The global distribution of diet breadth in insect herbivores
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
Howard Hughes Medical Institute - United States
PubMed
25548168
PubMed Central
PMC4299246
DOI
10.1073/pnas.1423042112
PII: 1423042112
Knihovny.cz E-zdroje
- Klíčová slova
- Pareto distribution, host range, latitudinal gradient, niche width, specialization,
- MeSH
- biodiverzita MeSH
- biologické modely MeSH
- býložravci fyziologie MeSH
- dieta * MeSH
- ekosystém MeSH
- fylogeneze MeSH
- hmyz klasifikace fyziologie MeSH
- hostitelská specificita MeSH
- Lepidoptera klasifikace fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Understanding variation in resource specialization is important for progress on issues that include coevolution, community assembly, ecosystem processes, and the latitudinal gradient of species richness. Herbivorous insects are useful models for studying resource specialization, and the interaction between plants and herbivorous insects is one of the most common and consequential ecological associations on the planet. However, uncertainty persists regarding fundamental features of herbivore diet breadth, including its relationship to latitude and plant species richness. Here, we use a global dataset to investigate host range for over 7,500 insect herbivore species covering a wide taxonomic breadth and interacting with more than 2,000 species of plants in 165 families. We ask whether relatively specialized and generalized herbivores represent a dichotomy rather than a continuum from few to many host families and species attacked and whether diet breadth changes with increasing plant species richness toward the tropics. Across geographic regions and taxonomic subsets of the data, we find that the distribution of diet breadth is fit well by a discrete, truncated Pareto power law characterized by the predominance of specialized herbivores and a long, thin tail of more generalized species. Both the taxonomic and phylogenetic distributions of diet breadth shift globally with latitude, consistent with a higher frequency of specialized insects in tropical regions. We also find that more diverse lineages of plants support assemblages of relatively more specialized herbivores and that the global distribution of plant diversity contributes to but does not fully explain the latitudinal gradient in insect herbivore specialization.
Bell Museum and Department of Plant Biology University of Minnesota St Paul MN 55108 1095
Departamento de Zoologia Universidade de Brasília Brasília Distrito Federal Brazil 70 910 900;
Department of Biological Sciences George Washington University Washington DC 20052;
Department of Biology Chiba University Chiba 263 8522 Japan;
Department of Biology Program in Ecology Evolution and Conservation Biology and
Department of Biology University of Ostrava 710 00 Ostrava Czech Republic;
Department of Biology Wesleyan University Middletown CT 06459;
Department of Ecology and Evolutionary Biology Tulane University New Orleans LA 70118;
Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT 06269;
Department of Mathematics and Statistics University of Nevada Reno NV 89557;
Department of Zoology University of Oxford Oxford OX1 3PS United Kingdom;
J F Blumenbach Institute of Zoology and Anthropology Göttingen University 37073 Göttingen Germany;
National Museum of Natural History Smithsonian Institution Washington DC 20013 7012;
Sección Invertebrados Museo Ecuatoriano de Ciencias Naturales Quito Ecuador;
Zobrazit více v PubMed
Büchi L, Vuilleumier S. Coexistence of specialist and generalist species is shaped by dispersal and environmental factors. Am Nat. 2014;183(5):612–624. PubMed
Devictor V, Julliard R, Jiguet F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos. 2008;117(4):507–514.
Mougi A, Kondoh M. Diversity of interaction types and ecological community stability. Science. 2012;337(6092):349–351. PubMed
Lever JJ, van Nes EH, Scheffer M, Bascompte J. The sudden collapse of pollinator communities. Ecol Lett. 2014;17(3):350–359. PubMed
Singer MS, et al. Herbivore diet breadth mediates the cascading effects of carnivores in food webs. Proc Natl Acad Sci USA. 2014;111(26):9521–9526. PubMed PMC
Hardy NB, Otto SP. Specialization and generalization in the diversification of phytophagous insects: Tests of the musical chairs and oscillation hypotheses. Proc Biol Sci. 2014;281(1795):20132960. PubMed PMC
Devictor V, et al. Defining and measuring ecological specialization. J Appl Ecol. 2010;47(1):15–25.
Forister ML, Dyer LA, Singer MS, Stireman JO, 3rd, Lill JT. Revisiting the evolution of ecological specialization, with emphasis on insect-plant interactions. Ecology. 2012;93(5):981–991. PubMed
Futuyma DJ, Moreno G. The evolution of ecological specialization. Annu Rev Ecol Syst. 1988;19:207–233.
Seastedt T, Crossley D., Jr The influence of arthropods on ecosystems. Bioscience. 1984;34(3):157–161.
Jaenike J. Host specialization in phytophagous insects. Annu Rev Ecol Syst. 1990;21:243–273.
Janzen DH. Herbivores and the number of tree species in tropical forests. Am Nat. 1970;104(940):501–528.
Erwin TL. Tropical forests: Their richness in Coleoptera and other arthropod species. Coleopt Bull. 1982;36(1):74–75.
Dyer LA. Tasty generalists and nasty specialists? Antipredator mechanisms in tropical lepidopteran larvae. Ecology. 1995;76(5):1483–1496.
Ødegaard F. How many species of arthropods? Erwin's estimate revised. Biol J Linn Soc Lond. 2000;71(4):583–597.
Wiegmann BM, Mitter C, Farrell B. Diversification of carnivorous parasitic insects: Extraordinary radiation or specialized dead end? Am Nat. 1993;134(5):737–754.
Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K. Is there a latitudinal gradient in the importance of biotic interactions? Annu Rev Ecol Evol Syst. 2009;40:245–269.
Agrawal AA, Fishbein M. Phylogenetic escalation and decline of plant defense strategies. Proc Natl Acad Sci USA. 2008;105(29):10057–10060. PubMed PMC
Dyer LA, Letourneau DK, Chavarria GV, Amoretti DS. Herbivores on a dominant understory shrub increase local plant diversity in rain forest communities. Ecology. 2010;91(12):3707–3718. PubMed
Novotny V, et al. Why are there so many species of herbivorous insects in tropical rainforests? Science. 2006;313(5790):1115–1118. PubMed
Dyer LA, et al. Host specificity of Lepidoptera in tropical and temperate forests. Nature. 2007;448(7154):696–699. PubMed
Morris RJ, Gripenberg S, Lewis OT, Roslin T. Antagonistic interaction networks are structured independently of latitude and host guild. Ecol Lett. 2014;17(3):340–349. PubMed PMC
Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. Phylogenies and community ecology. Annu Rev Ecol Syst. 2002;33:475–505.
Davies TJ, et al. Darwin’s abominable mystery: Insights from a supertree of the angiosperms. Proc Natl Acad Sci USA. 2004;101(7):1904–1909. PubMed PMC
Kerkhoff AJ, Moriarty PE, Weiser MD. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proc Natl Acad Sci USA. 2014;111(22):8125–8130. PubMed PMC
Novotny V, et al. Guild-specific patterns of species richness and host specialization in plant-herbivore food webs from a tropical forest. J Anim Ecol. 2010;79(6):1193–1203. PubMed
Wäckers FL, Romeis J, van Rijn P. Nectar and pollen feeding by insect herbivores and implications for multitrophic interactions. Annu Rev Entomol. 2007;52:301–323. PubMed
Ackermann M, Doebeli M. Evolution of niche width and adaptive diversification. Evolution. 2004;58(12):2599–2612. PubMed
Lovette IJ, Bermingham E, Ricklefs RE. Clade-specific morphological diversification and adaptive radiation in Hawaiian songbirds. Proc Biol Sci. 2002;269(1486):37–42. PubMed PMC
Ehrlich PR, Raven PH. Butterflies and plants: A study in coevolution. Evolution. 1964;18(4):586–608.
Janz N, Nylin S, Wahlberg N. Diversity begets diversity: Host expansions and the diversification of plant-feeding insects. BMC Evol Biol. 2006;6(1):4. PubMed PMC
Fordyce JA. Host shifts and evolutionary radiations of butterflies. Proc Biol Sci. 2010;277(1701):3735–3743. PubMed PMC
Lewinsohn TM, Roslin T. Four ways towards tropical herbivore megadiversity. Ecol Lett. 2008;11(4):398–416. PubMed
Connell JH. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dynamics of populations. In: den Boer PJ, Gradwell GR, editors. Proceedings of the Advanced Study Institute on Dynamics of Numbers in Populations. Centre for Agricultural Publishing and Documentation; Wageningen, The Netherlands: 1971. pp. 298–312.
Bagchi R, et al. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature. 2014;506(7486):85–88. PubMed
Fox LR, Morrow PA. Specialization: Species property or local phenomenon? Science. 1981;211(4485):887–893. PubMed
Bickford D, et al. Cryptic species as a window on diversity and conservation. Trends Ecol Evol. 2007;22(3):148–155. PubMed
Price PW. Evolutionary Biology of Parasites. Princeton Univ Press; Princeton: 1980. pp. xi–237.
Murcia C, et al. A critique of the ‘novel ecosystem’ concept. Trends Ecol Evol. 2014;29(10):548–553. PubMed
Tallamy DW. Do alien plants reduce insect biomass? Conserv Biol. 2004;18(6):1689–1692.
Bascompte J, Jordano P. Plant-animal mutualistic networks: The architecture of biodiversity. Annu Rev Ecol Evol Syst. 2007;38(38):567–593.
Erdös P, Rényi A. On random graphs. Publ Math. 1959;6:290–297.
Proulx SR, Promislow DE, Phillips PC. Network thinking in ecology and evolution. Trends Ecol Evol. 2005;20(6):345–353. PubMed
Lewinsohn TM, Prado PI, Jordano P, Bascompte J, Olesen JM. Structure in plant-animal interaction assemblages. Oikos. 2006;113(1):174–184.
Newman ME. Power laws, Pareto distributions and Zipf's law. Contemp Phys. 2005;46(5):323–351.
Janz N, Nylin S. The oscillation hypothesis of host-plant range and speciation. In: Tilmon KJ, editor. Specialization, Speciation and Radiation: The Evolutionary Biology of Herbivorous Insects. Univ of California Press; Berkeley, CA: 2008. pp. 203–215.
Courtney SP. The ecology of pierid butterfies: Dynamics and interactions. Adv Ecol Res. 1986;15:51–131.
Jahner JP, Bonilla MM, Badik KJ, Shapiro AM, Forister ML. Use of exotic hosts by Lepidoptera: Widespread species colonize more novel hosts. Evolution. 2011;65(9):2719–2724. PubMed
Arnold BC. Encyclopedia of Statistical Sciences. 2008. Pareto distribution. DOI
Aban IB, Meerschaert MM, Panorska AK. Parameter estimation for the truncated Pareto distribution. J Am Stat Assoc. 2006;101(473):270–277.
Clauset A, Shalizi CR, Newman ME. Power-law distributions in empirical data. SIAM Rev. 2009;51(4):661–703.
D'Agostino RB. Goodness-of-Fit-Techniques. CRC; Boca Raton, FL: 1986.
Zaninetti L, Ferraro M. On the truncated Pareto distribution with applications. Centr Eur J Phys. 2008;6(1):1–6.
Deidda R. A multiple threshold method for fitting the generalized Pareto distribution to rainfall time series. Hydrol Earth Syst Sci. 2010;14(12):2559–2575.
Schoenberg FP, Patel RD. Comparison of Pareto and tapered Pareto distributions for environmental phenomena. Eur Phys J Spec Top. 2012;205(1):159–166.
Heywood VH. Flowering Plants of the World. New York: Mayflower Books; 1993.
Substantial Insect Herbivory in a South African Savanna-Forest Mosaic: A Neglected Topic
Global proliferation of nonnative plants is a major driver of insect invasions
Identifying the generalizable controls on insect associations of native and non-native trees
Plant phylogeny drives arboreal caterpillar assemblages across the Holarctic
Plant diversity drives global patterns of insect invasions
Phylogenetic trophic specialization: a robust comparison of herbivorous guilds
Dryad
10.5061/dryad.HG549