Effects of Non-Thermal Plasma Treatment on Seed Germination and Early Growth of Leguminous Plants-A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Progress Q25
Charles University research program Progress
PubMed
34451662
PubMed Central
PMC8401949
DOI
10.3390/plants10081616
PII: plants10081616
Knihovny.cz E-zdroje
- Klíčová slova
- Fabaceae, legumes, low temperature plasma, plasma treatment, seed, seedling,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The legumes (Fabaceae family) are the second most important agricultural crop, both in terms of harvested area and total production. They are an important source of vegetable proteins and oils for human consumption. Non-thermal plasma (NTP) treatment is a new and effective method in surface microbial inactivation and seed stimulation useable in the agricultural and food industries. This review summarizes current information about characteristics of legume seeds and adult plants after NTP treatment in relation to the seed germination and seedling initial growth, surface microbial decontamination, seed wettability and metabolic activity in different plant growth stages. The information about 19 plant species in relation to the NTP treatment is summarized. Some important plant species as soybean (Glycine max), bean (Phaseolus vulgaris), mung bean (Vigna radiata), black gram (V. mungo), pea (Pisum sativum), lentil (Lens culinaris), peanut (Arachis hypogaea), alfalfa (Medicago sativa), and chickpea (Cicer aruetinum) are discussed. Likevise, some less common plant species i.g. blue lupine (Lupinus angustifolius), Egyptian clover (Trifolium alexandrinum), fenugreek (Trigonella foenum-graecum), and mimosa (Mimosa pudica, M. caesalpiniafolia) are mentioned too. Possible promising trends in the use of plasma as a seed pre-packaging technique, a reduction in phytotoxic diseases transmitted by seeds and the effect on reducing dormancy of hard seeds are also pointed out.
Zobrazit více v PubMed
Tendero C., Tixier C., Tristant P., Desmaison J., Leprince P. Atmospheric Pressure Plasmas: A Review. Spectrochim. Acta B. 2006;61:2–30. doi: 10.1016/j.sab.2005.10.003. DOI
Bourke P., Ziuzina D., Boehm D., Cullen P.J., Keener K. The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends Biotechnol. 2018;36:615–626. doi: 10.1016/j.tibtech.2017.11.001. PubMed DOI
Julák J., Scholtz V. The Potential for use of Non-thermal Plasma in Microbiology and Medicine. Epidemiol. Microbiol. Imunol. 2020;69:28–36. PubMed
Scholtz V., Pazlarova J., Souskova H., Khun J., Julák J. Non-thermal Plasma—A Tool for Decontamination and Disinfection. Biotechnol. Adv. 2015;33:1108–1119. doi: 10.1016/j.biotechadv.2015.01.002. PubMed DOI
Zhu Y.L., Li C.Z., Cui H.Y., Lin L. Feasibility of Cold Plasma for the Control of Biofilms in Food Industry. Trends Food Sci. Technol. 2020;99:142–151. doi: 10.1016/j.tifs.2020.03.001. DOI
von Woedtke T., Schmidt A., Bekeschus S., Wende K., Weltmann K.D. Plasma Medicine: A Field of Applied Redox Biology. In Vivo. 2019;33:1011–1026. doi: 10.21873/invivo.11570. PubMed DOI PMC
Shintani H., Sakudo A. Gas Plasma Sterilization in Microbiology: Theory, Applications, Pitfalls and New Perspectives. Caister Academic Press; Poole, UK: 2016. DOI
Metelmann H.R., von Woedtke T., Weltmann K.D. Comprehensive Clinical Plasma Medicine: Cold Physical Plasma for Medical Application. Springer; Cham, Switzerland: 2018.
Holubová L., Kyzek S., Ďurovcová I., Fabová J., Horváthová E., Ševčovičová A., Gálová E. Non-Thermal Plasma—A New Green Priming Agent for Plants? Int. J. Mol. Sci. 2020;21:9466. doi: 10.3390/ijms21249466. PubMed DOI PMC
Scholtz V., Šerá B., Khun J., Šerý M., Julák J. Effects of Nonthermal Plasma on Wheat Grains and Products. J. Food Qual. 2019:1–10. doi: 10.1155/2019/7917825. DOI
Magallanes Lopez A.M., Simsek S. Pathogens Control on Wheat and Wheat Flour: A Review. Cereal Chem. 2021;98:17–30. doi: 10.1002/cche.10345. DOI
Siddique S.S., Hardy G.S.J., Bayliss K.L. Cold Plasma: A Potential New Method to Manage Postharvest Diseases Caused by Fungal Plant Pathogens. Plant Pathol. 2018;67:1011–1021. doi: 10.1111/ppa.12825. DOI
Han Y., Cheng J.H., Sun D.W. Activities and Conformation Changes of Food Enzymes Induced by Cold Plasma: A Review. Crit. Rev. Food Sci. Nutr. 2019;59:794–811. doi: 10.1080/10408398.2018.1555131. PubMed DOI
Ekezie E.F.G., Chizoba F.G., Sun D.W., Cheng J.H. A Review on Recent Advances in Cold Plasma Technology for the Food Industry: Current Applications and Future Trends. Trends Food Sci. Technol. 2017;69:46–58. doi: 10.1016/j.tifs.2017.08.007. DOI
Pankaj S.K., Wan Z., Keener K.M. Effects of Cold Plasma on Food Quality: A Review. Foods. 2018;7:4. doi: 10.3390/foods7010004. PubMed DOI PMC
Attri P., Ishikawa K., Okumura T., Koga K., Masaharu S.M. Plasma Agriculture from Laboratory to Farm: A Review. Processes. 2020;8:1002. doi: 10.3390/pr8081002. DOI
Adhikari B., Pangomm K., Veerana M., Mitra S., Park G. Plant Disease Control by Non-Thermal Atmospheric-Pressure Plasma. Front. Plant Sci. 2020;11:77. doi: 10.3389/fpls.2020.00077. PubMed DOI PMC
Ten Bosch L., Pfohl K., Avramidis G., Wieneke S., Viöl W., Karlovsky P. Plasma-Based Degradation of Mycotoxins Produced by Fusarium, Aspergillus and Alternaria Species. Toxins. 2017;9:97. doi: 10.3390/toxins9030097. PubMed DOI PMC
Čolović R., Puvača N., Cheli F., Avantaggiato G., Greco D., Duragič O., Kos J., Pinotti L. Decontamination of Mycotoxin-Contaminated Feedstuffs and Compound Feed. Toxins. 2019;11:617. doi: 10.3390/toxins11110617. PubMed DOI PMC
Graves D.B. The Emerging Role of Reactive Oxygen and Nitrogen Species in Redox Biology and Some Implications for Plasma Applications to Medicine and Biology. J. Phys. D Appl. Phys. 2012;45:263001. doi: 10.1088/0022-3727/45/26/263001. DOI
Kelly S., Turner M. Atomic oxygen patterning from a biomedical needle-plasma source. J. Appl. Phys. 2013;114:123301. doi: 10.1063/1.4821241. DOI
Sysolyatina E., Mukhachev A., Yurova M., Grushin M., Karalnik V., Petryakov A., Trushkin N., Ermolaeva S., Akishev Y. Role of the Charged Particles in Bacteria Inactivation by Plasma of a Positive and Negative Corona in Ambient Air. Plasma Process. Polym. 2014;11:315–334. doi: 10.1002/ppap.201300041. DOI
Liao X.Y., Cullen P.J., Muhammad A.I., Jiang Z.M., Ye X.Q., Liu D.H., Ding T. Cold Plasma-Based Hurdle Interventions: New Strategies for Improving Food Safety. Food Eng. Rev. 2020;12:321. doi: 10.1007/s12393-020-09222-3. DOI
Yousfi M., Merbahi N., Sarrette J.P., Eichwald O., Ricard A., Gardou J.P., Ducasse O., Benhenni M. Non Thermal Plasma Sources of Production of Active Species for Biomedical Uses: Analyses, Optimization and Prospect. In: Reza F.R., editor. Biomedical Engineering Frontiers and Challenges. Intech Europe; Rijeka, Croatia: 2011. pp. 99–124. DOI
Ehlbeck J., Schnabel U., Polak M., Winter J., von Woedtke T., Brandenburg R., von dem Hagen T., Weltmann K.D. Low Temperature Atmospheric Pressure Plasma Sources for Microbial Decontamination. J. Phys. D Appl. Phys. 2011;44:013002. doi: 10.1088/0022-3727/44/1/013002. DOI
Simoncicova J., Krystofova S., Medvecka V., Durisova K., Kalinakova B. Technical Applications of Plasma Treatments: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2019;103:5117–5129. doi: 10.1007/s00253-019-09877-x. PubMed DOI
Khun J., Scholtz V., Hozák P., Fitl P., Julák J. Various DC-driven Point-to-plain Discharges as Non-Thermal Plasma Sources and their Bactericidal Effects. Plasma Sources Sci. Technol. 2018;27:065002. doi: 10.1088/1361-6595/aabdd0. DOI
Julák J., Hujacova A., Scholtz V., Khun J., Holada K. Contribution to the Chemistry of Plasma-Activated Water. Plasma Phys. Rep. 2018;44:125–136. doi: 10.1134/S1063780X18010075. DOI
Al-Sharify Z.T., Al-Sharify T.A., Al-Azawi A.M. Investigative Study on the Interaction and Applications of Plasma Activated Water (PAW) IOP Conf. Ser. Mater. Sci. Eng. 2020;870:012042. doi: 10.1088/1757-899X/870/1/012042. DOI
Zhou R., Zhou R., Wang P., Xian Y., Prochnow A.M., Lu X., Cullen J.P., Ostrikov K., Bazaka K. Plasma-Activated Water: Generation, Origin of Reactive Species and Biological Applications. J. Phys. D Appl. Phys. 2020;53:303001. doi: 10.1088/1361-6463/ab81cf. DOI
Judd W.S., Campbell C.S., Kellogg E.A. Plant Systematics: A Phylogenetic Approach. Sinauer Associates; Sunderland, MA, USA: 2008.
Simpson M.G. Plant Systematics. Elsevier-Academic Press; San Diego, CA, USA: 2010.
Gepts P., Beavis W.D., Brummer E.C., Shoemaker R.C., Stalker H.T., Weeden N.F., Young N.D. Legumes as a Model Plant Family. Genomics for Food and Feed Report of the Cross-Legume Advances through Genomics Conference. Plant Physiol. 2005;137:1228–1235. doi: 10.1104/pp.105.060871. PubMed DOI PMC
Sera B., Sery M. Non-Thermal Plasma Treatment as a New Biotechnology in Relation to Seeds, Dryfruits, and Grains. Plasma Sci. Technol. 2018;20:044012. doi: 10.1088/2058-6272/aaacc6. DOI
Runtzel C.L., da Silva J.R., da Silva B.A., Moecke E.S., Scussel V.M. Effect of Cold Plasma on Black Beans (Phaseolus vulgaris, L.), Fungi Inactivation and Micro-Structures stability. Emir. J. Food Agric. 2019;31:864–873. doi: 10.9755/ejfa.2019.v31.i11.2029. DOI
Selcuk M., Oksuz L., Basaran P. Decontamination of Grains and Legumes Infected with Aspergillus spp. and Penicillium spp. by Cold Plasma Treatment. Bioresour. Technol. 2008;99:5104–5109. doi: 10.1016/j.biortech.2007.09.076. PubMed DOI
Mitra A., Li Y.F., Klämpfl T.G., Shimizu T., Jeon J., Morfill G.E., Zimmermann J.L. Inactivation of Surface-Borne Microorganisms and Increased Germination of Seed Specimen by Cold Atmospheric Plasma. Food Bioprocess Technol. 2014;7:645–653. doi: 10.1007/s11947-013-1126-4. DOI
Vejrazka K., Hofbauer J., Vichova J. Seed and Seedlings XI. CZU; Prague, Czech Republic: 2013. The Influence of Physical Seed Treatment on Minor Crops Germinations and Fungal Pathogen Occurence.
Khatami S., Ahmadinia A. Increased Germination and Growth Rates of Pea and Zucchini Seed by FSG Plasma. J. Theor. Appl. Phys. 2018;12:33–38. doi: 10.1007/s40094-018-0280-5. DOI
Basaran P., Basaran-Akgul N., Oksuz L. Elimination of Aspergillus Parasiticus from nut Surface with Low Pressure Cold Plasma (LPCP) Treatment. Food Microbiol. 2008;25:626–632. doi: 10.1016/j.fm.2007.12.005. PubMed DOI
Filatova I., Azharonok V., Kadyrov M., Beljavsky V., Gvozdov A., Shik A., Antonuk A. The Effect of Plasma Treatment of Seeds of Some Grain and Legumes on their Sowing Quality and Productivity. Rom. J. Phys. 2011;56:139–143.
Filatova I., Azharonok V., Shik A., Antoniuk A., Terletskaya N. Nanomaterials for Security. Springer Science and Business Media LLC; Cham, Switzerland: 2011. Fungicidal Effects of Plasma and Radio-Wave Pre-treatments on Seeds of Grain Crops and Legumes; pp. 469–479.
Iqdiam B.M., Abuagela M.O., Boz Z., Marshall S.M., Goodrich-Schneider R., Sims C.A., Marshall M.R., MacIntosh A.J., Welt B.A. Effects of Atmospheric Pressure Plasma Jet Treatment on Aflatoxin Level, Physiochemical Quality, and Sensory Attributes of Peanuts. J. Food Process. Preserv. 2020;44:e14305. doi: 10.1111/jfpp.14305. DOI
Lee E.J., Khan M.S.I., Shim J., Kim Y.J. Roles of Oxides of Nitrogen on Quality Enhancement of Soybean Sprout During Hydroponic Production Using Plasma Discharged Water Recycling Technology. Sci. Rep. 2018;8:16872. doi: 10.1038/s41598-018-35385-5. PubMed DOI PMC
Schnabel U., Sydow D., Schlüter O., Andrasch M., Ehlbeck J. Decontamination of Fresh-cut Iceberg Lettuce and Fresh Mung Bean Sprouts by Non-Thermal Atmospheric Pressure Plasma Processed Water (PPW) Mod. Agric. Sci. Technol. 2015;1:23–39. doi: 10.15341/mast(2375-9402)/01.01.2015/003. DOI
Xiang Q., Liu X., Liu S., Ma Y., Xu C., Bai Y. Effect of Plasma-Activated Water on Microbial Quality and Physicochemical Characteristics of Mung Bean Sprouts. Innov. Food Sci. Emerg. Technol. 2019;52:49–56. doi: 10.1016/j.ifset.2018.11.012. DOI
Bormashenko E., Grynyov R., Bormashenko Y., Drori E. Cold Radiofrequency Plasma Treatment Modifies Wettability and Germination Speed of Plant Seeds. Sci. Rep. 2012;2:741. doi: 10.1038/srep00741. PubMed DOI PMC
Bormashenko E., Shapira Y., Grynyov R., Whyman G., Bormashenko Y., Drori E. Interaction of Cold Radiofrequency Plasma with Seeds of Beans (Phaseolus vulgaris) J. Exp. Bot. 2015;66:4013–4021. doi: 10.1093/jxb/erv206. PubMed DOI PMC
Shapira Y., Chaniel G., Bormashenko E. Surface Charging by the Cold Plasma Discharge of Lentil and Pepper Seeds in Comparison with Polymers. Colloids Surf. B Biointerfaces. 2018;172:541–544. doi: 10.1016/j.colsurfb.2018.09.004. PubMed DOI
da Silva A.R.M., Farias M.L., da Silva D.L.S., Vitoriano J.O., de Sousa R.C., Alves-Junior C. Using Atmospheric Plasma to Increase Wettability, Imbibition and Germination of Physically Dormant Seeds of Mimosa caesalpiniafolia. Colloids Surf. B Biointerfaces. 2017;157:280–285. doi: 10.1016/j.colsurfb.2017.05.063. PubMed DOI
Zhou R., Zhou R., Zhang X., Zhuang J., Yang S., Bazaka K., Ostrikov K.K. Effects of Atmospheric-Pressure N 2, He, air, and O 2 Microplasmas on Mung Bean Seed Germination and Seedling Growth. Sci. Rep. 2016;6:32603. doi: 10.1038/srep32603. PubMed DOI PMC
Stolárik T., Henselová M., Martinka M., Novák O., Zahoranová A., Černák M. Effect of Low-Temperature Plasma on the Structure of Seeds, Growth and Metabolism of Endogenous Phytohormones in Pea (Pisum sativum L.) Plasma Chem. Plasma Process. 2015;35:659–676. doi: 10.1007/s11090-015-9627-8. DOI
Svubova R., Kyzek S., Medvecka V., Slovakova L., Galova E., Zahoranova A. Novel Insight at the Effect of Cold Atmospheric Pressure Plasma on the Activity of Enzymes Essential for the Germination of Pea (Pisum sativum L. cv. Prophet) Seeds. Plasma Chem. Plasma Process. 2020;40:1221–1240. doi: 10.1007/s11090-020-10089-9. DOI
Li L., Jiang J., Li J., Shen M., He X., Shao H., Dong Y. Effects of Cold Plasma Treatment on Seed Germination and Seedling Growth of Soybean. Sci. Rep. 2014;4:5859. doi: 10.1038/srep05859. PubMed DOI PMC
Perez-Piza M.C., Cejas E., Zilli C., Prevosto L., Mancinelli B., Santa-Cruz D., Yannarelli G., Balestrasse K. Enhancement of Soybean Nodulation by Seed Treatment with Non-Thermal Plasmas. Sci. Rep. 2020;10:4917. doi: 10.1038/s41598-020-61913-3. PubMed DOI PMC
Fan L.M., Liu X.F., Ma Y.F., Xiang Q.S. Effects of Plasma-Activated Water Treatment on Seed Germination and Growth of Mung Bean Sprouts. J. Taibah Univ. Sci. 2020;14:823–830. doi: 10.1080/16583655.2020.1778326. DOI
Sajib S.A., Billah M., Mahmud S., Miah M., Hossain F., Omar F.B., Roy N.C., Hoque K.M.F., Talukder M.R., Kabir A.H., et al. Plasma Activated Water: The Next Generation Eco-Friendly Stimulant for Enhancing Plant Seed Germination, Vigor and Increased Enzyme Activity, a Study on Black Gram (Vigna mungo L.) Plasma Chem. Plasma Process. 2020;40:119–143. doi: 10.1007/s11090-019-10028-3. DOI
Zhou R., Li J., Zhou R., Zhang X., Yang S. Atmospheric-Pressure Plasma Treated Water for Seed Germination and Seedling Growth of Mung Bean and its Sterilization Effect on Mung Bean Sprouts. Innov. Food Sci. Emerg. Technol. 2019;53:36–44. doi: 10.1016/j.ifset.2018.08.006. DOI
Tang X., Liang F., Zhao L., Zhang L., Shu J., Zheng H., Qin X., Shao C., Feng J., Du K. Stimulating Effect of Low-Temperature Plasma (LTP) on the Germination Rate and Vigor of Alfalfa Seed (Medicago sativa L.); Proceedings of the International Conference on Computer and Computing Technologies in Agriculture IX; Jilin, China. 12–15 August 2016; pp. 522–529. DOI
Fadhlalmawla S.A., Mohamed A.A.H., Almarashi J.Q.M., Boutraa T. The Impact of Cold Atmospheric Pressure Plasma Jet on Seed Germination and Seedlings Growth of Fenugreek (Trigonella Foenum-Graecum) Plasma Sci. Technol. 2019;21:105503. doi: 10.1088/2058-6272/ab2a3e. DOI
Sadhu S., Thirumdas R., Deshmukh R.R., Annapure U.S. Influence of Cold Plasma on the Enzymatic Activity in Germinating Mung Beans (Vigna radiate) LWT Food Sci. Technol. 2017;78:97–104. doi: 10.1016/j.lwt.2016.12.026. DOI
Bußler S., Herppich W.B., Neugart S., Schreiner M., Ehlbeck J., Rohn S., Schlüter O. Impact of Cold Atmospheric Pressure Plasma on Physiology and Flavonol Glycoside Profile of Peas (Pisum sativum ‘Salamanca’) Food Res. Int. 2015;76:132–141. doi: 10.1016/j.foodres.2015.03.045. DOI
Ling L.I., Jiangang L.I., Minchong S., Jinfeng H., Hanliang S., Yuanhua D., Jiafeng J. Improving Seed Germination and Peanut Yields by Cold Plasma Treatment. Plasma Sci. Technol. 2016;18:1027–1033. doi: 10.1088/1009-0630/18/10/10. DOI
Perez-Piza M.C., Prevosto L., Grijalba P.E., Zilli C.G., Cejas E., Mancinelli B., Balestrasse K.B. Improvement of Growth and Yield of Soybean Plants Through the Application of Non-Thermal Plasmas to Seeds with Different Health Status. Heliyon. 2019;5:e01495. doi: 10.1016/j.heliyon.2019.e01495. PubMed DOI PMC
Mildaziene V., Pauzaite G., Nauciene Z., Zukiene R., Malakauskiene A., Norkeviciene E., Slepetiene A., Stukonis V., Olsauskaite V., Padarauskas A., et al. Effect of Seed Treatment with Cold Plasma and Electromagnetic Field on Red Clover Germination, Growth and Content of Major Isoflavones. J. Phys. D Appl. Phys. 2020;53:264001. doi: 10.1088/1361-6463/ab8140. DOI
Tomekova J., Kyzek S., Medvecka V., Galova E., Zahoranova A. Influence of Cold Atmospheric Pressure Plasma on Pea Seeds: DNA Damage of Seedlings and Optical Diagnostics of Plasma. Plasma Chem. Plasma Process. 2020;40:1571–1584. doi: 10.1007/s11090-020-10109-8. DOI
Liu B., Honnorat B., Yang H., Arancibia J., Rajjou L., Rousseau A. Non-Thermal DBD Plasma Array on Seed Germination of Different Plant Species. J. Phys. D Appl. Phys. 2019;52:025401. doi: 10.1088/1361-6463/aae771. DOI
Lo Porto C., Ziuzina D., Los A., Boehm D., Palumbo F., Favia P., Tiwari B., Bourke P., Cullen P.J. Plasma Activated Water and Airborne Ultrasound Treatments for Enhanced Germination and Growth of Soybean. Innov. Food Sci. Emerg. Technol. 2018;49:13–19. doi: 10.1016/j.ifset.2018.07.013. DOI
Zhang S., Rousseau A., Dufour T. Promoting Lentil Germination and Stem Growth by Plasma Activated Tap Water, Demineralized Water and Liquid Fertilizer. RSC Adv. 2017;7:31244–31251. doi: 10.1039/C7RA04663D. DOI
Volin J.C., Denes F.S., Young R.A., Park S.M.T. Modification of Seed Germination Performance through Cold Plasma Chemistry Technology. Crop Sci. 2000;40:1706–1718. doi: 10.2135/cropsci2000.4061706x. DOI
Švubová R., Slováková Ľ., Holubová Ľ., Rovňanová D., Gálová E., Tomeková J. Evaluation of the Impact of Cold Atmospheric Pressure Plasma on Soybean Seed Germination. Plants. 2021;10:177. doi: 10.3390/plants10010177. PubMed DOI PMC
Zhang J.J., Jo J.O., Mongre R.K., Ghosh M., Singh A.K., Lee S.B., Mok Y.S., Hyuk P., Jeong D.K. Growth-Inducing Effects of Argon Plasma on Soybean Sprouts Via the Regulation of Demethylation Levels of Energy Metabolism-Related Genes. Sci. Rep. 2017;7:1–12. doi: 10.1038/srep41917. PubMed DOI PMC
Billah M., Sajib S.A., Roy N.C., Rashid M.M., Reza M.A., Hasan M.M., Talukder M.R. Effects of DBD Air Plasma Treatment on the Enhancement of Black Gram (Vigna mungo L.) Seed Germination and Growth. Arch. Biochem. Biophys. 2020;681:108253. doi: 10.1016/j.abb.2020.108253. PubMed DOI
Feng J., Wang D., Shao C., Lili Z., Tang X. Effects of Cold Plasma Treatment on Alfalfa Seed Growth under Simulated Drought Stress. Plasma Sci. Technol. 2018;20:035505. doi: 10.1088/2058-6272/aa9b27. DOI
Mildaziene V., Ivanov A., Pauzaite G., Nauciene Z., Zukiene R., Degutyte-Fomins L., Pukalska A., Venskutonis P.R., Filatova I., Lyushkevich V. Seed Treatment with Cold Plasma and Electromagnetic Field Induces Changes in Red Clover Root Growth Dynamics, Flavonoid Exudation, and Activates Nodulation. Plasma Process. Polym. 2020:e2000160. doi: 10.1002/ppap.202000160. DOI
Judée F., Simon S., Bailly C., Dufour T. Plasma-Activation of Tap Water using DBD for Agronomy Applications: Identification and Quantification of Long Lifetime Chemical Species and Production/Consumption Mechanisms. Water Res. 2018;133:47–59. doi: 10.1016/j.watres.2017.12.035. PubMed DOI
Ebrahimibasabi E., Ebrahimi A., Momeni M., Amerian M.R. Elevated Expression of Diosgenin-Related Genes and Stimulation of the Defense System in Trigonella Foenum-Graecum (Fenugreek) by Cold Plasma Treatment. Sci. Hortic. 2020;271:109494. doi: 10.1016/j.scienta.2020.109494. DOI
Gebremical G.G., Emire S.A., Berhanu T. Effects of Multihollow Surface Dielectric Barrier Discharge Plasma on Chemical and Antioxidant Properties of Peanut. J. Food Qual. 2019;2019:1–10. doi: 10.1155/2019/3702649. DOI
Yu J.J., Ji H., Chen Y., Zhang Y.F., Zheng X.C., Li S.H., Chen Y. Analysis of the Glycosylation Products of Peanut Protein and Lactose by Cold Plasma Treatment: Solubility and Structural Characteristics. Int. J. Biol. Macromol. 2020;158:1194–1203. doi: 10.1016/j.ijbiomac.2020.04.255. PubMed DOI
Li J., Xiang Q., Liu X., Ding T., Zhang X., Zhai Y., Bai Y. Inactivation of Soybean Trypsin Inhibitor by Dielectric-Barrier Discharge (DBD) Plasma. Food Chem. 2017;232:515–522. doi: 10.1016/j.foodchem.2017.03.167. PubMed DOI
Mehr H.M., Koocheki A. Effect of Atmospheric Cold Plasma on Structure, Interfacial and Emulsifying Properties of Grass Pea (Lathyrus Sativus L.) Protein Isolate. Food Hydrocoll. 2020;106:105899. doi: 10.1016/j.foodhyd.2020.105899. DOI
Kyzek S., Holubová L., Medvecká V., Tomeková J., Gálová E., Zahoranová A. Cold Atmospheric Pressure Plasma Can Induce Adaptive Response in Pea Seeds. Plasma Chem. Plasma Process. 2019;39:475–486. doi: 10.1007/s11090-018-9951-x. DOI
Moghanloo M., Iranbakhsh A., Ebadi M., Ardebili Z.O. Differential Physiology and Expression of Phenylalanine Ammonia Lyase (PAL) and Universal Stress Protein (USP) in the Endangered Species Astragalus fridae following Seed Priming with Cold Plasma and Manipulation of Culture Medium with Silica Nanoparticles. 3 Biotech. 2019;9:1–13. doi: 10.1007/s13205-019-1822-5. PubMed DOI PMC
Tarrad M.M., Ahmed G., Zayed E.M. Response of Egyptian Clover Ecotypes to the Non-Thermal Plasma Radiation. Range Manag. Agrofor. 2011;32:9–14.
Filatova I., Lyushkevich V., Goncharik S., Zhukovsky A., Krupenko N., Kalatskaja J. The Effect of Low-Pressure Plasma Treatment of Seeds on the Plant Resistance to Pathogens and Crop Yields. J. Phys. D Appl. Phys. 2020;53:244001. doi: 10.1088/1361-6463/ab7960. DOI
Bußler S., Steins V., Ehlbeck J., Schlüter O. Impact of Thermal Treatment Versus Cold Atmospheric Plasma Processing on the Techno-Functional Protein Properties from Pisum Sativum ‘Salamanca’. J. Food Eng. 2015;167:166–174. doi: 10.1016/j.jfoodeng.2015.05.036. DOI
Gnapowski S., Gnapowski E., Duda A. Inproving of the Quality FOOD for Animals by Pulsed Power Plasma Discharge. Adv. Sci. Technol. Res. J. 2015;9:58–65. doi: 10.12913/22998624/59085. DOI
Venkataratnam H., Sarangapani C., Cahill O., Ryan C.B. Effect of Cold Plasma Treatment on the Antigenicity of Peanut Allergen Ara H 1. Innov. Food Sci. Emerg. Technol. 2019;52:368–375. doi: 10.1016/j.ifset.2019.02.001. DOI
Ji H., Dong S., Han F., Li Y., Chen G., Li L., Chen Y. Effects of Dielectric Barrier Discharge (DBD) Cold Plasma Treatment on Physicochemical and Functional Properties of Peanut Protein. Food Bioprocess Technol. 2018;11:344–354. doi: 10.1007/s11947-017-2015-z. DOI
Ji H., Han F., Peng S.L., Yu J.J., Li L., Liu Y.G., Chen Y., Li S.H., Chen Y. Behavioral Solubilization of Peanut Protein Isolate by Atmospheric Pressure Cold Plasma (ACP) Treatment. Food Bioprocess Technol. 2019;12:2018–2027. doi: 10.1007/s11947-019-02357-0. DOI
Ji H., Tang X.J., Li L., Peng S.L., Gao C.J., Chen Y. Improved Physicochemical Properties of Peanut Protein Isolate Glycated by Atmospheric Pressure Cold Plasma (ACP) Treatment. Food Hydrocoll. 2020;109:106124. doi: 10.1016/j.foodhyd.2020.106124. DOI
Volkov A.G., Xu K.G., Kolobov V.I. Cold Plasma Interactions with Plants: Morphing and Movements of Venus Flytrap and Mimosa Pudica Induced by Argon Plasma jet. Bioelectrochemistry. 2017;18:100–105. doi: 10.1016/j.bioelechem.2017.07.011. PubMed DOI
Yepez X.V., Baykara H., Xu L., Keener K.M. Cold Plasma Treatment of Soybean Oil with Hydrogen Gas. J. Am. Oil Chem. Soc. 2020;98:103–113. doi: 10.1002/aocs.12416. DOI
Zhai Y.F., Liu S.N., Xiang Q.S., Lyu Y., Shen R.L. Effect of Plasma-Activated Water on the Microbial Decontamination and Food Quality of Thin Sheets of Bean Curd. Appl. Sci. 2019;9:4223. doi: 10.3390/app9204223. DOI