Plant diversity drives global patterns of insect invasions
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
30108295
PubMed Central
PMC6092358
DOI
10.1038/s41598-018-30605-4
PII: 10.1038/s41598-018-30605-4
Knihovny.cz E-zdroje
- MeSH
- biologické modely * MeSH
- datové soubory jako téma MeSH
- hmyz fyziologie MeSH
- populační dynamika statistika a číselné údaje MeSH
- rostliny * MeSH
- rozšíření zvířat * MeSH
- zavlečené druhy statistika a číselné údaje MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
During the last two centuries, thousands of insect species have been transported (largely inadvertently) and established outside of their native ranges worldwide, some with catastrophic ecological and economic impacts. Global variation in numbers of invading species depends on geographic variation in propagule pressure and heterogeneity of environmental resistance to invasions. Elton's diversity-invasibility hypothesis, proposed over sixty years ago, has been widely explored for plants but little is known on how biodiversity affects insect invasions. Here we use species inventories from 44 land areas, ranging from small oceanic islands to entire continents in various world regions, to show that numbers of established insect species are primarily driven by diversity of plants, with both native and non-native plant species richness being the strongest predictor of insect invasions. We find that at large spatial scales, plant diversity directly explains variation in non-native insect species richness among world regions, while geographic factors such as land area, climate and insularity largely affect insect invasions indirectly via their effects on local plant richness.
Division of Informatics and Inventory Institute for Agro Environmental Sciences NARO Ibaraki Japan
INRA UR0633 Zoologie Forestière 45075 Orléans France
School of Biological Sciences Monash University Victoria 3800 Australia
Scion Christchurch 8540 New Zealand
The Czech Academy of Sciences Institute of Botany CZ 25243 Průhonice Czech Republic
US Forest Service Northern Research Station Morgantown WV 26505 USA
Zobrazit více v PubMed
Seebens H, et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 2017;8:14435. doi: 10.1038/ncomms14435. PubMed DOI PMC
Bradshaw CJ, et al. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 2016;7:12986. doi: 10.1038/ncomms12986. PubMed DOI PMC
van Kleunen M, et al. Global exchange and accumulation of non-native plants. Nature. 2015;525:100–103. doi: 10.1038/nature14910. PubMed DOI
Dawson W, et al. Global hotspots and correlates of alien species richness across taxonomic groups. Nat. Ecol. Evol. 2017;1:0186. doi: 10.1038/s41559-017-0186. DOI
Pyšek P, et al. Disentangling the role of environmental and human pressures on biological invasions acrossEurope. Proc. Nat. Acad. Sci. 2010;107:12157–12162. doi: 10.1073/pnas.1002314107. PubMed DOI PMC
Kennedy TA, et al. Biodiversity as a barrier to ecological invasion. Nature. 2002;417:636–638. doi: 10.1038/nature00776. PubMed DOI
Fridley JD, et al. 2007. The invasion paradox: reconciling pattern and process in species invasions. Ecology. 2007;88:3–17. doi: 10.1890/0012-9658(2007)88[3:TIPRPA]2.0.CO;2. PubMed DOI
Andow DA. Vegetational diversity and arthropod population response. Ann. Rev. Entomol. 1991;36:561–586. doi: 10.1146/annurev.en.36.010191.003021. DOI
Knops JM, et al. Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecol. Lett. 1999;2:286–293. doi: 10.1046/j.1461-0248.1999.00083.x. PubMed DOI
Jactel H, Brockerhoff EG. Tree diversity reduces herbivory by forest insects. Ecol. Lett. 2007;10:835–848. doi: 10.1111/j.1461-0248.2007.01073.x. PubMed DOI
Liebhold AM, et al. A highly aggregated geographical distribution of forest pest invasions in the USA. Divers. Distrib. 2013;19:1208–1216. doi: 10.1111/ddi.12112. DOI
Grace, J. B. Structural equation modeling and natural systems. (Cambridge University Press, Cambridge, 2006).
Tilman D. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc. Nat. Acad. Sci. 2004;101:10854–10861. doi: 10.1073/pnas.0403458101. PubMed DOI PMC
Kaplan I, Denno RF. Interspecific interactions in phytophagous insects revisited: a quantitative assessment of competition theory. Ecol. Lett. 2007;10:977–994. doi: 10.1111/j.1461-0248.2007.01093.x. PubMed DOI
Roques A, et al. Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200 years. Biol. Invas. 2016;18:907–920. doi: 10.1007/s10530-016-1080-y. DOI
Forister ML, et al. The global distribution of diet breadth in insect herbivores. Proc. Nat. Acad. Sci. 2015;112:442–447. doi: 10.1073/pnas.1423042112. PubMed DOI PMC
Strong, D. R., Lawton, J. H. & Southwood, S. R. Insects on plants. Community patterns and mechanisms (Blackwell Scientific Publications. 1984).
Gaston KJ. Regional numbers of insect and plant species. Functional Ecology. 1992;6:243–247. doi: 10.2307/2389513. DOI
Field R, et al. Spatial species-richness gradients across scales: a meta-analysis. J. Biog. 2009;36:132–147. doi: 10.1111/j.1365-2699.2008.01963.x. DOI
Mittelbach GC, et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 2010;10:315–331. doi: 10.1111/j.1461-0248.2007.01020.x. PubMed DOI
Simberloff D, Von Holle B. Positive interactions of nonindigenous species: invasional meltdown? Biol. Invas. 1999;1:21–32. doi: 10.1023/A:1010086329619. DOI
Roques A. Alien forest insects in a warmer world and a globalized economy: Impacts of changes in trade, tourism and climate on forest biosecurity. New Zeal. J. For. 2010;suppl. 40:77–94.
Burghardt KT, Tallamy DW. Plant origin asymmetrically impacts feeding guilds and life stages driving community structure of herbivorous arthropods. Divers. Distrib. 2013;19:1553–1565. doi: 10.1111/ddi.12122. DOI
Hengstum T, Hooftman DA, Oostermeijer JGB, Tienderen PH. Impact of plant invasions on local arthropod communities: a meta‐analysis. J. Ecol. 2014;102:4–11. doi: 10.1111/1365-2745.12176. DOI
Levine JM, D’Antonio CM. Elton revisited: a review of evidence linking diversity and invasibility. Oikos. 1999;87:15–26. doi: 10.2307/3546992. DOI
Hawkins BA, Porter EE. Does herbivore diversity depend on plant diversity? The case of California butterflies. Amer. Nat. 2002;161:40–49. doi: 10.1086/345479. PubMed DOI
Civitello DJ, et al. Biodiversity inhibits parasites: broad evidence for the dilution effect. Proc. Nat. Acad. Sci. 2015;112:8667–8671. doi: 10.1073/pnas.1506279112. PubMed DOI PMC
Huang ZYX, Van Langevelde F, Estrada-Peña A, Suzán G, De Boer WF. The diversity-disease relationship: evidence for and criticisms of the dilution effect. Parasitology. 2016;143:1075–1086. doi: 10.1017/S0031182016000536. PubMed DOI
Chown SL, Gremmen NJM, Gaston KJ. Ecological biogeography of southern ocean islands: species-area relationships, human impacts, and conservation. Amer. Nat. 1998;152:562–575. PubMed
McGeoch MA, et al. Prioritizing species, pathways, and sites to achieve conservation targets for biological invasion. Biol. Invas. 2016;18:299–314. doi: 10.1007/s10530-015-1013-1. DOI
Grace JB, Anderson TM, Olff H, Scheiner SM. On the specification of structural equation models for ecological systems. Ecol. Monog. 2010;80:67–87. doi: 10.1890/09-0464.1. DOI
Global proliferation of nonnative plants is a major driver of insect invasions
Historical plant introductions predict current insect invasions
Scientists' warning on invasive alien species
Tree diversity regulates forest pest invasion