., Kalinakova B. Technical Applications of Plasma Treatments: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2019;103:5117–5129. doi: 10.1007/s00253-019-09877-x. PubMed DOI

Khun J., Scholtz V., Hozák P., Fitl P., Julák J. Various DC-driven Point-to-plain Discharges as Non-Thermal Plasma Sources and their Bactericidal Effects. Plasma Sources Sci. Technol. 2018;27:065002. doi: 10.1088/1361-6595/aabdd0. DOI

Julák J., Hujacova A., Scholtz V., Khun J., Holada K. Contribution to the Chemistry of Plasma-Activated Water. Plasma Phys. Rep. 2018;44:125–136. doi: 10.1134/S1063780X18010075. DOI

Al-Sharify Z.T., Al-Sharify T.A., Al-Azawi A.M. Investigative Study on the Interaction and Applications of Plasma Activated Water (PAW) IOP Conf. Ser. Mater. Sci. Eng. 2020;870:012042. doi: 10.1088/1757-899X/870/1/012042. DOI

Zhou R., Zhou R., Wang P., Xian Y., Prochnow A.M., Lu X., Cullen J.P., Ostrikov K., Bazaka K. Plasma-Activated Water: Generation, Origin of Reactive Species and Biological Applications. J. Phys. D Appl. Phys. 2020;53:303001. doi: 10.1088/1361-6463/ab81cf. DOI

Judd W.S., Campbell C.S., Kellogg E.A. Plant Systematics: A Phylogenetic Approach. Sinauer Associates; Sunderland, MA, USA: 2008.

Simpson M.G. Plant Systematics. Elsevier-Academic Press; San Diego, CA, USA: 2010.

Gepts P., Beavis W.D., Brummer E.C., Shoemaker R.C., Stalker H.T., Weeden N.F., Young N.D. Legumes as a Model Plant Family. Genomics for Food and Feed Report of the Cross-Legume Advances through Genomics Conference. Plant Physiol. 2005;137:1228–1235. doi: 10.1104/pp.105.060871. PubMed DOI PMC

Sera B., Sery M. Non-Thermal Plasma Treatment as a New Biotechnology in Relation to Seeds, Dryfruits, and Grains. Plasma Sci. Technol. 2018;20:044012. doi: 10.1088/2058-6272/aaacc6. DOI

Runtzel C.L., da Silva J.R., da Silva B.A., Moecke E.S., Scussel V.M. Effect of Cold Plasma on Black Beans (Phaseolus vulgaris, L.), Fungi Inactivation and Micro-Structures stability. Emir. J. Food Agric. 2019;31:864–873. doi: 10.9755/ejfa.2019.v31.i11.2029. DOI

Selcuk M., Oksuz L., Basaran P. Decontamination of Grains and Legumes Infected with Aspergillus spp. and Penicillium spp. by Cold Plasma Treatment. Bioresour. Technol. 2008;99:5104–5109. doi: 10.1016/j.biortech.2007.09.076. PubMed DOI

Mitra A., Li Y.F., Klämpfl T.G., Shimizu T., Jeon J., Morfill G.E., Zimmermann J.L. Inactivation of Surface-Borne Microorganisms and Increased Germination of Seed Specimen by Cold Atmospheric Plasma. Food Bioprocess Technol. 2014;7:645–653. doi: 10.1007/s11947-013-1126-4. DOI

Vejrazka K., Hofbauer J., Vichova J. Seed and Seedlings XI. CZU; Prague, Czech Republic: 2013. The Influence of Physical Seed Treatment on Minor Crops Germinations and Fungal Pathogen Occurence.

Khatami S., Ahmadinia A. Increased Germination and Growth Rates of Pea and Zucchini Seed by FSG Plasma. J. Theor. Appl. Phys. 2018;12:33–38. doi: 10.1007/s40094-018-0280-5. DOI

Basaran P., Basaran-Akgul N., Oksuz L. Elimination of Aspergillus Parasiticus from nut Surface with Low Pressure Cold Plasma (LPCP) Treatment. Food Microbiol. 2008;25:626–632. doi: 10.1016/j.fm.2007.12.005. PubMed DOI

Filatova I., Azharonok V., Kadyrov M., Beljavsky V., Gvozdov A., Shik A., Antonuk A. The Effect of Plasma Treatment of Seeds of Some Grain and Legumes on their Sowing Quality and Productivity. Rom. J. Phys. 2011;56:139–143.

Filatova I., Azharonok V., Shik A., Antoniuk A., Terletskaya N. Nanomaterials for Security. Springer Science and Business Media LLC; Cham, Switzerland: 2011. Fungicidal Effects of Plasma and Radio-Wave Pre-treatments on Seeds of Grain Crops and Legumes; pp. 469–479.

Iqdiam B.M., Abuagela M.O., Boz Z., Marshall S.M., Goodrich-Schneider R., Sims C.A., Marshall M.R., MacIntosh A.J., Welt B.A. Effects of Atmospheric Pressure Plasma Jet Treatment on Aflatoxin Level, Physiochemical Quality, and Sensory Attributes of Peanuts. J. Food Process. Preserv. 2020;44:e14305. doi: 10.1111/jfpp.14305. DOI

Lee E.J., Khan M.S.I., Shim J., Kim Y.J. Roles of Oxides of Nitrogen on Quality Enhancement of Soybean Sprout During Hydroponic Production Using Plasma Discharged Water Recycling Technology. Sci. Rep. 2018;8:16872. doi: 10.1038/s41598-018-35385-5. PubMed DOI PMC

Schnabel U., Sydow D., Schlüter O., Andrasch M., Ehlbeck J. Decontamination of Fresh-cut Iceberg Lettuce and Fresh Mung Bean Sprouts by Non-Thermal Atmospheric Pressure Plasma Processed Water (PPW) Mod. Agric. Sci. Technol. 2015;1:23–39. doi: 10.15341/mast(2375-9402)/01.01.2015/003. DOI

Xiang Q., Liu X., Liu S., Ma Y., Xu C., Bai Y. Effect of Plasma-Activated Water on Microbial Quality and Physicochemical Characteristics of Mung Bean Sprouts. Innov. Food Sci. Emerg. Technol. 2019;52:49–56. doi: 10.1016/j.ifset.2018.11.012. DOI

Bormashenko E., Grynyov R., Bormashenko Y., Drori E. Cold Radiofrequency Plasma Treatment Modifies Wettability and Germination Speed of Plant Seeds. Sci. Rep. 2012;2:741. doi: 10.1038/srep00741. PubMed DOI PMC

Bormashenko E., Shapira Y., Grynyov R., Whyman G., Bormashenko Y., Drori E. Interaction of Cold Radiofrequency Plasma with Seeds of Beans (Phaseolus vulgaris) J. Exp. Bot. 2015;66:4013–4021. doi: 10.1093/jxb/erv206. PubMed DOI PMC

Shapira Y., Chaniel G., Bormashenko E. Surface Charging by the Cold Plasma Discharge of Lentil and Pepper Seeds in Comparison with Polymers. Colloids Surf. B Biointerfaces. 2018;172:541–544. doi: 10.1016/j.colsurfb.2018.09.004. PubMed DOI

da Silva A.R.M., Farias M.L., da Silva D.L.S., Vitoriano J.O., de Sousa R.C., Alves-Junior C. Using Atmospheric Plasma to Increase Wettability, Imbibition and Germination of Physically Dormant Seeds of Mimosa caesalpiniafolia. Colloids Surf. B Biointerfaces. 2017;157:280–285. doi: 10.1016/j.colsurfb.2017.05.063. PubMed DOI

Zhou R., Zhou R., Zhang X., Zhuang J., Yang S., Bazaka K., Ostrikov K.K. Effects of Atmospheric-Pressure N 2, He, air, and O 2 Microplasmas on Mung Bean Seed Germination and Seedling Growth. Sci. Rep. 2016;6:32603. doi: 10.1038/srep32603. PubMed DOI PMC

Stolárik T., Henselová M., Martinka M., Novák O., Zahoranová A., Černák M. Effect of Low-Temperature Plasma on the Structure of Seeds, Growth and Metabolism of Endogenous Phytohormones in Pea (Pisum sativum L.) Plasma Chem. Plasma Process. 2015;35:659–676. doi: 10.1007/s11090-015-9627-8. DOI

Svubova R., Kyzek S., Medvecka V., Slovakova L., Galova E., Zahoranova A. Novel Insight at the Effect of Cold Atmospheric Pressure Plasma on the Activity of Enzymes Essential for the Germination of Pea (Pisum sativum L. cv. Prophet) Seeds. Plasma Chem. Plasma Process. 2020;40:1221–1240. doi: 10.1007/s11090-020-10089-9. DOI

Li L., Jiang J., Li J., Shen M., He X., Shao H., Dong Y. Effects of Cold Plasma Treatment on Seed Germination and Seedling Growth of Soybean. Sci. Rep. 2014;4:5859. doi: 10.1038/srep05859. PubMed DOI PMC

Perez-Piza M.C., Cejas E., Zilli C., Prevosto L., Mancinelli B., Santa-Cruz D., Yannarelli G., Balestrasse K. Enhancement of Soybean Nodulation by Seed Treatment with Non-Thermal Plasmas. Sci. Rep. 2020;10:4917. doi: 10.1038/s41598-020-61913-3. PubMed DOI PMC

Fan L.M., Liu X.F., Ma Y.F., Xiang Q.S. Effects of Plasma-Activated Water Treatment on Seed Germination and Growth of Mung Bean Sprouts. J. Taibah Univ. Sci. 2020;14:823–830. doi: 10.1080/16583655.2020.1778326. DOI

Sajib S.A., Billah M., Mahmud S., Miah M., Hossain F., Omar F.B., Roy N.C., Hoque K.M.F., Talukder M.R., Kabir A.H., et al. Plasma Activated Water: The Next Generation Eco-Friendly Stimulant for Enhancing Plant Seed Germination, Vigor and Increased Enzyme Activity, a Study on Black Gram (Vigna mungo L.) Plasma Chem. Plasma Process. 2020;40:119–143. doi: 10.1007/s11090-019-10028-3. DOI

Zhou R., Li J., Zhou R., Zhang X., Yang S. Atmospheric-Pressure Plasma Treated Water for Seed Germination and Seedling Growth of Mung Bean and its Sterilization Effect on Mung Bean Sprouts. Innov. Food Sci. Emerg. Technol. 2019;53:36–44. doi: 10.1016/j.ifset.2018.08.006. DOI

Tang X., Liang F., Zhao L., Zhang L., Shu J., Zheng H., Qin X., Shao C., Feng J., Du K. Stimulating Effect of Low-Temperature Plasma (LTP) on the Germination Rate and Vigor of Alfalfa Seed (Medicago sativa L.); Proceedings of the International Conference on Computer and Computing Technologies in Agriculture IX; Jilin, China. 12–15 August 2016; pp. 522–529. DOI

Fadhlalmawla S.A., Mohamed A.A.H., Almarashi J.Q.M., Boutraa T. The Impact of Cold Atmospheric Pressure Plasma Jet on Seed Germination and Seedlings Growth of Fenugreek (Trigonella Foenum-Graecum) Plasma Sci. Technol. 2019;21:105503. doi: 10.1088/2058-6272/ab2a3e. DOI

Sadhu S., Thirumdas R., Deshmukh R.R., Annapure U.S. Influence of Cold Plasma on the Enzymatic Activity in Germinating Mung Beans (Vigna radiate) LWT Food Sci. Technol. 2017;78:97–104. doi: 10.1016/j.lwt.2016.12.026. DOI

Bußler S., Herppich W.B., Neugart S., Schreiner M., Ehlbeck J., Rohn S., Schlüter O. Impact of Cold Atmospheric Pressure Plasma on Physiology and Flavonol Glycoside Profile of Peas (Pisum sativum ‘Salamanca’) Food Res. Int. 2015;76:132–141. doi: 10.1016/j.foodres.2015.03.045. DOI

Ling L.I., Jiangang L.I., Minchong S., Jinfeng H., Hanliang S., Yuanhua D., Jiafeng J. Improving Seed Germination and Peanut Yields by Cold Plasma Treatment. Plasma Sci. Technol. 2016;18:1027–1033. doi: 10.1088/1009-0630/18/10/10. DOI

Perez-Piza M.C., Prevosto L., Grijalba P.E., Zilli C.G., Cejas E., Mancinelli B., Balestrasse K.B. Improvement of Growth and Yield of Soybean Plants Through the Application of Non-Thermal Plasmas to Seeds with Different Health Status. Heliyon. 2019;5:e01495. doi: 10.1016/j.heliyon.2019.e01495. PubMed DOI PMC

Mildaziene V., Pauzaite G., Nauciene Z., Zukiene R., Malakauskiene A., Norkeviciene E., Slepetiene A., Stukonis V., Olsauskaite V., Padarauskas A., et al. Effect of Seed Treatment with Cold Plasma and Electromagnetic Field on Red Clover Germination, Growth and Content of Major Isoflavones. J. Phys. D Appl. Phys. 2020;53:264001. doi: 10.1088/1361-6463/ab8140. DOI

Tomekova J., Kyzek S., Medvecka V., Galova E., Zahoranova A. Influence of Cold Atmospheric Pressure Plasma on Pea Seeds: DNA Damage of Seedlings and Optical Diagnostics of Plasma. Plasma Chem. Plasma Process. 2020;40:1571–1584. doi: 10.1007/s11090-020-10109-8. DOI

Liu B., Honnorat B., Yang H., Arancibia J., Rajjou L., Rousseau A. Non-Thermal DBD Plasma Array on Seed Germination of Different Plant Species. J. Phys. D Appl. Phys. 2019;52:025401. doi: 10.1088/1361-6463/aae771. DOI

Lo Porto C., Ziuzina D., Los A., Boehm D., Palumbo F., Favia P., Tiwari B., Bourke P., Cullen P.J. Plasma Activated Water and Airborne Ultrasound Treatments for Enhanced Germination and Growth of Soybean. Innov. Food Sci. Emerg. Technol. 2018;49:13–19. doi: 10.1016/j.ifset.2018.07.013. DOI

Zhang S., Rousseau A., Dufour T. Promoting Lentil Germination and Stem Growth by Plasma Activated Tap Water, Demineralized Water and Liquid Fertilizer. RSC Adv. 2017;7:31244–31251. doi: 10.1039/C7RA04663D. DOI

Volin J.C., Denes F.S., Young R.A., Park S.M.T. Modification of Seed Germination Performance through Cold Plasma Chemistry Technology. Crop Sci. 2000;40:1706–1718. doi: 10.2135/cropsci2000.4061706x. DOI

Švubová R., Slováková Ľ., Holubová Ľ., Rovňanová D., Gálová E., Tomeková J. Evaluation of the Impact of Cold Atmospheric Pressure Plasma on Soybean Seed Germination. Plants. 2021;10:177. doi: 10.3390/plants10010177. PubMed DOI PMC

Zhang J.J., Jo J.O., Mongre R.K., Ghosh M., Singh A.K., Lee S.B., Mok Y.S., Hyuk P., Jeong D.K. Growth-Inducing Effects of Argon Plasma on Soybean Sprouts Via the Regulation of Demethylation Levels of Energy Metabolism-Related Genes. Sci. Rep. 2017;7:1–12. doi: 10.1038/srep41917. PubMed DOI PMC

Billah M., Sajib S.A., Roy N.C., Rashid M.M., Reza M.A., Hasan M.M., Talukder M.R. Effects of DBD Air Plasma Treatment on the Enhancement of Black Gram (Vigna mungo L.) Seed Germination and Growth. Arch. Biochem. Biophys. 2020;681:108253. doi: 10.1016/j.abb.2020.108253. PubMed DOI

Feng J., Wang D., Shao C., Lili Z., Tang X. Effects of Cold Plasma Treatment on Alfalfa Seed Growth under Simulated Drought Stress. Plasma Sci. Technol. 2018;20:035505. doi: 10.1088/2058-6272/aa9b27. DOI

Mildaziene V., Ivanov A., Pauzaite G., Nauciene Z., Zukiene R., Degutyte-Fomins L., Pukalska A., Venskutonis P.R., Filatova I., Lyushkevich V. Seed Treatment with Cold Plasma and Electromagnetic Field Induces Changes in Red Clover Root Growth Dynamics, Flavonoid Exudation, and Activates Nodulation. Plasma Process. Polym. 2020:e2000160. doi: 10.1002/ppap.202000160. DOI

Judée F., Simon S., Bailly C., Dufour T. Plasma-Activation of Tap Water using DBD for Agronomy Applications: Identification and Quantification of Long Lifetime Chemical Species and Production/Consumption Mechanisms. Water Res. 2018;133:47–59. doi: 10.1016/j.watres.2017.12.035. PubMed DOI

Ebrahimibasabi E., Ebrahimi A., Momeni M., Amerian M.R. Elevated Expression of Diosgenin-Related Genes and Stimulation of the Defense System in Trigonella Foenum-Graecum (Fenugreek) by Cold Plasma Treatment. Sci. Hortic. 2020;271:109494. doi: 10.1016/j.scienta.2020.109494. DOI

Gebremical G.G., Emire S.A., Berhanu T. Effects of Multihollow Surface Dielectric Barrier Discharge Plasma on Chemical and Antioxidant Properties of Peanut. J. Food Qual. 2019;2019:1–10. doi: 10.1155/2019/3702649. DOI

Yu J.J., Ji H., Chen Y., Zhang Y.F., Zheng X.C., Li S.H., Chen Y. Analysis of the Glycosylation Products of Peanut Protein and Lactose by Cold Plasma Treatment: Solubility and Structural Characteristics. Int. J. Biol. Macromol. 2020;158:1194–1203. doi: 10.1016/j.ijbiomac.2020.04.255. PubMed DOI

Li J., Xiang Q., Liu X., Ding T., Zhang X., Zhai Y., Bai Y. Inactivation of Soybean Trypsin Inhibitor by Dielectric-Barrier Discharge (DBD) Plasma. Food Chem. 2017;232:515–522. doi: 10.1016/j.foodchem.2017.03.167. PubMed DOI

Mehr H.M., Koocheki A. Effect of Atmospheric Cold Plasma on Structure, Interfacial and Emulsifying Properties of Grass Pea (Lathyrus Sativus L.) Protein Isolate. Food Hydrocoll. 2020;106:105899. doi: 10.1016/j.foodhyd.2020.105899. DOI

Kyzek S., Holubová L., Medvecká V., Tomeková J., Gálová E., Zahoranová A. Cold Atmospheric Pressure Plasma Can Induce Adaptive Response in Pea Seeds. Plasma Chem. Plasma Process. 2019;39:475–486. doi: 10.1007/s11090-018-9951-x. DOI

Moghanloo M., Iranbakhsh A., Ebadi M., Ardebili Z.O. Differential Physiology and Expression of Phenylalanine Ammonia Lyase (PAL) and Universal Stress Protein (USP) in the Endangered Species Astragalus fridae following Seed Priming with Cold Plasma and Manipulation of Culture Medium with Silica Nanoparticles. 3 Biotech. 2019;9:1–13. doi: 10.1007/s13205-019-1822-5. PubMed DOI PMC

Tarrad M.M., Ahmed G., Zayed E.M. Response of Egyptian Clover Ecotypes to the Non-Thermal Plasma Radiation. Range Manag. Agrofor. 2011;32:9–14.

Filatova I., Lyushkevich V., Goncharik S., Zhukovsky A., Krupenko N., Kalatskaja J. The Effect of Low-Pressure Plasma Treatment of Seeds on the Plant Resistance to Pathogens and Crop Yields. J. Phys. D Appl. Phys. 2020;53:244001. doi: 10.1088/1361-6463/ab7960. DOI

Bußler S., Steins V., Ehlbeck J., Schlüter O. Impact of Thermal Treatment Versus Cold Atmospheric Plasma Processing on the Techno-Functional Protein Properties from Pisum Sativum ‘Salamanca’. J. Food Eng. 2015;167:166–174. doi: 10.1016/j.jfoodeng.2015.05.036. DOI

Gnapowski S., Gnapowski E., Duda A. Inproving of the Quality FOOD for Animals by Pulsed Power Plasma Discharge. Adv. Sci. Technol. Res. J. 2015;9:58–65. doi: 10.12913/22998624/59085. DOI

Venkataratnam H., Sarangapani C., Cahill O., Ryan C.B. Effect of Cold Plasma Treatment on the Antigenicity of Peanut Allergen Ara H 1. Innov. Food Sci. Emerg. Technol. 2019;52:368–375. doi: 10.1016/j.ifset.2019.02.001. DOI

Ji H., Dong S., Han F., Li Y., Chen G., Li L., Chen Y. Effects of Dielectric Barrier Discharge (DBD) Cold Plasma Treatment on Physicochemical and Functional Properties of Peanut Protein. Food Bioprocess Technol. 2018;11:344–354. doi: 10.1007/s11947-017-2015-z. DOI

Ji H., Han F., Peng S.L., Yu J.J., Li L., Liu Y.G., Chen Y., Li S.H., Chen Y. Behavioral Solubilization of Peanut Protein Isolate by Atmospheric Pressure Cold Plasma (ACP) Treatment. Food Bioprocess Technol. 2019;12:2018–2027. doi: 10.1007/s11947-019-02357-0. DOI

Ji H., Tang X.J., Li L., Peng S.L., Gao C.J., Chen Y. Improved Physicochemical Properties of Peanut Protein Isolate Glycated by Atmospheric Pressure Cold Plasma (ACP) Treatment. Food Hydrocoll. 2020;109:106124. doi: 10.1016/j.foodhyd.2020.106124. DOI

Volkov A.G., Xu K.G., Kolobov V.I. Cold Plasma Interactions with Plants: Morphing and Movements of Venus Flytrap and Mimosa Pudica Induced by Argon Plasma jet. Bioelectrochemistry. 2017;18:100–105. doi: 10.1016/j.bioelechem.2017.07.011. PubMed DOI

Yepez X.V., Baykara H., Xu L., Keener K.M. Cold Plasma Treatment of Soybean Oil with Hydrogen Gas. J. Am. Oil Chem. Soc. 2020;98:103–113. doi: 10.1002/aocs.12416. DOI

Zhai Y.F., Liu S.N., Xiang Q.S., Lyu Y., Shen R.L. Effect of Plasma-Activated Water on the Microbial Decontamination and Food Quality of Thin Sheets of Bean Curd. Appl. Sci. 2019;9:4223. doi: 10.3390/app9204223. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...