The global distribution of diet breadth in insect herbivores

. 2015 Jan 13 ; 112 (2) : 442-7. [epub] 20141229

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid25548168

Grantová podpora
Howard Hughes Medical Institute - United States

Understanding variation in resource specialization is important for progress on issues that include coevolution, community assembly, ecosystem processes, and the latitudinal gradient of species richness. Herbivorous insects are useful models for studying resource specialization, and the interaction between plants and herbivorous insects is one of the most common and consequential ecological associations on the planet. However, uncertainty persists regarding fundamental features of herbivore diet breadth, including its relationship to latitude and plant species richness. Here, we use a global dataset to investigate host range for over 7,500 insect herbivore species covering a wide taxonomic breadth and interacting with more than 2,000 species of plants in 165 families. We ask whether relatively specialized and generalized herbivores represent a dichotomy rather than a continuum from few to many host families and species attacked and whether diet breadth changes with increasing plant species richness toward the tropics. Across geographic regions and taxonomic subsets of the data, we find that the distribution of diet breadth is fit well by a discrete, truncated Pareto power law characterized by the predominance of specialized herbivores and a long, thin tail of more generalized species. Both the taxonomic and phylogenetic distributions of diet breadth shift globally with latitude, consistent with a higher frequency of specialized insects in tropical regions. We also find that more diverse lineages of plants support assemblages of relatively more specialized herbivores and that the global distribution of plant diversity contributes to but does not fully explain the latitudinal gradient in insect herbivore specialization.

Bell Museum and Department of Plant Biology University of Minnesota St Paul MN 55108 1095

Departamento de Zoologia Universidade de Brasília Brasília Distrito Federal Brazil 70 910 900;

Department of Biological Sciences George Washington University Washington DC 20052;

Department of Biological Sciences Wright State University Dayton OH 45435; Sección Invertebrados Museo Ecuatoriano de Ciencias Naturales Quito Ecuador;

Department of Biology and Whitney R Harris World Ecology Center University of Missouri St Louis St Louis MO 63121;

Department of Biology Chiba University Chiba 263 8522 Japan;

Department of Biology Program in Ecology Evolution and Conservation Biology and

Department of Biology Program in Ecology Evolution and Conservation Biology and Sección Invertebrados Museo Ecuatoriano de Ciencias Naturales Quito Ecuador;

Department of Biology University of Ostrava 710 00 Ostrava Czech Republic;

Department of Biology Wesleyan University Middletown CT 06459;

Department of Ecology and Evolutionary Biology Tulane University New Orleans LA 70118;

Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT 06269;

Department of Mathematics and Statistics University of Nevada Reno NV 89557;

Department of Zoology University of Oxford Oxford OX1 3PS United Kingdom;

Faculty of Science University of South Bohemia 370 05 Ceske Budejovice Czech Republic; Biology Centre Czech Academy of Science 370 05 Ceske Budejovice Czech Republic;

Faculty of Science University of South Bohemia 370 05 Ceske Budejovice Czech Republic; Biology Centre Czech Academy of Science 370 05 Ceske Budejovice Czech Republic; Department of Zoology University of Oxford Oxford OX1 3PS United Kingdom;

Faculty of Science University of South Bohemia 370 05 Ceske Budejovice Czech Republic; Biology Centre Czech Academy of Science 370 05 Ceske Budejovice Czech Republic; New Guinea Binatang Research Center Madang Papua New Guinea;

Faculty of Science University of South Bohemia 370 05 Ceske Budejovice Czech Republic; Smithsonian Tropical Research Institute Apartado 0843 03092 Balboa Ancon Panama;

J F Blumenbach Institute of Zoology and Anthropology Göttingen University 37073 Göttingen Germany;

National Museum of Natural History Smithsonian Institution Washington DC 20013 7012;

New Guinea Binatang Research Center Madang Papua New Guinea; Department of Biology University of Papua New Guinea Port Moresby Papua New Guinea;

New Guinea Binatang Research Center Madang Papua New Guinea; Environmental Futures Research Institute Griffith University Queensland 4111 Australia;

Sección Invertebrados Museo Ecuatoriano de Ciencias Naturales Quito Ecuador;

Sección Invertebrados Museo Ecuatoriano de Ciencias Naturales Quito Ecuador; Department of Biology Colorado Mesa University Grand Junction CO 81507; and

Smithsonian Tropical Research Institute Apartado 0843 03092 Balboa Ancon Panama; Department of Biology University of Utah Salt Lake City UT 84112 0840;

Zobrazit více v PubMed

Büchi L, Vuilleumier S. Coexistence of specialist and generalist species is shaped by dispersal and environmental factors. Am Nat. 2014;183(5):612–624. PubMed

Devictor V, Julliard R, Jiguet F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos. 2008;117(4):507–514.

Mougi A, Kondoh M. Diversity of interaction types and ecological community stability. Science. 2012;337(6092):349–351. PubMed

Lever JJ, van Nes EH, Scheffer M, Bascompte J. The sudden collapse of pollinator communities. Ecol Lett. 2014;17(3):350–359. PubMed

Singer MS, et al. Herbivore diet breadth mediates the cascading effects of carnivores in food webs. Proc Natl Acad Sci USA. 2014;111(26):9521–9526. PubMed PMC

Hardy NB, Otto SP. Specialization and generalization in the diversification of phytophagous insects: Tests of the musical chairs and oscillation hypotheses. Proc Biol Sci. 2014;281(1795):20132960. PubMed PMC

Devictor V, et al. Defining and measuring ecological specialization. J Appl Ecol. 2010;47(1):15–25.

Forister ML, Dyer LA, Singer MS, Stireman JO, 3rd, Lill JT. Revisiting the evolution of ecological specialization, with emphasis on insect-plant interactions. Ecology. 2012;93(5):981–991. PubMed

Futuyma DJ, Moreno G. The evolution of ecological specialization. Annu Rev Ecol Syst. 1988;19:207–233.

Seastedt T, Crossley D., Jr The influence of arthropods on ecosystems. Bioscience. 1984;34(3):157–161.

Jaenike J. Host specialization in phytophagous insects. Annu Rev Ecol Syst. 1990;21:243–273.

Janzen DH. Herbivores and the number of tree species in tropical forests. Am Nat. 1970;104(940):501–528.

Erwin TL. Tropical forests: Their richness in Coleoptera and other arthropod species. Coleopt Bull. 1982;36(1):74–75.

Dyer LA. Tasty generalists and nasty specialists? Antipredator mechanisms in tropical lepidopteran larvae. Ecology. 1995;76(5):1483–1496.

Ødegaard F. How many species of arthropods? Erwin's estimate revised. Biol J Linn Soc Lond. 2000;71(4):583–597.

Wiegmann BM, Mitter C, Farrell B. Diversification of carnivorous parasitic insects: Extraordinary radiation or specialized dead end? Am Nat. 1993;134(5):737–754.

Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K. Is there a latitudinal gradient in the importance of biotic interactions? Annu Rev Ecol Evol Syst. 2009;40:245–269.

Agrawal AA, Fishbein M. Phylogenetic escalation and decline of plant defense strategies. Proc Natl Acad Sci USA. 2008;105(29):10057–10060. PubMed PMC

Dyer LA, Letourneau DK, Chavarria GV, Amoretti DS. Herbivores on a dominant understory shrub increase local plant diversity in rain forest communities. Ecology. 2010;91(12):3707–3718. PubMed

Novotny V, et al. Why are there so many species of herbivorous insects in tropical rainforests? Science. 2006;313(5790):1115–1118. PubMed

Dyer LA, et al. Host specificity of Lepidoptera in tropical and temperate forests. Nature. 2007;448(7154):696–699. PubMed

Morris RJ, Gripenberg S, Lewis OT, Roslin T. Antagonistic interaction networks are structured independently of latitude and host guild. Ecol Lett. 2014;17(3):340–349. PubMed PMC

Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. Phylogenies and community ecology. Annu Rev Ecol Syst. 2002;33:475–505.

Davies TJ, et al. Darwin’s abominable mystery: Insights from a supertree of the angiosperms. Proc Natl Acad Sci USA. 2004;101(7):1904–1909. PubMed PMC

Kerkhoff AJ, Moriarty PE, Weiser MD. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proc Natl Acad Sci USA. 2014;111(22):8125–8130. PubMed PMC

Novotny V, et al. Guild-specific patterns of species richness and host specialization in plant-herbivore food webs from a tropical forest. J Anim Ecol. 2010;79(6):1193–1203. PubMed

Wäckers FL, Romeis J, van Rijn P. Nectar and pollen feeding by insect herbivores and implications for multitrophic interactions. Annu Rev Entomol. 2007;52:301–323. PubMed

Ackermann M, Doebeli M. Evolution of niche width and adaptive diversification. Evolution. 2004;58(12):2599–2612. PubMed

Lovette IJ, Bermingham E, Ricklefs RE. Clade-specific morphological diversification and adaptive radiation in Hawaiian songbirds. Proc Biol Sci. 2002;269(1486):37–42. PubMed PMC

Ehrlich PR, Raven PH. Butterflies and plants: A study in coevolution. Evolution. 1964;18(4):586–608.

Janz N, Nylin S, Wahlberg N. Diversity begets diversity: Host expansions and the diversification of plant-feeding insects. BMC Evol Biol. 2006;6(1):4. PubMed PMC

Fordyce JA. Host shifts and evolutionary radiations of butterflies. Proc Biol Sci. 2010;277(1701):3735–3743. PubMed PMC

Lewinsohn TM, Roslin T. Four ways towards tropical herbivore megadiversity. Ecol Lett. 2008;11(4):398–416. PubMed

Connell JH. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dynamics of populations. In: den Boer PJ, Gradwell GR, editors. Proceedings of the Advanced Study Institute on Dynamics of Numbers in Populations. Centre for Agricultural Publishing and Documentation; Wageningen, The Netherlands: 1971. pp. 298–312.

Bagchi R, et al. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature. 2014;506(7486):85–88. PubMed

Fox LR, Morrow PA. Specialization: Species property or local phenomenon? Science. 1981;211(4485):887–893. PubMed

Bickford D, et al. Cryptic species as a window on diversity and conservation. Trends Ecol Evol. 2007;22(3):148–155. PubMed

Price PW. Evolutionary Biology of Parasites. Princeton Univ Press; Princeton: 1980. pp. xi–237.

Murcia C, et al. A critique of the ‘novel ecosystem’ concept. Trends Ecol Evol. 2014;29(10):548–553. PubMed

Tallamy DW. Do alien plants reduce insect biomass? Conserv Biol. 2004;18(6):1689–1692.

Bascompte J, Jordano P. Plant-animal mutualistic networks: The architecture of biodiversity. Annu Rev Ecol Evol Syst. 2007;38(38):567–593.

Erdös P, Rényi A. On random graphs. Publ Math. 1959;6:290–297.

Proulx SR, Promislow DE, Phillips PC. Network thinking in ecology and evolution. Trends Ecol Evol. 2005;20(6):345–353. PubMed

Lewinsohn TM, Prado PI, Jordano P, Bascompte J, Olesen JM. Structure in plant-animal interaction assemblages. Oikos. 2006;113(1):174–184.

Newman ME. Power laws, Pareto distributions and Zipf's law. Contemp Phys. 2005;46(5):323–351.

Janz N, Nylin S. The oscillation hypothesis of host-plant range and speciation. In: Tilmon KJ, editor. Specialization, Speciation and Radiation: The Evolutionary Biology of Herbivorous Insects. Univ of California Press; Berkeley, CA: 2008. pp. 203–215.

Courtney SP. The ecology of pierid butterfies: Dynamics and interactions. Adv Ecol Res. 1986;15:51–131.

Jahner JP, Bonilla MM, Badik KJ, Shapiro AM, Forister ML. Use of exotic hosts by Lepidoptera: Widespread species colonize more novel hosts. Evolution. 2011;65(9):2719–2724. PubMed

Arnold BC. Encyclopedia of Statistical Sciences. 2008. Pareto distribution. DOI

Aban IB, Meerschaert MM, Panorska AK. Parameter estimation for the truncated Pareto distribution. J Am Stat Assoc. 2006;101(473):270–277.

Clauset A, Shalizi CR, Newman ME. Power-law distributions in empirical data. SIAM Rev. 2009;51(4):661–703.

D'Agostino RB. Goodness-of-Fit-Techniques. CRC; Boca Raton, FL: 1986.

Zaninetti L, Ferraro M. On the truncated Pareto distribution with applications. Centr Eur J Phys. 2008;6(1):1–6.

Deidda R. A multiple threshold method for fitting the generalized Pareto distribution to rainfall time series. Hydrol Earth Syst Sci. 2010;14(12):2559–2575.

Schoenberg FP, Patel RD. Comparison of Pareto and tapered Pareto distributions for environmental phenomena. Eur Phys J Spec Top. 2012;205(1):159–166.

Heywood VH. Flowering Plants of the World. New York: Mayflower Books; 1993.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Unravelling high insect diversity and community turnover along a tropical-temperate elevation gradient: A metabarcoding approach

. 2025 ; 20 (7) : e0327884. [epub] 20250717

Effects of pronounced seasonal turnover and intraspecific variation in leaf traits on specialization of insect herbivores associated with six Salicaceae hosts

. 2025 Feb 13 ; 207 (2) : 34. [epub] 20250213

Non-Random Distribution of Boreus hyemalis Among Bryophyte Hosts: Evidence from Field and Laboratory Tests

. 2024 Nov 08 ; 15 (11) : . [epub] 20241108

Substantial Insect Herbivory in a South African Savanna-Forest Mosaic: A Neglected Topic

. 2024 Nov ; 14 (11) : e70466. [epub] 20241109

Global proliferation of nonnative plants is a major driver of insect invasions

. 2024 Nov ; 74 (11) : 770-781. [epub] 20241018

Identifying the generalizable controls on insect associations of native and non-native trees

. 2024 May ; 14 (5) : e11265. [epub] 20240512

High intraspecific variability and previous experience affect polyphenol metabolism in polyphagous Lymantria mathura caterpillars

. 2024 Feb ; 14 (2) : e10973. [epub] 20240209

A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins

. 2023 Jun ; 7 (6) : 903-913. [epub] 20230515

Seed and seedling predation by vertebrates mediates the effects of adult trees in two temperate tree species

. 2022 Jul ; 199 (3) : 625-636. [epub] 20220604

Metabolome-Wide, Phylogenetically Controlled Comparison Indicates Higher Phenolic Diversity in Tropical Tree Species

. 2021 Mar 16 ; 10 (3) : . [epub] 20210316

Plant phylogeny drives arboreal caterpillar assemblages across the Holarctic

. 2020 Dec ; 10 (24) : 14137-14151. [epub] 20201107

Plant diversity drives global patterns of insect invasions

. 2018 Aug 14 ; 8 (1) : 12095. [epub] 20180814

Simulated tri-trophic networks reveal complex relationships between species diversity and interaction diversity

. 2018 ; 13 (3) : e0193822. [epub] 20180326

Phylogenetic trophic specialization: a robust comparison of herbivorous guilds

. 2017 Dec ; 185 (4) : 551-559. [epub] 20171020

Zobrazit více v PubMed

Dryad
10.5061/dryad.HG549

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...