Plant diversity drives global patterns of insect invasions

. 2018 Aug 14 ; 8 (1) : 12095. [epub] 20180814

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid30108295
Odkazy

PubMed 30108295
PubMed Central PMC6092358
DOI 10.1038/s41598-018-30605-4
PII: 10.1038/s41598-018-30605-4
Knihovny.cz E-zdroje

During the last two centuries, thousands of insect species have been transported (largely inadvertently) and established outside of their native ranges worldwide, some with catastrophic ecological and economic impacts. Global variation in numbers of invading species depends on geographic variation in propagule pressure and heterogeneity of environmental resistance to invasions. Elton's diversity-invasibility hypothesis, proposed over sixty years ago, has been widely explored for plants but little is known on how biodiversity affects insect invasions. Here we use species inventories from 44 land areas, ranging from small oceanic islands to entire continents in various world regions, to show that numbers of established insect species are primarily driven by diversity of plants, with both native and non-native plant species richness being the strongest predictor of insect invasions. We find that at large spatial scales, plant diversity directly explains variation in non-native insect species richness among world regions, while geographic factors such as land area, climate and insularity largely affect insect invasions indirectly via their effects on local plant richness.

Zobrazit více v PubMed

Seebens H, et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 2017;8:14435. doi: 10.1038/ncomms14435. PubMed DOI PMC

Bradshaw CJ, et al. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 2016;7:12986. doi: 10.1038/ncomms12986. PubMed DOI PMC

van Kleunen M, et al. Global exchange and accumulation of non-native plants. Nature. 2015;525:100–103. doi: 10.1038/nature14910. PubMed DOI

Dawson W, et al. Global hotspots and correlates of alien species richness across taxonomic groups. Nat. Ecol. Evol. 2017;1:0186. doi: 10.1038/s41559-017-0186. DOI

Pyšek P, et al. Disentangling the role of environmental and human pressures on biological invasions acrossEurope. Proc. Nat. Acad. Sci. 2010;107:12157–12162. doi: 10.1073/pnas.1002314107. PubMed DOI PMC

Kennedy TA, et al. Biodiversity as a barrier to ecological invasion. Nature. 2002;417:636–638. doi: 10.1038/nature00776. PubMed DOI

Fridley JD, et al. 2007. The invasion paradox: reconciling pattern and process in species invasions. Ecology. 2007;88:3–17. doi: 10.1890/0012-9658(2007)88[3:TIPRPA]2.0.CO;2. PubMed DOI

Andow DA. Vegetational diversity and arthropod population response. Ann. Rev. Entomol. 1991;36:561–586. doi: 10.1146/annurev.en.36.010191.003021. DOI

Knops JM, et al. Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecol. Lett. 1999;2:286–293. doi: 10.1046/j.1461-0248.1999.00083.x. PubMed DOI

Jactel H, Brockerhoff EG. Tree diversity reduces herbivory by forest insects. Ecol. Lett. 2007;10:835–848. doi: 10.1111/j.1461-0248.2007.01073.x. PubMed DOI

Liebhold AM, et al. A highly aggregated geographical distribution of forest pest invasions in the USA. Divers. Distrib. 2013;19:1208–1216. doi: 10.1111/ddi.12112. DOI

Grace, J. B. Structural equation modeling and natural systems. (Cambridge University Press, Cambridge, 2006).

Tilman D. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc. Nat. Acad. Sci. 2004;101:10854–10861. doi: 10.1073/pnas.0403458101. PubMed DOI PMC

Kaplan I, Denno RF. Interspecific interactions in phytophagous insects revisited: a quantitative assessment of competition theory. Ecol. Lett. 2007;10:977–994. doi: 10.1111/j.1461-0248.2007.01093.x. PubMed DOI

Roques A, et al. Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200 years. Biol. Invas. 2016;18:907–920. doi: 10.1007/s10530-016-1080-y. DOI

Forister ML, et al. The global distribution of diet breadth in insect herbivores. Proc. Nat. Acad. Sci. 2015;112:442–447. doi: 10.1073/pnas.1423042112. PubMed DOI PMC

Strong, D. R., Lawton, J. H. & Southwood, S. R. Insects on plants. Community patterns and mechanisms (Blackwell Scientific Publications. 1984).

Gaston KJ. Regional numbers of insect and plant species. Functional Ecology. 1992;6:243–247. doi: 10.2307/2389513. DOI

Field R, et al. Spatial species-richness gradients across scales: a meta-analysis. J. Biog. 2009;36:132–147. doi: 10.1111/j.1365-2699.2008.01963.x. DOI

Mittelbach GC, et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 2010;10:315–331. doi: 10.1111/j.1461-0248.2007.01020.x. PubMed DOI

Simberloff D, Von Holle B. Positive interactions of nonindigenous species: invasional meltdown? Biol. Invas. 1999;1:21–32. doi: 10.1023/A:1010086329619. DOI

Roques A. Alien forest insects in a warmer world and a globalized economy: Impacts of changes in trade, tourism and climate on forest biosecurity. New Zeal. J. For. 2010;suppl. 40:77–94.

Burghardt KT, Tallamy DW. Plant origin asymmetrically impacts feeding guilds and life stages driving community structure of herbivorous arthropods. Divers. Distrib. 2013;19:1553–1565. doi: 10.1111/ddi.12122. DOI

Hengstum T, Hooftman DA, Oostermeijer JGB, Tienderen PH. Impact of plant invasions on local arthropod communities: a meta‐analysis. J. Ecol. 2014;102:4–11. doi: 10.1111/1365-2745.12176. DOI

Levine JM, D’Antonio CM. Elton revisited: a review of evidence linking diversity and invasibility. Oikos. 1999;87:15–26. doi: 10.2307/3546992. DOI

Hawkins BA, Porter EE. Does herbivore diversity depend on plant diversity? The case of California butterflies. Amer. Nat. 2002;161:40–49. doi: 10.1086/345479. PubMed DOI

Civitello DJ, et al. Biodiversity inhibits parasites: broad evidence for the dilution effect. Proc. Nat. Acad. Sci. 2015;112:8667–8671. doi: 10.1073/pnas.1506279112. PubMed DOI PMC

Huang ZYX, Van Langevelde F, Estrada-Peña A, Suzán G, De Boer WF. The diversity-disease relationship: evidence for and criticisms of the dilution effect. Parasitology. 2016;143:1075–1086. doi: 10.1017/S0031182016000536. PubMed DOI

Chown SL, Gremmen NJM, Gaston KJ. Ecological biogeography of southern ocean islands: species-area relationships, human impacts, and conservation. Amer. Nat. 1998;152:562–575. PubMed

McGeoch MA, et al. Prioritizing species, pathways, and sites to achieve conservation targets for biological invasion. Biol. Invas. 2016;18:299–314. doi: 10.1007/s10530-015-1013-1. DOI

Grace JB, Anderson TM, Olff H, Scheiner SM. On the specification of structural equation models for ecological systems. Ecol. Monog. 2010;80:67–87. doi: 10.1890/09-0464.1. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace