• This record comes from PubMed

Unravelling high insect diversity and community turnover along a tropical-temperate elevation gradient: A metabarcoding approach

. 2025 ; 20 (7) : e0327884. [epub] 20250717

Language English Country United States Media electronic-ecollection

Document type Journal Article

The transition zone between the Nearctic and Neotropical biogeographic regions is one of the most species-rich areas of North America, known as the Mexican Transition Zone. We sampled mobile insects along a 2000 m elevational gradient for 13 months using flight interception traps (Malaise) to evaluate their diversity, community structure and environmental factors linked to their distribution. We identified 3091 Molecular Operational Taxonomical Units (560 ± 199 SD per trap), out of which 513 were identified to genus and 197 to species. Our results show high turnover at both species and genus levels across the elevational gradient. Elevational diversity patterns varied across taxa: Coleoptera and Lepidoptera showed their highest diversity at mid-elevations, while Diptera and Hymenoptera had increased diversity with elevation. Temperature and vegetation composition best explained the spatial fluctuations of insect diversity. Our work represents the most comprehensive survey of insect communities in the region to date. By combining a long-term survey with high-throughput metabarcoding, this study provides an overview of regional diversity and establishes a foundation for detailed follow-up studies.

See more in PubMed

Hodkinson ID. Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev Camb Philos Soc. 2005;80(3):489–513. doi: 10.1017/s1464793105006767 PubMed DOI

Körner C. The use of “altitude” in ecological research. Trends Ecol Evol. 2007;22(11):569–74. doi: 10.1016/j.tree.2007.09.006 PubMed DOI

Hebert PDN. Moth Communities in Montane Papua New Guinea. The Journal of Animal Ecology. 1980;49(2):593. doi: 10.2307/4266 DOI

Brehm G, Colwell RK, Kluge J. The role of environment and mid‐domain effect on moth species richness along a tropical elevational gradient. Global Ecology and Biogeography. 2007;16(2):205–19. doi: 10.1111/j.1466-8238.2006.00281.x DOI

Nogués-Bravo D, Araújo MB, Romdal T, Rahbek C. Scale effects and human impact on the elevational species richness gradients. Nature. 2008;453(7192):216–9. doi: 10.1038/nature06812 PubMed DOI

Ashton LA, Odell EH, Burwell CJ, Maunsell SC, Nakamura A, McDonald WJF, et al. Altitudinal patterns of moth diversity in tropical and subtropical Australian rainforests. Austral Ecology. 2015;41(2):197–208. doi: 10.1111/aec.12309 DOI

Körner C. Why are there global gradients in species richness? mountains might hold the answer. Trends in Ecology & Evolution. 2000;15(12):513–4. doi: 10.1016/s0169-5347(00)02004-8 DOI

Rahbek C, Borregaard MK, Colwell RK, Dalsgaard B, Holt BG, Morueta-Holme N, et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity?. Science. 2019;365(6458):1108–13. doi: 10.1126/science.aax0149 PubMed DOI

Barthlott W, al. et. Global distribution of species diversity in vascular plants: Towards a world map of phytodiversity. erd. 1996;50(1). doi: 10.3112/erdkunde.1996.04.03 DOI

McCain CM. Global analysis of bird elevational diversity. Global Ecology and Biogeography. 2009;18(3):346–60. doi: 10.1111/j.1466-8238.2008.00443.x DOI

McCain CM. The mid‐domain effect applied to elevational gradients: species richness of small mammals in Costa Rica. Journal of Biogeography. 2003;31(1):19–31. doi: 10.1046/j.0305-0270.2003.00992.x DOI

Szewczyk T, McCain CM. A Systematic Review of Global Drivers of Ant Elevational Diversity. PLoS One. 2016;11(5):e0155404. doi: 10.1371/journal.pone.0155404 PubMed DOI PMC

Fittkau EJ, Klinge H. On Biomass and Trophic Structure of the Central Amazonian Rain Forest Ecosystem. Biotropica. 1973;5(1):2. doi: 10.2307/2989676 DOI

Longino JT, Branstetter MG, Ward PS. Ant diversity patterns across tropical elevation gradients: effects of sampling method and subcommunity. Ecosphere. 2019;10(8). doi: 10.1002/ecs2.2798 DOI

Moses J, Fayle TM, Novotny V, Klimes P. Elevation and leaf litter interact in determining the structure of ant communities on a tropical mountain. Biotropica. 2021;53(3):906–19. doi: 10.1111/btp.12914 DOI

Pérez‐Toledo GR, Valenzuela‐González JE, Moreno CE, Villalobos F, Silva RR. Patterns and drivers of leaf‐litter ant diversity along a tropical elevational gradient in Mexico. Journal of Biogeography. 2021;48(10):2512–23. doi: 10.1111/jbi.14217 DOI

Escobar F, Halffter G, Arellano L. From forest to pasture: an evaluation of the influence of environment and biogeography on the structure of beetle (Scarabaeinae) assemblages along three altitudinal gradients in the Neotropical region. Ecography. 2007;30(2):193–208. doi: 10.1111/j.0906-7590.2007.04818.x DOI

Kessler M. The elevational gradient of Andean plant endemism: varying influences of taxon‐specific traits and topography at different taxonomic levels. Journal of Biogeography. 2002;29(9):1159–65. doi: 10.1046/j.1365-2699.2002.00773.x DOI

Szumik C, Aagesen L, Casagranda D, Arzamendia V, Baldo D, Claps LE, et al. Detecting areas of endemism with a taxonomically diverse data set: plants, mammals, reptiles, amphibians, birds, and insects from Argentina. Cladistics. 2012;28(3):317–29. doi: 10.1111/j.1096-0031.2011.00385.x PubMed DOI

Costa FV da, Viana‐Júnior AB, Aguilar R, Silveira FAO, Cornelissen TG. Biodiversity and elevation gradients: Insights on sampling biases across worldwide mountains. Journal of Biogeography. 2023;50(11):1879–89. doi: 10.1111/jbi.14696 DOI

Colwell R, Lees D. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol Evol. 2000;15(2):70–6. doi: 10.1016/s0169-5347(99)01767-x PubMed DOI

Rivas-Sánchez DF, Melo-Flórez L, Aragón A, Pardo-Díaz C, Salazar C, Montgomery SH, et al. Parallel evolution of behavior, physiology, and life history associated with altitudinal shifts in forest type in Heliconius butterflies. Evolution. 2023;77(6):1458–67. doi: 10.1093/evolut/qpad062 PubMed DOI

Joaqui T, Cultid‐Medina CA, Dáttilo W, Escobar F. Different dung beetle diversity patterns emerge from overlapping biotas in a large mountain range of the Mexican Transition Zone. Journal of Biogeography. 2021;48(6):1284–95. doi: 10.1111/jbi.14075 DOI

Njovu HK, Steffan-Dewenter I, Gebert F, Schellenberger Costa D, Kleyer M, Wagner T, et al. Plant traits mediate the effects of climate on phytophagous beetle diversity on Mt. Kilimanjaro. Ecology. 2021;102(12):e03521. doi: 10.1002/ecy.3521 PubMed DOI

Terlizzi A, Anderson MJ, Bevilacqua S, Fraschetti S, Włodarska‐Kowalczuk M, Ellingsen KE. Beta diversity and taxonomic sufficiency: Do higher‐level taxa reflect heterogeneity in species composition?. Diversity and Distributions. 2009;15(3):450–8. doi: 10.1111/j.1472-4642.2008.00551.x DOI

Morrone JJ. The Mexican Transition Zone. Springer International Publishing. 2020. doi: 10.1007/978-3-030-47917-6 DOI

Sánchez-Ramos G, Reyes-Castillo P, Dirzo R. Historia natural de la reserva de la biósfera El Cielo, Tamaulipas, México. Cd. Victoria. 2005.

González-Medrano F. Capítulo 7. La vegetación. In: Sánchez-Ramos G, Reyes-Castillo P, Dirzo R, editors. Historia Natural de la Reserva de la Biosfera El Cielo, Tamaulipas, México. Cd. Victoria: Universidad Autónoma de Tamaulipas; 2005. p. 88–105.

Cavender-Bares J. Diversification, adaptation, and community assembly of the American oaks ( PubMed DOI

Fick SE, Hijmans RJ. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Intl Journal of Climatology. 2017;37(12):4302–15. doi: 10.1002/joc.5086 DOI

Ji Y, Ashton L, Pedley SM, Edwards DP, Tang Y, Nakamura A, et al. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol Lett. 2013;16(10):1245–57. doi: 10.1111/ele.12162 PubMed DOI

Hawthorne BSJ, Cuff JP, Collins LE, Evans DM. Metabarcoding advances agricultural invertebrate biomonitoring by enhancing resolution, increasing throughput and facilitating network inference. Agri and Forest Entomology. 2024;27(1):50–66. doi: 10.1111/afe.12628 DOI

Remmel N, Buchner D, Enss J, Hartung V, Leese F, Welti EAR, et al. DNA metabarcoding and morphological identification reveal similar richness, taxonomic composition and body size patterns among flying insect communities. Insect Conserv Diversity. 2024;17(3):449–63. doi: 10.1111/icad.12710 DOI

Laini A, Stubbington R, Beermann AJ, Burgazzi G, Datry T, Viaroli P, et al. Dissecting biodiversity: assessing the taxonomic, functional and phylogenetic structure of an insect metacommunity in a river network using morphological and metabarcoding data. The European Zoological Journal. 2023;90(1):320–32. doi: 10.1080/24750263.2023.2197924 DOI

Salis R, Sunde J, Gubonin N, Franzén M, Forsman A. Performance of DNA metabarcoding, standard barcoding and morphological approaches in the identification of insect biodiversity. Mol Ecol Resour. 2024;24(8):e14018. doi: 10.1111/1755-0998.14018 PubMed DOI

Elbrecht V, Braukmann TWA, Ivanova N V., Prosser SWJ, Hajibabaei M, Wright M, et al. Validation of COI metabarcoding primers for terrestrial arthropods. PeerJ. 2019:e7745. 10.7717/peerj.7745/supp-23 PubMed DOI PMC

Hoppeler F, Tachamo Shah RD, Shah DN, Jähnig SC, Tonkin JD, Sharma S, et al. Environmental and spatial characterisation of an unknown fauna using DNA sequencing – an example with Himalayan Hydropsychidae (Insecta: Trichoptera). Freshwater Biology. 2016;61(11):1905–20. doi: 10.1111/fwb.12824 DOI

Guardiola M, Uriz MJ, Taberlet P, Coissac E, Wangensteen OS, Turon X. Deep-Sea, Deep-Sequencing: Metabarcoding Extracellular DNA from Sediments of Marine Canyons. PLoS One. 2015;10(10):e0139633. doi: 10.1371/journal.pone.0139633 PubMed DOI PMC

Chao A, Jost L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology. 2012;93(12):2533–47. doi: 10.1890/11-1952.1 PubMed DOI

Hsieh TC, Ma KH, Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol. 2016;7(12):1451–6. doi: 10.1111/2041-210x.12613 DOI

R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2023. https://www.r-project.org/

Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM. Mixed Effects Models and Extensions in Ecology with R (Statistics for Biology and Health). New York: Springer; 2009. doi: 10.1007/978-0-387-87458-6 DOI

Naimi B, Hamm NAS, Groen TA, Skidmore AK, Toxopeus AG. Where is positional uncertainty a problem for species distribution modelling? Ecography. 2013;37(2):191–203. doi: 10.1111/j.1600-0587.2013.00205.x DOI

Peterson BG, Carl P. PerformanceAnalytics: Econometric Tools for Performance and Risk Analysis. 2020. https://cran.r-project.org/package=PerformanceAnalytics

Crawley MJ. The R book. 2nd ed. Chichester, West Sussex, United Kingdom: Wiley & Sons Ltd. 2013.

Popovic GC, Hui FKC, Warton DI. Fast model‐based ordination with copulas. Methods Ecol Evol. 2021;13(1):194–202. doi: 10.1111/2041-210x.13733 DOI

Wang Y, Naumann U, Wright ST, Warton DI. mvabund– an R package for model‐based analysis of multivariate abundance data. Methods Ecol Evol. 2012;3(3):471–4. doi: 10.1111/j.2041-210x.2012.00190.x DOI

Warton DI. Eco-Stats: Data Analysis in Ecology. Springer International Publishing. 2022. doi: 10.1007/978-3-030-88443-7 DOI

Richards SA. Likelihood and model selection. In: Fox GA, Negrete-Yankelevich S, Sosa VJ, editors. Ecological Statistics: Contemporary theory and application. United Kingdom: Oxford University Press; 2015. p. 58–78.

Barton K. MuMIn: Multi-Model Inference. 2020. https://cran.r-project.org/package=MuMIn

Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016. https://ggplot2.tidyverse.org

Baselga A. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography. 2009;19(1):134–43. doi: 10.1111/j.1466-8238.2009.00490.x DOI

Baselga A, Orme CDL. betapart: an R package for the study of beta diversity. Methods Ecol Evol. 2012;3(5):808–12. doi: 10.1111/j.2041-210x.2012.00224.x DOI

Souto‐Vilarós D, Basset Y, Blažek P, Laird‐Hopkins B, Segar ST, Navarro‐Valencia E, et al. Illuminating arthropod diversity in a tropical forest: Assessing biodiversity by automatic light trapping and DNA metabarcoding. Environmental DNA. 2024;6(2). doi: 10.1002/edn3.540 DOI

Kirse A, Bourlat SJ, Langen K, Fonseca VG. Metabarcoding Malaise traps and soil eDNA reveals seasonal and local arthropod diversity shifts. Sci Rep. 2021;11(1):10498. doi: 10.1038/s41598-021-89950-6 PubMed DOI PMC

Klimova A, Rodríguez‐Estrella R, Meng G, Gutiérrez‐Rivera JN, Jimenez‐Jimenez ML, Liu S. Metabarcoding reveals seasonal and spatial patterns of arthropod community assemblages in two contrasting habitats: Desert and oasis of the Baja California Peninsula, Mexico. Diversity and Distributions. 2023;29(3):438–61. doi: 10.1111/ddi.13672 DOI

Wagner DL, Grames EM, Forister ML, Berenbaum MR, Stopak D. Insect decline in the Anthropocene: Death by a thousand cuts. Proc Natl Acad Sci U S A. 2021;118(2):e2023989118. doi: 10.1073/pnas.2023989118 PubMed DOI PMC

Lees AC, Pimm SL. Species, extinct before we know them? Curr Biol. 2015;25(5):R177-80. doi: 10.1016/j.cub.2014.12.017 PubMed DOI

Colwell RK, Gotelli NJ, Ashton LA, Beck J, Brehm G, Fayle TM, et al. Midpoint attractors and species richness: Modelling the interaction between environmental drivers and geometric constraints. Ecol Lett. 2016;19(9):1009–22. doi: 10.1111/ele.12640 PubMed DOI

Plowman NS, Hood ASC, Moses J, Redmond C, Novotny V, Klimes P, et al. Network reorganization and breakdown of an ant-plant protection mutualism with elevation. Proc Biol Sci. 2017;284(1850):20162564. doi: 10.1098/rspb.2016.2564 PubMed DOI PMC

Szczepański W, Vondráček D, Seidel M, Wardhaugh C, Fikácek M. High diversity of Cetiocyon beetles (Coleoptera: Hydrophilidae) along an elevational gradient on Mt. Wilhelm, New Guinea, with new records from the Bird’s Head Peninsula. ASP. 2018;76(2):323–47. doi: 10.3897/asp.76.e31932 DOI

Rebetez M, Reinhard M. Monthly air temperature trends in Switzerland 1901-2000 and 1975-2004. Theor Appl Climatol. 2008;91:27–34. doi: 10.1007/S00704-007-0296-2 DOI

Pepin NC, Arnone E, Gobiet A, Haslinger K, Kotlarski S, Notarnicola C, et al. Climate Changes and Their Elevational Patterns in the Mountains of the World. Reviews of Geophysics. 2022;60(1). doi: 10.1029/2020rg000730 DOI

Zu K, Wang Z, Zhu X, Lenoir J, Shrestha N, Lyu T, et al. Upward shift and elevational range contractions of subtropical mountain plants in response to climate change. Sci Total Environ. 2021;783:146896. doi: 10.1016/j.scitotenv.2021.146896 PubMed DOI

McCain CM, Garfinkel CF. Climate change and elevational range shifts in insects. Curr Opin Insect Sci. 2021;47:111–8. doi: 10.1016/j.cois.2021.06.003 PubMed DOI

Maihoff F, Friess N, Hoiss B, Schmid‐Egger C, Kerner J, Neumayer J, et al. Smaller, more diverse and on the way to the top: Rapid community shifts of montane wild bees within an extraordinary hot decade. Diversity and Distributions. 2022;29(2):272–88. doi: 10.1111/ddi.13658 DOI

Brehm G, Strutzenberger P, Fiedler K. Phylogenetic diversity of geometrid moths decreases with elevation in the tropical Andes. Ecography. 2013;36(11):1247–53. doi: 10.1111/j.1600-0587.2013.00030.x DOI

Møller A, Jennions MD. How much variance can be explained by ecologists and evolutionary biologists?. Oecologia. 2002;132(4):492–500. doi: 10.1007/s00442-002-0952-2 PubMed DOI

Terborgh J. Distribution on Environmental Gradients: Theory and a Preliminary Interpretation of Distributional Patterns in the Avifauna of the Cordillera Vilcabamba, Peru. Ecology. 1971;52(1):23–40. doi: 10.2307/1934735 DOI

Debinski DM. Insects in Grassland Ecosystems. Rangeland Wildlife Ecology and Conservation. Springer International Publishing. 2023. p. 897–929. doi: 10.1007/978-3-031-34037-6_26 DOI

Jactel H, Brockerhoff EG. Tree diversity reduces herbivory by forest insects. Ecol Lett. 2007;10(9):835–48. doi: 10.1111/j.1461-0248.2007.01073.x PubMed DOI

Dyer LA, Singer MS, Lill JT, Stireman JO, Gentry GL, Marquis RJ, et al. Host specificity of Lepidoptera in tropical and temperate forests. Nature. 2007;448(7154):696–9. doi: 10.1038/nature05884 PubMed DOI

Forister ML, Novotny V, Panorska AK, Baje L, Basset Y, Butterill PT, et al. The global distribution of diet breadth in insect herbivores. Proc Natl Acad Sci U S A. 2015;112(2):442–7. doi: 10.1073/pnas.1423042112 PubMed DOI PMC

Supriya K, Moreau CS, Sam K, Price TD. Analysis of tropical and temperate elevational gradients in arthropod abundance. Frontiers of Biogeography. 2019;11(2). doi: 10.21425/f5fbg43104 DOI

Schowalter TD, Presley SJ, Willig MR. Variation in biodiversity and abundance of functional groups of arthropods along a tropical elevational gradient in Puerto Rico. Biotropica. 2024;57(1). doi: 10.1111/btp.13412 DOI

O’Meara S, Yee DA. Ant communities respond to a large‐scale disturbance along an elevational gradient in Puerto Rico, U.S.A. Biotropica. 2024;56(2). doi: 10.1111/btp.13300 DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...